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Abstract: The theory of complex spherical fuzzy sets (CSFSs) is a mixture of two theories, i.e.,
complex fuzzy sets (CFSs) and spherical fuzzy sets (SFSs), to cope with uncertain and unreliable
information in realistic decision-making situations. CSFSs contain three grades in the form of polar
coordinates, e.g., truth, abstinence, and falsity, belonging to a unit disc in a complex plane, with a
condition that the sum of squares of the real part of the truth, abstinence, and falsity grades is not
exceeded by a unitinterval. In this paper, we first consider some properties and their operational laws
of CSFSs. Additionally, based on CSFSs, the complex spherical fuzzy Bonferroni mean (CSFBM) and
complex spherical fuzzy weighted Bonferroni mean (CSFWBM) operators are proposed. The special
cases of the proposed operators are also discussed. A multi-attribute decision making (MADM)
problem was chosen to be resolved based on the proposed CSFBM and CSFWBM operators. We
then propose the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method
based on CSFSs (CSES-TOPSIS). An application example is given to delineate the proposed methods
and a close examination is undertaken. The advantages and comparative analysis of the proposed
approaches are also presented.

Keywords: fuzzy sets; complex spherical fuzzy sets; Bonferroni mean operators; TOPSIS method

1. Introduction

Multi-attribute decision making (MADM) issues are inescapable in the field of decision making.
In numerous functional applications, MADM plays a significant role in the procedure of decision
making. Many existing strategies tell us that the best way to pick the most appropriate elective
depends on the decision makers’ (DMs) assessment data. Due to the progressively intricate outer
decision-making condition and the abstract vulnerability of DMs themselves, it is hard for DMs to
clarify their genuine inclination data plainly. In this manner, Zadeh [1] characterized the idea of fuzzy
sets (FSs) to clarify the imprecision and the doubt occurring during the assessment procedure. Until
now, ESs have been examined and applied to different fields by a large number of scientists [2-4].
Later, numerous researchers have concentrated on the most proficient method to characterize the
appraisal inclinations communicated by DMs more extensively and precisely. Numerous categories
of FSs have been proposed to adjust to different application conditions, for example, intuitionistic FSs
(IFSs) explored by Atanassov [5] contain supporting and non-supporting grades with a rule that the
sum of both cannot be exceeded from a unit interval.

However, the condition of an IFS for a decision maker is somehow too restrictive for choosing the
sum of supporting and non-supporting grades that is not exceeded from a unit interval. To resolve
such issues, the theory of Pythagorean fuzzy sets (PFSs) was explored by Yager [6], with a condition
that the sum of the squares of both cannot be exceeded from a unit interval. IFSs and PFSs have had
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various applications [7-12]. Later, the theory of picture fuzzy sets (PiFSs) was presented by Cuong and
Kreinovich [13]. PiFSs are composed of the grades of truth, abstinence, and falsity with a condition
that the sum of all grades cannot be exceeded from a unit interval. Similarly, the condition of PiFSs
for a decision maker is also too restrictive for choosing the sum of truth, abstinence, and falsity grades
that is not exceeded from a unit interval. Thus, the theory of spherical fuzzy set (SFS), proposed by
Mahmood et al. [14], with a condition that the sum of squares of all grades cannot be exceeded from a
unit interval, was used to resolve these issues. By extending squares with g-powers, T-spherical fuzzy
sets (TSFSs) were established by Ullah et al. [15], in which the sum of gq-powers of positive, abstinence,
and negative grades belong to [0, 1] with various applications in different fields [16-20].

From the above studies of decision maker processes, we can conclude that their introduction is
constrained and can deal with only with vulnerability in information, yet at the same time neglects
to manage changes at a given period of time. Be that as it may, data obtained, such as from a
clinical examination, or a database for biometric and facial acknowledgment, consistently changes
simultaneously with time. Along these lines, to manage such sorts of issue, the scope of a supporting
grade is arrived at from a genuine subset to the unit plate of the mind boggling plane and thus Ramot
et al. [21] established the complex FS (CFS) which has had many applications [22-24]. Additionally,
the theory of complex IFSs (CIFSs) was presented by Alkouri and Salleh [25] to provide a wide range
of options to a decision maker for taking a decision. CIFSs compose the supporting grade and the
non-supporting grade in the form of a complex number belonging to a unit disc in a complex plane.
The limitations of CIFSs is that the sum of the real part (and the imaginary part) of both grades cannot
be exceeded from a unit interval. However, a decision maker may give the grades of both real and
imaginary parts whose sum is exceeded from a unit interval. The theory of complex PFSs (CPFSs),
with a condition in which the sum of squares of the grades of both real and imaginary parts cannot be
exceeded from a unit interval, was proposed by Ullah et al. [26] for coping with this kind of issue. The
theory of CIFS and CPFS have received lots of attention with applications in different fields [27-30].

When a decision maker faces more types of answer, such as truly, abstinence, no, or refusal
in the form of complex numbers, casting a ballot can be a genuine case in such a circumstance, as
voters might be separated into four categories of individuals, i.e., vote in favor of, abstinence, vote
against, or refusal of the democratic process, in the form of polar coordinates. For instance, with
(0.7eizn0‘6, 0.4¢!21105 O.Ieizm'l), the IFS, PFS, PFES, CIFS, or CPFS are not able to investigate, because
the conditions of all these notions are limited. For coping with such issues, the theory of complex
spherical fuzzy sets (CSFSs) is explored in this paper to examine proficiency and ability. Thus, we
summarize the contributions of the paper as follows:

To investigate the novelty of CSFES and their fundamental laws.

To investigate the Bonferroni mean (BM) operators based on CSFS and discuss their special cases.
To examine the TOPSIS method based on CSFS and propose a novel CSFS-TOPSIS method.

To resolve the MADM issues based on the proposed aggregation operators.

gk N

To give an application example of the proposed methods with comparative analysis and
demonstrate the usefulness and effectiveness of the proposed methods.

The remainder of the paper is organized as follows. In Section 2, we first review some basic
definitions of CPFSs and BM operators, and then their score and accuracy function. We further
consider their operational laws with some properties. In Section 3, based on CSFS and BM operators,
the complex spherical fuzzy Bonferroni mean (CSFBM) and complex spherical fuzzy weighted
Bonferroni mean (CSFWBM) operators are proposed. The special cases of the explored operators
are also discussed to improve the novelty of the presented work. In Section 4, a MADM problem is
chosen to be resolved based on the CSFBM operator and CSFWBM operator. Additionally, the TOPSIS
method based on CSFS is also explored to construct a CSFS-TOPSIS method. An application example
is given to demonstrate the effectiveness of the proposed methods with comparative analysis. Finally,
we give conclusions in Section 5.
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2. Preliminary Definitions with Some Properties

In this section, we review some existing notions, such as CPESs, CSFSs and Bonferroni mean (BM)
operators. Throughout the whole paper, we use Uy,;sersar tO Tepresent the universal set.

Definition 1 ([26]). A CPFS is defined as:

€:CPF = { <u* 9—% (u)* yle (u)> S UUnivsersal} (1)
CPF CPF

2007 | expresses the grade of supporting and

supporting against with the conditions: 0 < .‘TCRPZ(u) + TCRPZ(M) <1 and 0< 'QTC,PZ(”") +

i2M1Qq .,
where T = Teppe “r and Feo. = Fegp

2110
Q. (W) <1.  Further, the symbol — Hepoy(1t) = pegpe’ Her = (1 ~ (T2 () +

NI

1
S Q20 1—<07 2(w)+02F,. Z(u)))
:FCRPZ(L(')))Z e ( “ip “ir

( TCRpeiznﬂTCIP' TCRpeianT €1P) is used to represent the complex Pythagorean fuzzy number (CPFN).

is called the hesitancy grade. In general, €cpr = (Ttpppr Fegps) =

Definition 2 ([26]). For any CPFS €.pp with its CPEN €.pp = (T .F, =
€CPF €CPF
2010 g 210 g

<9‘€RPe €, 9€RPe € ), the score function Sy and accuracy function H 4 are defined as:
SorCcpr) = 3 (T2~ Fi) + (9, — 9%,))
sF\tcpF 2 CRrp €Rrp Terp Ferp (2)
Hyp (€ )=1<(g'2 + F? )+(92 + 02 ))
AF\LCPF 2 €Rrp €rp Terp Ferp (3)

where Ssp(€cpr), Hap(€cpr) € [—1,1].

Thus, the comparisons between two CPFNs €¢pr_; and €¢pr_, can be defined as:

1. If Sep(€cpr-1) > Ssp(€cpr-2), then €cpp_y > Ceppy;
If Ssr(€cpr-1) = Ssp(€cpr-2), then
1) If Hyp(€cpp—1) > Hap(€cpr-2), then €cpp_q > Cepp_y;
2) If Hyp(€cpp-1) = Hap(€cpp—2), then €cpp_y = €cpp_y.

Furthermore, we can give some important operators on CPFNs, which are considered as follows.
For any two CPENs €.pp_; and €¢pp_, with s¢sr, we have
1. €cppoit= (TCRP_leianTCIP—l, TCRP_leiznﬂTCIP—1 );
2. €cpp-1VE€cpr—2 =
(max(.‘TCRp_l, TCRP—Z)' e
3. €cpr-1 NE€cpr—2 =

(min(TCRP—l' TCRP—z)' e

izn'max(ﬂTCIP—l'nfCIP—z), miIl(TCRP_l' TCRP-z)' eiznlmin(n%”’_l'QTCIP_Z))}

i2I-I'min('QTCIP—1'QTC1P—2), maX(TCRP—l' fCRP—z)' eizn.maX(ﬂfqP_l‘QTQIP_Z))}
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1

z ﬂhn’ +Q§CIP 2 ’
F2 g2 Nz B2 g ( )
_ €rp-1 €rp-2 Terp_ 1 T p_ 211 Qg QF.
4. €cpr1 D €cpp—2 = < T2 T2 .€ fp=1 “HIP-2 '(TCRP—1TCRP—2)'e p-1 " Cip-2/ |;
€rp-1Y €rp—2

1

Q2 2 \Z
FL o+ F2 P e e
. —_ . 2 2
i211.( Qg Qg €rp-1 €rp-2 QF, QF
= €1p_q Terp_ C1p_y Fepp_ .
5. €cpro1 Q@ €Cepp_y = (TCRPA‘TCRLz)'e ( -1 7€p z)’ 2 ) e 1P-1" TCRP-2 ;
TC TC
RP-1 RP-2

7~ €rp-1

1
1 SCSF\2 . SCSF
— 2 scsp\z 120 (1-(1-07, scsp 12T )
6. Spr€cpr_1 = <(1 -(1-72,) ) e (1-(1-95, ) ") Fiesr g apes |,

€rp-1

1
i SCSF g 2 SCSF\2
S i201.0¢ scs iz (1-(1-0
7. €CPF—ISPF = (T CSF @ T(r1p—1’ (1 — (1 — TéRP—l) F)ze ( ( TCRP—I) ) .

Definition 3 ([31]). For any collection {Vj,j =1,2,3,... m} of values with 0 < Vv, <1, and 0 < p, q, the BM
operator is defined as:

m

1
BMM(W Vs Vo) = |2 X W g
Jik=1

J#k

We next give the definition of CSFSs and their operational laws. Ali et al. [32] recently proposed
complex T-spherical fuzzy sets (CTSFSs). In fact, a CSFS is a special case of a CTSFS with g =2. The
definition of a CSFS is given as follows.

Definition 4 ([32]). A CSFES is defined as:
€CSF = {(/LL, TICCSF(/”’)' 0’6’(;51:(“)1‘7:’6(;51.-(4"')) u € UUniversal} (5)

2010 2119 2010
where T, = .‘TCRPelzn TCIP,B’CCSF = BCRPelzn %ap and Feeor = TCRPeLZH e expresses the grade of
supporting, abstinence, and supporting against with the conditions: 0 < T, ?(w) + 0%, (w) +

Fepp- () <1 and 0< .QTCIPZ(u) + .QGCIPZ(u) +025,2(w) < 1. Further, the symbol He,g, (1) =
1

1 z
. S Q20 1—(nT 2(w)+0g,. 2(w)+0F 2(44)))
HCRPelznﬂuCIP _ (1 _ (TCRPZ(’LL) + H%RP (w) + TCRPZ(’DL))>2 e ( €rp <rp P o

called the hesitancy grade. Thus, Cesr = (Tepsp Opspr Feess) =

( TCRPeiZImTCIP, gcRpeiZImoC’P' TCRpeisz CIP) represents the complex spherical fuzzy number (CSFN).

Definition 5. For any CSFS €.gp with its CSFN €.gp = (9” 0 L F! ) =
CCSF CCSF

€:CSF

i2IIQ g i2H(29€ 2I1Q g

s
9"6 e IP,QCRPe lP7g€RPe P

RP
H , is defined as:

>, the score function Sgp and accuracy function

1
SSF(CCSF) = g ((T%Rp - eéRp - ?%Rp) + (Q%CIP - ﬂgCIp - ﬂg:CIP)) (6)
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1
HAF(CCSF) = § ((TéRp + O%RP + T%Rp) + (Q;CIP + ﬂgclp + Q%CIP)) (7)

where Sgr(€csr). Har (€csr) € [-1, 11.

Thus, the comparisons between two CSFNs €¢gr_1 and €.gr_, can be stated as:

If Ssr(€csp-1) > Ssp(€csp-2), then €ogpq > €egroy

If Ssp(€csp-1) = Ssp(€csp—2), then

1) If Hyp(€csp-1) > Hap(€csr—z), then Cegp_q > Crgp_y
2) If Hyp(€cspo1) = Hap(€csp_z), then €ogp_y = Cegpyp.

We next give some important operators of CSFNs. For any two CSENs €¢gr_; and €¢gr_, with
Scsr, wWe give the following operators of CSFNs:

—_

c _ iZH.Qy:C izﬂﬂgc iZH.QTC .
Cespq = (TCRP_le IP_l’BCRP—le 1P—1 TCRP-le P-1 );

i2[l.max .QT A )
€1p— €1p—
max(TCRP 1’TCRP -2 1p-1 p=27,

i20. mln(ﬂgc 1P 1'99611’ 2)

N

Cespo1 V €espz ;

mln(OCRP—l’ OCRP

i2[l.min .(lgc ,.(lgc )
F F <p €p—
mln( €rp-1"" €RrP- 1P=2

. i2[1.min .(lg- A7 )
min :]' T €, €
L ( €rp-1’Y €Rrp- 1P-1 1P-2

i21l. max(

2 0 )
CCSF—l ACCSF—Z O¢ip_1""%¢p_

)-e
.)-e
e
)€
)-e

max(BCRP 1'GCRP 2

) LG.max(nfclp_l,nfcm_z)

max(.‘FCRP_l,:FCRP_Z .e

—\2
.e
iZH.(QgC 'QBC )
(OCRP—IOCRP—Z)'e Ip=1 "HIp-2 '(‘TCRP—rTCRP—z)'e

(TCRP—ITCRP—Z)'eizn.(nTCIP_lﬂTCIP_Z)r

1
_>E
)
i21. (n
Ferpoq 27 €1p- 2

0 +03
1 Tepy " Terp—y

2
i21‘[.<

03 0
Tep_1" T2

2 2
‘TCRP—1 + TCRP—Z

L

Cesr—1 D Cespz =

7

2 2
‘TCRP—1‘TCRP—2

\l
)

1
_>2
)

1

0 +03
b¢ip_y " O€p_

-

23 23
O¢ip_1" OCrp_2

1

_\3 2l
).e

2
eCRP—l + BCRP—Z

o

o

€esr-1 & Cesp—z =

~-

eCRP—10€RP—z

2
Ferp_p
2

0% +0
Ferpoy

2 2
TCRP—l + TCRP—Z

(

Scsr€esp-1 = (1 - (1 — :T%RP 1)SCSF) .
i211.0°CSF

:FCRP—l:FCRP—Z

ScsF
0
€Rrp-1

1
\z i217.<
) e

1
SCSF\2
1 . 2
= 20l 1—<1—.(2 . ) \
2 < Terp1 )

0¢;p_q TSCSF

,

0% 0%
Ferp—1" Ferp-2

i F
i211.0365F

€1p-1
RP-1

2002, SCSF

SCSF
.TCS
€Rrp-1

N

1
Cosra™" = | (1= (1- 62, " )e'

i SCSF
(- (=72, )y 0B ) ™)

'217.(1—(1—95 )SCSF)
€RP-1

Terp- 1,

1
2

’
1
2
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3. The Bonferroni Mean Operators Based on CSFSs

In this section, we give two important Bonferroni mean (BM) operators based on CSFSs, called
CSFBM and CSFWBM. Further, the specific cases of the CSFBM operator are also justified with
some remarks.

Definition 6. For any CSFSs %CSF—j’j =1,2,3,..,m, the CSFBM operator is defined as:

CSFBM?csFtesF (Cogp_1, Cesp-z,--» Cosp—m)

1
ScSFttcsF

1 S 4
= =D Dl (€357, ® €5F-4)
j*k

®)

Theorem 1. The CSFBM operation result is still a CSFS, such that it has the following equation:
CSFBM’csHiest (G esp_y, Gosrns - Cosrom) =
L 1 1)Y(SCSF“CSF)

c 1_1) 2(scsrttcsr) ( 1- L)\
PO o e Y
( 1- , \ jek Tepoj TCpok /
1 l_[ ScsF qptcesk Xe ,
kLk:l (TCRP—jTCRP—k)

jEk
SCSF+tCSF\|

1

( [ 2-(-oa. )" \\W 7\
1_I1—[| 1(1_—9&,3_,()%”1—_ i '
\ ) ) |

+t,
/ ] scsF m'm 7\ SesF CSF\
| 2_<1_99C1P—1‘) |

1-9p. .
1-| 1= H?k:1 ( O¢ip_i
j:kl

RRR sty G ) ) |

csp”csz-‘

SCSF m-(m,—l)
2-(1-%%, )
tCSF
1— m (1 TCRP K - <[

Jk=1 1—

Jj#k <( 1— >sCSF> fCSF

2
TCRP*J’ ‘TCRP Kk

1
1 +t,
/ ) ScSF m’(m,_l)\sCSF CSF
2— 1—.(2,,-CIP_j -

1- X

|
|
|
|
\

NI

’

1-—

1

20| 1-| 1~ M}y

Jj#k 1- 1-
1— \SCSF 1— tesr
(o) W)
Crp-j Ferp-i
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20y, i2M0g,.. 200F,
Proof. For any two CSFNs Ccgr—j = (TCRP_,-E C”’-J,OCRP_].e CIP-J,?CRP_je CIP-J) and Ccsp_y =
20y, 210, 21195, Lo
(TcRpfke -k, 0, € -k, Fe. ., e IP—k), based on the definition of CSFBM operator, we can

get

1

SCSF
S, 1
i211Q,¢5F Scspyz 211 1-03
ScsF ScSF Terpj _ 2 O¢ip_ _ _
CCSF—j = TCRP_je i (1 GCRP . e -J 1 1
1
S : ‘217(1 (1 03 ey i21105CSF
CSF\z L —(1-0% . ) ) t t 20
2 €1p— CSF — CSF T
TCRP*J') ) € " ’ and Cesp—k = TcRP_ke 1p-k, (1 - (1 -

2 ‘217(1 (1 02 )tCSF>
t 2 L —\1-¥7,
) CSF)Z e Cip-k . Then, we have

1
/ ) SCSF 2
- \
( 9cip- 1)

oot izn(1—(1—n§ )tCSF>_
GCRP—k) CSF)Z e nk (1 - (1 CRP k

e |
1

1 oam b¢rp
9_(1— @2 Scsk 2 ¢t / , SCSF \

( Crp- 1) 1 'QHC,P _j

t t
2 CSF csF

. l-m;CSF n;csp (1 GC’RP k) - k 1 2 )

TSCSF CSF o €p-j T€p- k, C1p— k

Crp-j~ CrP—k ((1 _ (1 oéRP 1) CSF)>

tesr
1—(1- 6%
ClE ® O = (1-0-,.0") 1 ,

i)

_(1 _ TéRP k)tcsp

(0t >)

(1 - (1 - T%Rpfk)tCSF)

And

1- 2
2
1- 7 20| 1-T1% (( SCSF otCSF )))
1—=T171™ 2 e ( 11*11 nTClP }nTCIP k
Jk=1 ( ) )

ScsF aptcsr
Crp-j~ CrP-k
1
SCSF 2
2
<1 Poc P—i>

Jj*k

1
2 ScsF 2 i2n H} k=1
2-(1-6%, ) ek

K
I I
Jk=1 ScsF ,
moesr @, =| e | ((1-(1-62,,) ) .
J*k (1 _ (1 _ ggRP_k)fcsp)

m _(1 - TCRP k)tCSF - e
B (00 )
(1-(1-#2,.)"")

2— ( TCRP j)SCsF  i2n H?;i?v(1‘(1‘"%“,_].)56”)U
\ )
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Thus, we have

Z cScsF fcsp
— CSF- 1 Cesr—k
m(m« 1)},{ X

Jj*k
1

1 1 2

( ot (e
(R

| . 1- ) \ jzk Terp-j Teip-k /

= - 1_[ ScsF qrtcsF e ,

\ jk=1 (TCRP—jTCRP—k)

2-(1- egRP_j)sC" ( \
o[ e, - \| (o, )

Hleessim) | |

TN -a-e,))
( 2-(1-a3,, ) \;
t,

m("i 10 i2n| I, _(1_%("”’ k) -
2 k=1 SCSF
/ 2- (1 - Té};p ])SCSF 2\ ]1=k (1_(1—9576”,7]_) )
| —a-w, ) - (1-(r-s3.,, ) )
1_[ SCSF

Kj'.kzl (1 - (1 TC’RP -

j*k tcsp >
(1 - (1 CRP k
And
1
Scsrttcsk
(CSCSF fCSF —
m,(m 1) Jk 1 CSF—j CSF—k
1
/ \Z(SCSF+fc5F) 1- , m 2(scsF+tcsF)
i2n| 1-{ 1= 1<(nsCSF qlesF )))
1 /ﬁ< o 2>\ I X e ( T\ 07,
- SCSF  artcSF ,
| l jk=1 (TGRP ]TCRP k) l
\\ fom )

m, (1 BCRP k)tcsp _

I ey
| (El—gl—egb /l

SCSF+’-‘CSF
SCSF . (m,
/ 2 (1-03,.) ﬁ
I
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[ (T
i\ N

(
|\

Nl

Scsrt fCSF\‘

scsr =1
2 (1 Fi, ]

(o] )
e n)

1-(1- T‘CRP . t“F

\I
|

1
L\ Scsrttcsk
my(m—1)

/|

We next investigate the properties of idempotency, monotonicity, and boundedness for the
CSFBM operator.

Theorem 2 (Idempotency). For any CSFSs @csp-j»J = 1,2,3,..m, we have

CSFBM’csr'esr (€cgp 1, €cgp_g, .. €csrn) = €csr-

Proof. Suppose CSFBMSCSF'tCSF(CCSF_l,CCSF_Z,..,Ccsp_m)=(/u,,w,4r). First, we choose the

supporting grade with &g =<1>€RP Mo | Let Pegp = Pegp_; Yo, = %’c,p_, and &, =

)i 2%, 2%y 2%
— €lp = 1P— € Yy
Perp_io Yoo, = Yoo, _, . Then, d’CRp = Qe € - and &, e =@ e 1p-k, and
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1 1
1- 2(scsrttcsr) 1- 2(scsrttesr)
1 1
/ \m«(mf—l) / \m(m—l)
m m
1- X , X
[ 1_[ (TSCSF gtesF | 1_[ JSCsF - qrtesE ) |
w= jk=1 €rp-j* €rP- k _ ]k 3 CRP j CRP "
Jj#k
1 1
1\ 2(scsF+tcsF) 2(scsF+tcsF)
s . 2\ \m(m-1) s . 2\ \m(m—-1)
n| - (1- (!z CcSF gtcsF > iz2n| 1= (1- (_q cSF gtcsF )
]Jl;_kl( Tep-j  Teipoi 1},’:"1 Tepoj Tepog
e e
I S
1\ 2(scsrttcsr)
m(m—1)
m
2(scsF+tesF)
1- l_[ (1-(Tew) ) x
=1
= j#k
1
1\ 2(scsr+tcsF)
a(scsrrecse)) MY
20| 1= 1o 1( '(“TCIP) )
Jj#k
e
1
/ (1) 1\ 2(scsr+tcsr) \
1-— Z(SCSF+tCSF)) R n(m=1) x
| €Rrp
1
—L__\2(scsF+tcsF)
. 2 't my(m—1)\m(m—1)
zzn(l—((l—gfclp (scsF CSF))
e
1 1-14 0 . )
—_— . ~ 2(scsr+tcsr
1—1+4 \azlscsr+tcsr) 1-2"(_(27, Z(SCSF“csF)) i2M0y,.
= TZ(SCSF"'tCSF) e e = TCRP “r.0
€rp
Similarly, we can examine for abstinence and non-supporting grades, such that 6¢ .. =
21104 20,
€ ! = € N Wt —
Ocppe i and Fe,o, = Feppe 1p. Hence, CSFBM*C¢SFCSF(€ogp_y, €esp—zs--r Cespm) = Cesr-

Theorem 3 (Monotonicity). For any two CSFSs

20y, i2M0, 205,
. = 1P— 1P— 1P-
CCSF—] (TCRP—je 7, eCRP—je 7, TCRP—]'e ]) m’ld
i2I102 2110 i2[102g, . . . ..
Cespse = (T Capi® Pk, O, e i, Fe e "IP—uc),(],k =1,2,..,m) , with the conditions
Trp—j Z Trp—sior R7pp_; = 7,50 Ore—j < Orp—sic R0, < R, Fro—j < Frp_sk and 5, < g, , WE

have CSFBMSCSFACSF (€ ogp_y, €osp,-r Cospom) = CSFBMSCSFACSF(€ogr_ o1, €ospouzs- o r Cospem,)-

PI‘OOf. Let CSFBMSCSF'tCSF(CCSF_l, Ccsp_z, ey CCSF—"L) = (/M/, /U') and
CSFBMScsetest (€gpuq, €cspszr- - €csp—em) = (W, v"). The proof of the truth grade is to show that the real

. ,
partis with ' < . If Tgrp_j = Trp_ske Qrp; = Q7,10 Orpj < Orp_io oy < oy, Fre-j < Fre-uk and

Qr < Qf then we have
P-j — IP—+k”
t, s t,
SCSF aqtcsF lzn(ﬂ*ﬁp,-SCSFﬂx?Ip_‘k CSF) SCSF qrtcsF 12”(9f1p,- CSFQp L CSF)
T xp-iT Rp-sk ! = Trp—iTrp_k® ! ,

(1 _ (TSCSF TtCSF

2 . 2
121'1(1—(9@”_- CSFQup SF) ) ScsF_qrtesk
*RP—j* *RP— *k))e : = 1_(T Tpk)

2
2) eizn(l_(nfw—j SCSFﬂfu:—ktCSF) )

7
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1 1
m,(m—1) 1- m(m=1)
m 1— i2n<]_[;:k_1<(ﬂ*f SCSFQ, 5 tCSF)2>>
| | (TSCSF TtCSF )2 e j£k IP—j IP—x*k

*RP—jJ «RP—xk

St
j#k
1

1 — (Hm ( 1= ) m(m—1)
— m(m—1) 20| [1;5— 0 scsFg tosk
= (Hﬁﬁl ((TSCSF.TtCSF 2)) e j#k ( F1p-j FIp—k ) and

ik RP—j RP-k

1

/ 1- \Z(SCSF+tCSF)
1
[ \m(m,—l) |
m, 1-— y
| | JScsF TtCSF 2
\ ket W eRP—j7 RP-sk /
j=k
__r
1\ 2(scspttcsF)
2 m,(m—1)
. m .
i2n| 1- J',k=1(1_(ﬂ*flp_]-SCSFQ*fIP_*k CSF))
jk
e
__ 1
1- 2(scsrttcsr)
1
m,(m,—1)
m, 1= y
ScsF qrlcsF 2
] l TR T
< (k=1 ( RP-jJ RP-k
j#k
.
1 2(scsF+tcsF)
2 m,(m,—1)
i2M| 1— ]'[;f'l'(q(l_(ﬂflp_jSCSFQTIPH(tCSF))

SV )

Hence, «' < w. Similarly, w' = w, v’ > v, for abstinence and falsity grades. Thus, we obtain the
result with CSFBMSCSFLCsF(€ogp_y, €cspz, -, Cospom) = CSFBMSCSFACSF(Crgp_ oy, €espvar- - Cospsm)-
o

Theorem 4 (Boundedness). For any two CSFSs

+ iznmjzx!lfelp . i iZHm,in.(ZgCIP . i iZI'Im_in.(ZTCIP . d
;= - J - J -
€csr—j m]axTCRPije i, mijCRPije J,mjmTCRPije i) an

_ i iznmin.(lT(, . l‘an(lx.Qge . A
€esp—j = m]lnTcRp_je I ”’*J,m;szCRP_je J ’P*J,m]axTCRP_je ,G=12,..,m) , we

obtain €¢sp_; < CSFBMSCSFECSF (Crsp_y, €cspg, - Cespom) < Cosp—j-

i2ImaxQNg,.
j 7Tﬁuvfj)

Proof. Based on monotonicity, we have CSFBMSCSF'tCSF(CESF_l,CESF_Z,..,CESF_M) <
CSFBMSCSFECSF (€ ogp_y, €csp, - Ccspom) < CSFBMECSFCSF(€Egp_ 1, Chsp_z, ., Clspm,) ) By
idempotency, we get CSFBMScsFAcsF (€cgp_y, €ospz, -, Cosrom) = €osp—j and
CSFBMPCcSFACSF (Clop_y, Chspg, .., Cispm) = Cesr—j - Then, we obtain the result with €ggp_; <
CSFBMScSFACSF (€gp_y, €cspops-» €cspom) < €espj. O

We previously have examined the three properties of idempotency, monotonicity, and
boundedness for CSFSs. We next discuss more special cases with remarks.

Remark 1. When tq g = 0 in Definition 6, we have
CSFBMScSFO(€cgp_1, €csp-2s--» €cspom,) =
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1

1 2ScsF
id m(m~1) 1217(1
\\1 [1(-(rai)) :

—
/'\

e

(l k(ﬁ(l_@_eg;_jfﬂ)

N _1\2
iZH(l—(1—(ﬂ?’;i(1—(1—_{2;6”2_1)SCSF))m,(m—l))SCSF>

1
1 \2scsr
o m(m—1)
(o)) \
1
2

SCSF\
m(m 1)

) ,

Remark 2. When togr =0, scgp = 1 in Definition 6, we have

CSFBM™® (CCSF—I' €esr-2s0) Ccsp—m.) =

j=1

1
amn—1) 1
m 2m(m—1) i217(1'['-”’ (92 ))m(m_l) m
0 e j=1 Bglp_j
€Rrp— ] ) | |
121 j=1

Remark 3. When togr = 1, scsp = 0in Definition

1
2

((ﬂ(())))( ool ) |

1
2m(m—1)
(TszzP—f)> . elzn(n/ 1<ﬂf€”’ 1))

6, we have

( 1‘(ﬁ<1-<fcfep-k>2))m oo, )

k=1
1

1

1

2m,(m—1)

CSFBM®(€csp_1, €csp—ay- )

W

2m(m—1) 2m(m—1) JEE
(ﬂ(ew J) el T (ﬂ(fm D) 7

Remark 4. When sqcgp = tcgp = 1 in Definition 6, we have

CSFBM™! (CCSF—ly €Cesr,- CCSF—m,) =

12 of 21
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/ (1 o

1
1 2
" m(m—l)w
2 2
BCRP -j +6€RP k BCRP—jBCRP—k)
I /

IS

1-—

1- 2
.
:k 1
I 'QTCIP—j'QTCIP—k)

k=1

1
1\ 2
1 2
2 m(m—1)
121'1<1 J*k 1 'Q"CIP }+99C1P k 'Q"CIP 1”9”’ k)) ) )

NI

13
i (1-(rm 2 2 _02 2 m(m—1)
e2ma <1 (nf’kzl(nTClP—j+gT€lp—k ﬂfCIp—jﬂfCIP—k)) )
e
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We next give the definition of the CSF-weighted-BM (CSFWBM) operator where the weight

vector is expressed by W

w=(W,_, W, 5., W
1,2,..,m,).

T .
w-m) With 37t W,

Definition 7. For any CSFSs € cgp_j,j = 1,2,3, ....,m, the CSFWBM operator is defined as:

CSFWBMScsktesr (CCSF—ltCCSF 2 -,Ccsp—m.)
1
1 ScsrttcsF
N
~\ mm - 1) ]]l;kl (Wy—j€csr—j) ™" ® Wy i€csp_i)'esF)
Theorem 5. The aggregation result from Definition 7 is still a CSFS such
CSFW BMScsricsr (CCSF—I’ CCSF—Z’ " CCSF m) _
1
1 2(scsrttcsr)
/ \m(m—l)
m
W,,_ i\ SCSF W,y_g\ ECSF
1= 1_[ <1 B (1 B (1 - Téﬂl’—i) 1) (1 - (1 - TéRP—k) k) > X
\ jk=1 /
Jj*k ,
) Wyy_j\5CSF ) Wy — i\ ECSF ™™
2m 1- <H1}l;k1(1 (1_(1_97“{‘”’7]') ) <1_<1_'QT(7:P—1<) ) ))

-j = 1 and Ww—j € [0,1],(] =

)

that
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1
1 2
1 Scsrttcsr
/ m 2W,,_;\ScsF 2W,,_ \ FCSF M(m_l)\
|1_|1_ 2_(1_06RP—j) _(1_0CRP—k) - | | %
) _ _ p2Wa ScsF _ _ p2Wy tesk
k s (1-(1-65r7) )(1 (1-080) )
. 1
ScsFrtcsF
2W,,_; SCSF 20, tesk m(m—1)
O e e e e
2 1_| 1| Miems 2w,,_ i\ *CSF 2w tcsF |
j£k 1= w=Jj (1= w—k
\ \ \ ! \(1 (1 gGQP—j) >(1 (1 ﬂgClP—k) )jj / /
e
1 2
1 Scsrttcsr
/ m 2W,,_ | ScsF 2W,,_ \ FCSF m'(m’_l)\
1_|1_ l_[ 2_(1_T€‘RP—;‘) _(1—T€RP—I(.) - | y
) 2W,,_;\ SCSF 2W,,_ \ ECSF
| o)™ 0-0-522)))) )
1
1 : 2
( 2w, \ 5P 2, \"CSF m»(m»—l)\sCSFHCSF
. 2_(1_ﬂfCIP—j) _(1_H$CIP—k) B
i2n| 1-| 1- [];?f'kzl Scsr .
J#k <1—<1—nzww‘j> )(1—(1—92WW"‘)CSF>
TCuLj Ferp_i

Proof. The proof of this theorem is similar to that of Theorem 1. [

Similarly, we can obtain the properties of idempotency, monotonicity, and b
CSFWBM operator.

Theorem 6 (Idempotency). For any CSFN CCSF_j,j
CSFW BM csriesr (€cgr 1, €cgp_n, . €cspom) = €csp.

Proof. The proof of this theorem is similar to that of Theorem 2. [

Theorem 7 (Monotonicity). For any two CSFNs
200y, 210
CCSF—]' = (TCRP—je P=j, GCRP—je
(TCRP_*ke _*kelznﬂgem

TRP—j 2 TRP—*k' 'QT“)_}' 2 QTIP—*R’ eRP—j S eRP—*k' 90“)_]‘ S -QGIP_

6¢ .
P-j F
7, €Rrp

iZnﬂTCIP

*, B¢ =¥, Fepp.i®

*k'TRP—j < Frpsk
Qr we have

CSFWBMSCSFACSF (€ ogp_ 1, €cspmnzr- o €csrmsm)-

7

Proof. The proof of this theorem is similar to that of Theorem 3. [

Theorem 8 (Boundedness). For any two CSFNs

1,2,3, ...

CSFW BMScsFtesF (CCSF—l’ €Cesr—2s-+) CCSF—m)

14 of 21

oundedness for the

m

bl

we have

7

and 2z,

v

+ i2nmaxy. i i2llminQg,. ) i2minQg,
€esr-j = m]ax.‘TCRP_].e I “’—J,mijCRP_je J ’P—J,mjlanCRP_je J IP-j ) and
_ ) iznmin!lfc . iznqungc . iZHm(lx.(lTC . i
Cespoj = m]lnTCRP_].e J IP—J,m]axOCRP_].e J IP—J,m}ax.‘FCRP_je J =i ), (j =

1,2, ey m), we have that CESF—]' < CSFWBMSCSF'tCSF (CCSF—l' Ccsp_z, ey CCSF—W;«) < CZSF—]"

Proof. The proof of this theorem is similar to that of Theorem 4. [
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4. MCDM and TOPSIS Methods Based on the CSFSs, CSFBM and CSFWBM operators

In this section, we first use the proposed CSFBM and CSFWBM operators to solve MCDM
problems. Furthermore, the Technique for Order Preference by Similarity to an Ideal Solution
(TOPSIS) is an approach to identify an alternative that is closest to the positive ideal solution (PIS)
and farthest from the negative ideal solution (NIS). We then consider the TOPSIS based on CSFSs and
create a novel CSFS-TOPSIS.

4.1. MADM Method Based on the Proposed Operators

The aims of this subsection are to investigate MADM problems using the proposed CSFBM and
CSFWBM operators. To resolve the MADM issues, we choose a family of alternatives and a family of
attributes with respect to weight vectors to examine the reliability and proficiency of the proposed
approaches, whose expressions are as follows: €csp = {€csp—1, €csp—2,€csp—3, -, €csp-n} and Ly =
{Lar—1, Lar—2, - Lar—m} with the weight W,, = {W,,_1,W,,_,,..,W,_,} by using the complex spherical

) ) ) i2n9g. i2M%, 2005
fuzzy information with €cgp = (TCRP_Ue _U’OCRP—ije —U,.‘FCRP_Ue —U). Thus, the
steps of the proposed procedures are summarized as follows:
Step 1: Standardize the decision framework by using the following formula, if needed, then
i217.(27~€ . iznﬂee . iznﬂg:'c .
Tl'j = (TCRP—ije P—ij eCRP—ije P—ij TCRP—ije IP—l])

i211Q. i21Q i2rQ
T e Cr-ij @ e Cp-ij F e Cr-ij)  for benefite types of attributes
€Rrp-ij ' VE€Rp-ij ' €Rrp-ij

2110 21 2110
F e Cr-ij @ e Gr-y, T e Cp-ij for cost types of attributes
€Rp-ij » VECRp-ij 1< €rp-ij

Step 2: By using the proposed operators of Equations (8) and (9), we investigate the complex spherical
fuzzy number to aggregate the family of complex spherical fuzzy information.

Step 3: By using Equation (7), we investigate the score values of the aggregated values in Step 2.
Step 4: Rank all alternatives and find the best one.

To consider an application of the proposed MADM method, we next give an example which a
venture organization needs to organize an expansion of income.

Example 1. If a venture organization needs to contribute to expand income, there are four possible

organizations as choices, which are Lyr_1, Lyr_3, Lyr—3, and Lyp_,. There are five attributes used to
assess options, including €¢gr_1: the risk examination; €sr_,: the development condition; €¢gr_3:
the social-political effect; €.gr_,: the environmental sway; €¢gr_5: the advancement of the general
public. To solve this problem, we choose the weight vector with W,, = (0.3,0.2,0.15,0.35)T. In fact,
users can choose a weight vector according to their preference. Thus, the steps of the decision making
procedures are summarized as follows:

Step 1: Standardize the decision framework by using the following formula
209, 29, 209,
T = (TCRP_ije CIP—L}’ eCRP—ije CIP—L]’ ‘T‘CRP—L‘;‘e €1P—L1)
iZHﬂTCIP B i217.(19€1P N iZHQfCIP B . i
—ij —ij —ij
(TCRP_i].e , BCRP_l.je ,?CRP_l.je ) for benefite types of attributes

iznﬂg"CIP_ij )

- i2I1Qg o
CIP—L]’ TCRP e

2119,
F e Cir-ij g e for cost types of attributes
€Rrp-ij ' VE€Rp—ij —ij

We obtain the decision matrix as shown in Table 1. We then go to the next Step 2.
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Table 1. Decision matrix.

Lar-1 Lar_»
Bspt (0.7ei2H(0.6)’ 0.3¢121002) () 26i21104) ) (0.7 1ei211061) () 31612110021 () 516i211041) )
G ospa (0.8ei21"[(0,8)’ 0.20121002) () 26i211(0.3) ) (0.8 1211081 () 910i2T021) () 5211(031) )
@ sp_s (0.981217(0,7), 0.1ei21102) ¢ eizn(os)) <0.91 @i2I10.71) () 111210021 11 ei2H(0.31)>
Cosp_a <0.6ei211(0.8), 0.5¢121103) ¢ | eiZH(m)) <O.61 @i2110081) () 516121031 11 e1211(0.11)>
@ sp_s (OlseiZH(O.S), 0.4¢12104) () 36i2110.3) ) <0.5 12110051 () 41i2T041) () 31i2110.31) )
Luar=3 LaT-4
Cosri (0‘72601"[(0462), 0.326i2110022) () 79i2M1(0.42) ) (0.73 i21100.63) () 33612M1(0.23) () 736i211(0.43) )
Ccsr_a (0‘8261217(0.32), 0.226i2110022) 0‘2281217(().32)) (0.83 i2110083) () 731211(0.23) () 73 eiZH(().33)>
B csr_s (0.92‘31217(0.72), 0.12¢2110022) ueizn(o.sz)) (0.93ei2H(0.73)7 0.13¢2110023) 13 eiZH(O.33)>
@ csr_a (0.62‘31217(0.32), 0.52i211032) ueizn(o.m)) (0.63eiZH(0.83)7 0.53¢i211033) ¢ 13 eiZH(0.13)>
@B csp_s (0. 52012110.52) () 406i2110042) () 39i211(0.32) ) (0.53ei2H(0.53)7 0.43¢i2110043) () 334i211(0.33) )

Step 2: By using the proposed operators of Equations (8) and (9), we investigate the complex spherical
fuzzy number to aggregate the family of complex spherical fuzzy information, for scgr =
tcsr = 1. We obtain the aggregated values as shown in Table 2.

Table 2. Aggregated values by using Equations (8) and (9).

Methods CSFBM CSFWBM
0.3331l211002111) 0.0005¢i211(0.0016)
@csp-1 0.0925¢1210-041) 0.0232¢1211(0.0098)
0.041 ei21’I(0.1626) O.OO98ei2H(O'O43)
0.4957¢1211(04957) 0.0001¢i211(0.0001)
€ csr2 0.04112110041) 0.00081211(0.0098)
0.041ei21"[(0.0925) 0.0098(3121'[(0.0232)
0.7092¢2/1(0-3331) 0.0ei21(0.0005)
G csE-3 0.0102¢217O.0D), 0.0023¢2/10.00%),
0.0102¢1211(0.0925) 0.0023i217(0.00232)
0211 1ei211(0.4957) 0.0016e1211(0'0001)
‘gCSF—4 0_2493ei2H(0»0925)’ 0'0692ei2H(0.0232)’
0.0102¢1211(0.0102) 0.0023ei211(0.0023)
0.1234¢i211(0-1234) 0.0037¢i211(0.0037)
csp-s 0.1626¢12110-1620) 0.0431201(0.043)

0.0925612[—1(0'0925)

0‘002328217(0.0232)
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Step 3: By using Equation (6), we investigate the score values of the aggregated values in Step 2. The
score values of the CSFBM operator are given as
SSF(CCSF—I) = 00391’ SSF (CCSF—Z) = 01593’ SSF (CCSF—S) = 02012’ SSF(CCSF—4-) = 00731! SSF(CCSF—S)
=—0.013
The score values of the CSFWBM operator are given as
Sse(€csp-1) = —0.0009, S5 (€csp-2) = —0.0003, S5 (€csp-3) = —0.0002, S5 (€csp-a) = —0.002, S5 (€csp—s)
= —0.002

Step 4: Rank all alternatives, and find the best one. The ranking results for the CSFBM operator are
€esr-3 2 €csp-z 2 €csp-a 2 €cspo1 2 €csp—s
The ranking results for the CSFWBM operator are
Cesr-a 2 €espos 2 €esp-3 2 €esp-p 2 €cspq
The two different operators give different results. The best alternative is €.sr_3 using the
CSFBM operator; the best alternative is €¢gr_, using the CSFWBM operator.

4.2. The TOPSIS Method Based on CSFSs

We know that the TOPSIS is an approach to identify an alternative according to PIS and NIS.
In this subsection, we construct the TOPSIS based on CSESs, called a CSFS-TOPSIS. The steps of the
CSF-TOPSIS method are as follows:

Step 1: First, we normalize the decision matrix based on CSFSs by considering the
following formula:

21102 21102

Te o .. 0c, . .. i2n0%g.
L, = :] I1P—ij I1P—ij ‘F IP—ij
Tij ( €rp-ij€ ’ eCRP—ije Ferp-ij€

2110 i2110, 21102
(TC e ar-ij @, e G- F. e TC“’—U) for benefite types of attributes
RP-ij RP—-ij RP-ij
F iznﬂTCIP—ij 0 iznﬂgclp_ij T iznnTClP—ij ib
€rp_ij€ 1 Ocpp_ii€ Tepp_ij€ for cost types of attributes

Step 2: By using the following Equations (10) and (11), we can examine the PIS and NIS among
the alternatives.

+ o (ot et et +
RY = (rd,r3, 15, T,
i2ll.maxQy i2Ml.minfg 2l minQs (10)
+ = €IP-ij mi €IP-ij mi €1p-ij
Ty (max.‘TCRP_ije ,mlnBCRP_Ue ,mmTCRP_Ue

R™ = (1,12, T3 0 Tin)s

T:-

l izn.max.(lg:clp_ij) (11)

i 2nminly, i2lmaxq.. .
= (mm.‘TCRP_i].e Ip-ij, maxGCRP_L.je IP-U,maxTCRP_Ue

Step 3: Use the following Equation (12) to examine the complex spherical fuzzy PIS (CSF-PIS):

K;(rj,R")
]!
72 g2 42 02 102 e 4
n €rp-ij” €RP-ij Terpij” Terp_yj €Rrp-ij "~ €RP-ij
A U S A R ANy Y 0z
Ocip_i;" Ocip_y; €rp-ij” CRP-ij Fep_ij  Ferpyj

= (12)

4 4 4 4+ 4t 4t
n TCRP—i]' + OCRP—ij + TCRP—ij + n TCRP—i]' + BCRP—ij + TCRP—ij + \
i=W-il g 4 4 = Woi| gar gy ga )

4
T .. 0, . F, . . .
€Ip-ij €1p-ij €Ip-ij Terp_ij Ocip_ij Ferp_ij
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Examine the CSF-NIS by using the following Equation (13):

K[ (rij’ Ri) 2 2" 2 27 2 27
T T +Q Q +0 0 +
s W CRP—ij CRP—:] gC,Pﬂj gC,Pﬂ./ CRP—:‘/ CRP—lj
i=1 " w—i 2 2" 2 2" 2 2"
Q Q +F F + 2 0%
_ BC,,L,./ OC,P#/ Crry Crpoy ‘/C,P_” "C,P_,j (13)
g +6% +F4 o+ g 40t +FL o+
noow CRP—:/‘ CRP—:‘/ CRP—:’/‘ noow CRP—:j CRP—ij CRP—:j
Zi:l w—i Q‘l‘ + Qg + Qt Zi:l w—i (246: + Qg_ + Q‘i:
o €1P—u CIP—i/ JCIP—U 7 ClP—ij ClP—i/ JCIP—:]
Step 5: Use the following Equation (14) to examine the closeness of each alternative:
K;(r;;, R*)
j b
- (14)

K;(rij, R*) + K;(r;;, R™)
Step 6: Rank all alternatives and choose the best one.
Based on the above proposed CSFS-TOPSIS method, we apply it to Example 1. Thus, we get the
following results:
Step 1: According to the decision matrix based on CSFSs, we obtain the same decision matrix in
Table 1, as Step 1 in the MADM method of Section 4.1, and so we go to step 2.
Step 2: By using Equations (10) and (11), we obtain the following PIS R* and NIS R~ among the
alternatives:
R+
(0.9ei2"(°'8), O.1ei2”(°'2), 0.1ei2”(°'1)), (0.916i2n(0'81), 0.1 1ei21'1(0.21)’ 0.11e12"(0'11)),
- <(0.92ei217(0.82)' 0.12¢i271(022), O.12ei2"(0'12)), (0.93ei217(0.83)' 0.13¢i271(023), 0_13ei2n(0.13)))
R < (0.7ei21'[(0.5)’ 0.59i21'1(0.4-)‘ 0.3ei2”(0'4)), (0.71ei21'1(0.51)’ 0.51ei21'[(0.4-1)’ 0.31ei217(0.41))’ )
(0.72ei21'[(0.52)’ 0526i2n(0.42)’ 0.32eizn(0.42))‘ (0.73ei217(0.53)’ 0.53ei21'[(0.4-3)’ 0.33ei2H(0.43))

Step 4: By using Equation (12), we obtain the following CSF-PIS:
Ki(€csp-1,RT) = 0.7887,K;(€csp—2, RY) = 0.8849,K; (€3, R*) = 0.8967,K;(€csp—4, RT)
= 0.7911,K;(€¢sp—5, RT) = 0.4522
Similarly, by using Equation (13), we obtain the following CSF-NIS:
Ki{(€csp-1,R™) = 0.6647,K;(€¢sp—p, R™) = 0.7346, K;(€csp—3,R™) = 0.8178,K;(€csp—s, R*)
= 0.5678,K;(€¢sp—s, RT) = 0.3917

Step 5: By using Equation (14), we obtain the following closeness of the alternatives:

P, = 0.5427,P, = 0.5464, P; = 0.5230,P, = 0.5822, Ps = 0.5358

Step 6: Rank all alternatives with
P,>P,>P, =>Ps>P,

Thus, the best alternative is P,.

4.3. Comparative Analysis

Additionally, to investigate the reliability and effectiveness of the proposed operators, we chose
some existing operators and compared with the proposed operators. The information on existing
operators is as follows: Wang et al. [33] presented the aggregation operator based on PFS, and Ashraf
and Abdullah [34] investigated the aggregation operator based on SFS and compared this with some
special cases of the proposed approaches. The comparative analysis for the information in Table 1 on
Example 1 is shown in Table 3.
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Table 3. Comparative analysis for the information in Table 1.

Method Operators Score Values Ranking
Wang et al. [33] BM Fail Fail
WBM Fail Fail
Ashraf and BM Fail Fail
Abdullah [34] WBM Fail Fail
CPES BM Fail Fail
WBM Fail Fail
Ssr(€cspo1) =
0.0391, Sgp (€cgp_n) = 0.1593,
BM s E ; Cesr 2 Cesr > Cosra
sr(Cesra >€Crgr 1> €Cogrs
0.2012, Sgr (€cgr_4) = 0.0731,
Proposed Sgr(€cspos) =—-0.013
method

Ssr(€csro1) =
—00009, SSF <CCSF—2) = —00003,
€ > € > €
c _ csF-4 2 “csr-5 2 “csF-3
WBM Ssr(Cesr-s) 2 Cesr2 2 osF-1
~0.0002, g7 (€csp_s) = —0.002,
Ssr(Ccsr_s) = —0.002

From the above analysis, we find that the existing operators of Wang et al. [33] with picture fuzzy
BM and picture fuzzy WBM, and of Ashraf and Abdullah [34] with spherical fuzzy BM and spherical
fuzzy WBM, fail to rank for the decision matrix in Table 1. However, our proposed operators actually
rank alternatives, with the best alternative €. gr_3 or €,gp_4, respectively.

5. Conclusions

In general, CSFSs are a mixture of CFSs and SFSs to cope with uncertain information in realistic
decision-making issues, in which CSFSs consider the grades of truth, abstinence, and falsity, with
a condition where the real part (and the imaginary part) of the three grades is not exceeded from
a unit interval. In this paper, we investigate the operational laws of CSFSs with some properties.
Additionally, based on CSESs and Bonferroni mean (BM) operators, we construct two aggregation
operators, called the complex spherical fuzzy Bonferroni mean (CSFBM) and the complex spherical
fuzzy weighted Bonferroni mean (CSFWBM) operators. We also give the properties of idempotent,
monotonicity, and boundedness for both CSFBM and CSFWBM operators. A MADM problem
was chosen to be resolved based on the CSFBM and CSFWBM operators. We then propose the
TOPSIS method based on CSFSs to construct the CSFS-TOPSIS method. To examine the effectiveness
and reliability of the proposed methods, an application example is given to delineate the proposed
approaches, with comparisons of existing methods. The results actually demonstrate that the
proposed CSFBM and CSFWBM operators and CSFS-TOPSIS method are well suited to these fuzzy
environments. In our future work, we will extend the proposed method to complex T-spherical fuzzy
sets, complex neutrosophic sets, complex neutrosophic hesitant sets, and complex T-spherical hesitant
fuzzy sets.
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