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Abstract: Ensuring safe custody of crypto-assets, while at the same time allowing a user to easily
access and transfer them, is one of the biggest challenges of this nascent industry. This is even
harder considering also the multiple technological implementations behind each crypto-asset.
Here we present a survey of the various solutions for this custody problem, comparing advantages
and disadvantages. Then we delve deeper into some interesting schemes based on secure
multiparty computation, which give a blockchain-agnostic solution that balances security, safety,
and transactional ease of use, and in particular, a protocol that enhances practicality by exploiting
a party that may stay offline during the key generation.

Keywords: custody of cryptocurrencies; digital assets; applied cryptography; threshold multisignatures;
secure multiparty computation

1. Introduction

Custody of crypto-assets, such as cryptocurrencies, is at the very core of the burgeoning
digital-asset market. Safeguarding the private key associated with the crypto-asset presents,
in fact, many issues, especially for the general public. Private keys can be easily lost or forgotten
(see, for example [1]), leading to the inaccessibility of the related assets. Serious issues arise also in
case of inheritance following a death: crypto-assets cannot be inherited unless the heir already has
access to the private key.

Several major financial institutions around the world are trying to tackle this challenge: some by
building internal teams within their organization, such as Fidelity in the US [2]; others by leveraging
the expertise of startups, such as Nomura in Japan with Ledger [3] or leading challenger bank Hype in
Italy with Conio [4].

Many solutions have been devised to mitigate these problems and to enable safe custody; we will
look at some of them in Section 2. Some rely on personal efforts (e.g., cold storage), others simply
delegate full control of the assets to a third party. Unfortunately, these kinds of solutions are
partial: most either sacrifice easiness and readiness of access to the assets, or completely rely on
the trustworthiness of a third party, or are so “secure” that there is a risk of losing access forever.

In recent years a new technological and operational approach has been developed: threshold
multisignatures, which we will discuss in Section 3. This kind of solution addresses more
comprehensively the problems above. It relies on three private keys, instead of a single one,
which are distributed among three parties, and two of them are required to transfer the crypto-assets.
This approach is resilient with respect to the unavailability of one party. For instance, if the user ends
up losing the private key, the other two parties can transfer the assets to a new wallet. Security is
guaranteed as long as the two helping parties do not collude, i.e., it is sufficient that one of the two
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remains honest to preserve the safety of the system. Furthermore, this solution is effectively agnostic
to the underlying blockchain, i.e., it does not have to be supported by special features.

2. Traditional Custody of Crypto-Assets

Any solution to the custody problem has to face the trade-off between security and spendability,
where the latter means that signing a transaction should be fast and easy. The perfect solution should
balance the two extremes and, in particular, satisfy the following desirable properties:

1. ease of use: a legitimate user should be able to access the funds without hassle;
2. security: adversaries should not be able to gain control over the assets;
3. safety: the system should maintain or recover accessibility to the funds in case of accidents

(e.g., loss of the device normally used);
4. universality: the solution should be applicable to all crypto-assets and not rely on some special feature.

Now, we will discuss the traditional solutions to the problem that are currently adopted, starting
from the most trivial ones and proceeding towards the state of the art, showing their features and
analyzing some pros and cons in various use cases.

A perfect classification of these methods is not possible: some of them are not even comparable
with each other as they solve different parts of the problem, while others may be combined and used
together. Thus, we do not aim to create an exhaustive list of all existing solutions to the problem,
but instead provide an overview of the solutions currently used in practice.

2.1. Self-Custody

One of the most immediate and trivial solutions to the problem of crypto-assets custody is
self-custody: no third party is involved—the user is entirely responsible for the security and protection
of the private key. An aid may come from a mnemonic passphrase (usually comprised of 12 or
24 common words) that can be used to reconstruct the key and, for example, facilitate the transfer
to a new device. This solution is particularly appreciated by those who want complete control of
their digital assets, usually due to a lack of trust or confidence in a third party’s transparency, policies,
and behavior.

In more concrete terms, users can implement self-custody by saving their private key somewhere,
creating their own custom storage and backup systems. For example, the key may be kept on a private
device (such as a smartphone, tablet, or laptop), thus giving the user easy access to the relative funds,
yet, on the other hand, increasing the risk of theft or hacking.

Another solution could be to use hardware wallets that keep the key offline and require a PIN
to unlock it. Here, however, we must take into account the risks related to device loss and hardware
failure, as well as the problem of memorizing and/or safely storing the PIN. These solutions will be
better analyzed in Section 2.3. A low-tech version of these wallets is a printed version of the private
key, but of course the risk of losing or damaging a piece of paper is even greater.

Finally, the user could opt to combine these methods, saving multiple copies of the private key on
different media. While this reduces the risk of loss, improving safety, it also increases the risk of theft,
decreasing the security.

In conclusion, great responsibilities come with great risks: the mismanagement of your private
key could mean losing access to your funds forever.

2.2. Third-Party Custody

Another solution for custody of crypto-assets involves a third party that holds the private key
and manages the user’s funds. The user is able to access the wallet through standard authentication
methods managed by the third party, usually a “traditional” password and perhaps a two-factor
authentication. In this way, the security is completely in the hands of this third party, which must
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manage both the secure storage of private keys and the security of user accounts. The external entity
acts following the instructions of the user, who is never directly involved in the signature process.

As previously mentioned, some users tend to not trust these services, often due to the lack of
transparency about security policies.

The main examples of this kind of third-party custodians are exchange platforms,
which, in addition to taking care of the user’s funds, also offer the possibility to buy and sell
cryptocurrencies. These kinds of custody services are called “hot” wallets since they are constantly
connected to the Internet. Some well-known exchanges are Coinbase [5], Kraken [6], and Bitstamp [7];
they allow the storing and exchanging of a large number of different cryptocurrencies.

The advantages of totally relying on a third-party service are quite obvious: the user offloads the
responsibility of the protection of the private key from attackers and from the possibility of losing
it. On the other hand, the disadvantage, as already mentioned in Section 2.1, is the absence of direct
control over the private key: the user has to trust that the service provider is adequately secure, that it
is always available to carry out transactions, that it respects privacy, and that it actually has the funds it
declares having. Historically, there have been multiple examples where security and availability have
not been up to expectations—for example, Bitfinex, a Bitcoin exchange that suffered a DDoS attack
that interrupted the service for 84 minutes [8]. But the most striking case has been Mt. Gox, a Japanese
cryptocurrency exchange that in 2014 handled over 70% of global Bitcoin transactions. In the same
year they declared bankruptcy, caused by the loss and theft of over 850,000 bitcoins over the previous
four years, due to the mismanagement of the storing system [9].

2.3. Cold Storage

Cold storage, as mentioned in Section 2.1, is a method to improve the security of keys that is
widely used among retail customers. This approach relies on electronic and non-electronic devices that
hold the signing key and are physically isolated (or “air-gapped”) from the network and, therefore,
theoretically unassailable by remote adversaries. The name is in opposition to “hot storage” solutions,
mentioned in Section 2.2, which are by definition always connected to the Internet.

Cold storage is a transversal solution with respect to the self-custody versus third-party custody
paradigm. For the sake of simplicity, we can think of it as a form of self-custody, since the responsibility
for keeping the physical medium safe lies completely with the user. However, many online services
use a combination of hot and cold storage to enhance security while maintaining high availability, so
the adoption of cold-storage solutions is not limited to private users.

The advantages of this type of solution are quite evident: isolating the private key from the
network protects it from hacking attacks. However, there are also several disadvantages: using
cold-stored keys to sign a transaction is not as fast and convenient as using hot-stored ones; moreover,
the physical medium is subject to risks: it could suffer physical faults, be stolen, or have internal
software problems.

There are various types of cold storage:

• Hardware wallets. These are specialized offline devices, like a USB drive or a smartcard,
that safeguard private keys offline (e.g., Ledger USB Wallet [10], TREZOR [11], and KeepKey [12]).
The user must enter a PIN in order to unlock the device and use the private key. The main risks
are associated with the device being lost or stolen and to malfunctions that make the crypto-assets
inaccessible. Considering the inheritance case, if no prior arrangements with the heirs were
made (i.e., sharing PIN and location of the USB device), then the assets cannot be recovered.
The relevance of this scenario is demonstrated by the death of Gerald Cotten, CEO and co-founder
of Quadriga, a Canadian cryptocurrency exchange, which caused the loss of about 145 million
dollars in cryptocurrencies, as they were stored in cold wallets and Cotten was the only one
who knew the passphrases and recovery keys [13]. Another example given by the personal
experience of an ex-director of the magazine Wired [1] shows how users may simply forget their
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PIN, resulting in the impossibility of accessing the crypto-funds, and that vulnerabilities in the
hardware can undermine the security.

• Paper wallets. This solution, which can be considered a sub-type of hardware wallets, consists in
generating the public address and the corresponding private key for a certain ledger and printing
them on a sheet of paper, usually also as a QR code for practical purposes. The most dangerous
moment in terms of security is the generation of the private key: the generator services who
provide the paper wallets usually also provide a software that allows generating the keys and
the address offline to thwart online attacks, but of course malware may already be present on
the device. Paper wallets are invulnerable to online attacks and hardware or software failures
(excluding the registration phase), but they are susceptible to the fragility of the medium in
question: tearing, burning, wetting, forgetting, or losing the paper sheet leads to the loss of funds.
In order to better cope with the medium’s durability, there are kits to engrave the wallet’s seed in
titanium or steel plates, greatly increasing its safety. Recently, interest in this type of solutions has
rekindled, for example with the work [14] of Charles Hoskinson, CEO of IOHK and founder of
the Cardano blockchain (ADA), who has devised a complex system in which the paper wallet
features the private key in encrypted form and is unlocked using a YubiKey [15], a hardware
device used for multi-factor authentication.

• Offline software wallets. The two solutions above may not be considered by some people as real
cold storage as they do not protect the private key when the signature is generated. In fact,
even by properly storing the private key, in the very moment it is transferred (e.g., by scanning
the QR code of a paper wallet) from the isolated device to software on an online device, there is
the risk of an attack. Offline software wallets solve this problem by signing directly offline and
releasing only the signature online, while the private key never leaves the protected device in any
way. In general, the operation is quite simple: an unsigned transaction is prepared online with all
the necessary data (public addresses, amount, . . . ), then the transaction is passed on to the offline
device with the signing software through a secure medium, then transaction is signed offline and
returned. These kinds of solutions, such as the ones offered by Armory [16] and Electrum [17],
often come in the form of desktop wallets, and they require at least one computer to always
be offline.

2.4. Key Recovery

As widely noted so far, one of the major problems that arises in blockchain systems is the recovery
of the private key in case of accidents. Unless you completely rely on third-party custody, thus directly
eliminating the responsibility of safeguarding the key, the problem of recovering the private key when
it is lost is a major issue.

Another traditional and “analog” approach that builds on self-custody solutions to solve the key
recovery problem is to rely on a trusted third party, like a public notary, that safeguards a sealed copy
of the user’s private key. This naturally allows one to safely retrieve control of assets after key loss and
manage inheritance in case of death, at the cost of trusting the notary. However, this approach requires
active intervention of the trusted third party every time a new key needs to be protected, and the fees
associated with this safeguarding service could be quite significant.

Many interesting solutions have been developed in recent years. In [18], the authors propose
the use of biometrics such as fingerprints to restore the key: a user’s private key is encrypted using
a symmetric key derived from the biometric feature and split into n pieces according to Shamir’s Secret
Sharing scheme [19], each piece is then distributed to trusted nodes. When the user needs to recover
the key, k out of n pieces are retrieved and used to recover the encrypted private key, which can be
decrypted with the biometric. Even though encrypting and splitting the private key could be a good
workaround that gives good resiliency, there is still a single point of failure in the encryption of the
key. Moreover, the authors’ choice of using fingerprints to secure the key is debatable, since people
leave their fingerprints practically everywhere and it is also relatively easy to reconstruct them from
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high-resolution images, which nowadays are far too easy to acquire. Therefore, fingerprints are not
a secure replacement for a password, and a more correct approach would be to use biometrics to
integrate an authentication system [20].

2.5. On-Chain Multisignature

All of the solutions seen so far for the crypto-assets custody problem can be somehow categorized
into user-responsible solutions or third-party-responsible solutions. An alternative approach to the
crypto-asset custody problem is to split up the responsibility of the crypto-assets among more parties
in order to avoid a single point of failure. For instance, the Bitcoin [21] protocol natively makes use
of the multisignature [22], a type of signature that allows a group of users to authorize transactions
combining multiple unique key signatures. The multisignature transactions are also referred to as
M-of-N transactions, in the sense that N private keys are associated with a Bitcoin address. In order to
make a transaction with this address, at least M (the threshold) signatures corresponding to M distinct
private keys (out of the N associated with the address) must be affixed.

Dividing the responsibility between different parties increases security since even if some of the
private keys are compromised, as long as they are less than M, the address remains secure. It also
works well for the key recovery issue: if n ≤ N −M users lose their private keys, the remaining users
associated with that address still have access to the funds and can move them to a new address.

In addition to providing security and key recovery, this solution has many side applications.
For example, it can be used to manage the funds of a large company where private keys are given to N
executives and it is desired that the funds can be spent only if at least M of them agree, and the relative
importance of the executives can be implemented by giving more keys to some of them. Note that it is
not necessary that the various private keys go to separate parties. For instance, using it in the trivial
case of N-of-N, it turns into a simple N-factor authentication wallet. By storing the associated private
keys on various devices of the same user, an improvement in the self-custody is obtained, at the cost of
slightly reducing ease of use and spendability.

Unfortunately, this solution also has several disadvantages. First of all, operating this kind of
signature has a cost in terms of transaction fees because the information of the signers has to be included.
Furthermore, privacy is slightly reduced since these kinds of addresses are different from the traditional
ones and they expose the public keys that participate in the transaction authorization, revealing
the actors involved. Finally, the underlying blockchain has to support this solution, and therefore,
this approach is not suitable for every crypto-asset.

Solutions similar to multisignature have also been devised for blockchains that do not natively
support it. For example, in Ethereum [23] there are some smart contracts that replicate the same
functionality. Unsurprisingly, this solution shares the same concerns of the cost and privacy of the
Bitcoin multisignature: using the smart contract requires payment in gas and the data used by a smart
contract is public, so the individual addresses that control the asset are exposed. Moreover, smart
contracts (as all software) are likely to contain bugs, but in contrast to traditional software, they are
immutable, thus there is little to no room for fixing possible problems. A relevant example is given
by the Parity Bug [24] in Ethereum. A library developed for multisignature wallets was initialized as
a contract at the address 0x863df6bfa4469f3ead0be8f9f2aae51c91a907b4. On 19 July 2017, a bug in
a pair of functions for the multisignature protocol setup was exploited by an unknown attacker to steal
153 037 ETH [25]. In the new version, released after the attack, there was a new bug: the library had
been initialized without any owner. Since Ethereum does not distinguish between accounts, libraries,
and contracts, on 6 November 2017 it was possible for the GitHub user devops199 to send a first
transaction to become the owner of the library and a second transaction to kill the library. As a result,
nearly 600 different wallet owners who were using that library have not been able to withdraw their
funds, and 513 736 ETH have been frozen forever.

For further readings about risks and vulnerabilities concerning smart contracts, see [26,27].
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3. Threshold Multiparty Computation (MPC) Signatures

The idea described in Section 2.5 of sharing the responsibility of custody has been further
developed in recent years with threshold-signature solutions based on multiparty computation (MPC).
The private key of an account is substituted by multiple partial keys, which are equivalent to shares
of the centralized private key. These partial keys are held by various actors who generated them
with a collaborative interactive protocol. When a number of actors at least equal to a fixed threshold
agree, they can perform a signature. In particular, the signature is produced following a (usually
interactive) protocol of multiparty computation, where the account’s private key is never created nor
reconstructed.

At first glance, this kind of solution sounds very similar to standard multisignature schemes,
but they are actually quite different:

• Final single signature. In standard multisignature schemes, in order to authorize a multisignature
transaction it is necessary that several actors use their individual private keys to affix their
respective signatures. In the MPC threshold schemes, instead, the involved actors simultaneously
use their key shares to interactively compute a final single signature that is equivalent to a
“standard” digital signature. The compatibility of the signature with the standard algorithm
means that this custody solution does not depend on blockchain support, namely, it is
blockchain-agnostic. As a result, it can be applied to many current prominent or in-progress
(e.g., Libra) cryptocurrencies that do not natively support multisignature schemes. In other words,
this threshold signature scheme is able to introduce the overall multisignature concept even in
cryptocurrencies that rely only on single signatures. Moreover, it is not possible to establish
which shares of the key have been used to sign. In other words, unlike multisignature, we do not
know who actually signed a transaction. This leads, on one hand, to increased privacy, and on the
other hand, to a lack of accountability, which in some contexts may be very desirable. However,
this approach has a major drawback: the actors involved in the signature must be online at
the same time and communicate with each other to perform the computations, whereas with
multisignature the individual signatures can be computed independently and put together later.

• Indistinguishable transactions. While with multisignature-like systems “special” public addresses
are required, with MPC the public key involved in the resulting signature is just like any other
standard, single-signature, public key. Thus, an observer cannot distinguish a transaction made
by multiple parties and a transaction made by a single party. So the privacy of the signing parties
is greatly improved.

• Off-chain approach. These kinds of MPC schemes work entirely off-chain, and an immediate
consequence is having, in general, lower costs than on-chain solutions. Furthermore, being
off-chain, there is the possibility of relying on custodians outside the blockchain world for
custody and backup solutions.

Also note that this solution is trustless, since no final private key is ever created, nor can one be
created by any single party. Therefore, there is no need to trust anyone with the private key generation
at any point in time. This is a fundamental difference with respect to using a simple secret-sharing
scheme to split the private key. In fact, using a secret-sharing scheme would create two single-points
of failure: i.e., moments in which at least one party would know the entirety of the private key
(and therefore gain complete control). The first critical moment of a secret-sharing scheme is during
the key generation phase, since a single party generates the key and then computes and distributes the
shares; the second critical moment of a secret sharing scheme is during the signing phase, when at
least one entity must collect the various shares and reassemble the key to perform the signature.

Given the aforementioned advantages, MPC signatures have attracted a lot of research interest
and effort. A critical point has been the development of an efficient key generation in the context
of more than two parties, until the breakthroughs of Gennaro and Goldfeder [28] and Lindell, Nof,
and Ranellucci [29].
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3.1. A (2,3)-Threshold MPC Signature Scheme

In [28], Gennaro and Goldfeder presented a (t, n)-threshold MPC signature protocol that allows
distributing the signing process among a group of t parties, producing a t-of-n digital signature for
ECDSA that can be verified by anyone with the public key.

In this section, we will outline the scheme for a very specific case, where there are three parties
and the signing threshold has been set to two. In other words, we are considering a 2-of-3 version of
the general scheme. For the sake of notation, we will denote the three actors by A, B, and C.

The scheme starts with each party generating a secret ui and sharing it with a (2, 3)-threshold secret
sharing scheme (a simplified version of Feldman’s verifiable protocol [30]). In this way, each party has
three shards σi,j of their secret: one is kept secret, while the other two are sent to the other two parties,
as summarized in Figure 1.

A
σAA

C
σCC

B

σBB

σAC

σCA

σ A
Bσ BA

σ
CBσ

BC

Figure 1. Sharing distribution with the (2, 3)-threshold secret-sharing scheme.

The value (never actually computed) that would correspond to the private key of the digital
signature algorithm is:

x := uA + uB + uC. (1)

Then each party computes the value xi as the sum of the two shards received and the one they
previously kept secret. We can note that each xi is a (2, 3)-share of the unknown value x.

When two out of the three parties want to sign a message with digest m, they follow these steps:

1. They convert the (2, 3)-threshold shares xi of x into (2, 2)-threshold shares wi of x with appropriate
Lagrangian coefficients.

2. They randomly pick two values ki, γi, that will be considered as (2, 2)-threshold shares of
two values, say k and γ, which they both do not know.

3. Now the most delicate step: each party uses a multiplicative-to-additive share conversion protocol
(MtA) exploiting the additive homomorphic properties of Paillier’s cryptosystem [31], in order to
get two (2, 2)-threshold shares (say δi and σi) of the values

δ := kγ and σ:= kx, (2)

for which they respectively own the shares ki, wi, and γi. Then, the value δ is reconstructed by
both parties as δ = δ1 + δ2.

4. Both parties compute the inverse δ−1 of the value δ, and they obtain (2, 2)-threshold shares of the
value k−1 as δ−1γi.

5. They compute the valueR = γ1δ−1B + γ2δ−1B = k−1B, where B is the base point of the elliptic
curve group used.

6. Finally, they compute r := Rx (i.e., the first coordinate of the point R) and si := mki + rσi.
Then they share si and compute the value:

s := s1 + s2. (3)
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The signature is the couple (r, s) and is completely compatible with the standard ECDSA
digital signature.

s = k(m + rx), (4)

and it can be verified using the public key Y = xB (obtained as Y = u1B + u2B + u3B, where each
uiB has been shared in the key generation phase) in the usual way: the signature is valid if and only if

(ms−1B + rs−1Y)x = r. (5)

In the description of the above protocol, we omitted many details, for the sake of readability.
So now we are going to discuss some crucial aspects.

3.1.1. Commitments

Let us start with commitments. They are placed nearly everywhere in the protocol, and they are
used to let a party commit to a value while keeping it secret and revealing it only later on.

A commitment scheme is mainly used during a communication in order to ensure that the parties
cannot cheat and base their choices on the values sent by the other parties. In fact, in a practical
scenario we cannot assume that the communication is simultaneous.

A possible implementation of a commitment scheme uses a secure hash function as the
commitment function, which processes the value to be committed m concatenated with a random
value r. In this case, the decommitment string is this concatenation of m and r and the decommitment
function checks that its digest is equal to the commitment string. If the test is passed, then the function
outputs the value m (truncating the decommitment string), otherwise it fails. A failure signals that
something went wrong or the other party tried to cheat, so it causes the protocol to abort to preserve
the security.

3.1.2. Zero-Knowledge Proofs

A Zero-Knowledge (ZK) proof is an interactive protocol between a prover and a verifier, where
the former wants to convince the latter that they know some secret information (proof of knowledge)
or that a proposition of the form p ∈ P is true (proof of membership), without revealing anything
about their secret knowledge to the verifier.

In the described MPC multisignature protocol, many ZK proofs are used:

• Proof of knowledge of integer factorization (taken from [32]) has been used in the context of the
Paillier cryptosystem. In particular, it is used by each party to prove to the other that they know
the factorization of the modulus n associated with the public key.

• A “standard” range proof is used during the multiplicative-to-additive protocols, alongside another
ZK proof specially designed for this purpose. In particular, in order to ensure the correctness of
the MtA protocol, it is necessary that both participants prove that their shares are smaller than a
certain threshold K.

• Schnorr’s proof (taken from [33]) and one of its variants are used throughout the protocol when a
party is broadcasting some gx, to prove that they know x.

3.2. MPC Signatures with an Offline Recovery Party

Longo, Meneghetti, and Sala in [34] (and in [35,36] with more complete and formal presentations
that include the security proofs) have used the protocol just described in Section 3.1 as a starting point
to develop a (2, 3)-threshold multisignature protocol with a useful property: one of the three parties,
which we will call the Recovery Server, does not need to participate during the key generation step,
which normally would involve all three parties in a (2,3)-threshold scheme. This actor gets involved
only when one of the remaining parties is not able to sign. In that case, they receive all the information
needed from the remaining online party, and then they both proceed to sign.
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This feature is the main improvement over [28], and it gives considerable benefits in real-life
applications of the protocol because if the recovery party can stay offline the vast majority of the time
(and crucially during the enrollment of new users). then it can implement hardened security features
(e.g., air-gapped cold storage) whilst preserving a scalable and efficient infrastructure.

In more formal terms, the protocol involves three actors:

• The Service Provider, who is always online.
• The Recovery Server, who has to be online only at the beginning, and afterwards only if one of the

other two parties is not able to sign.
• The Client, who is unknown at the beginning (i.e., unknown to the Recovery Server) and later

enrolls and signs by interacting with the Service Provider.

The scheme is structured in four phases:

1. Initialization phase: the setup phase for the Service Provider and the Recovery Server, performed
only once.

2. Enrollment phase: performed when a new Client wants to enroll in the system (the Recovery Server
is not needed during this phase).

3. Ordinary Signature phase: performed when a Client wants to sign a message (e.g., a transaction).
It requires the collaboration of the Service Provider, but again, the Recovery Server is not needed
during this phase.

4. Recovery Signature phase: when either a Client or the Service Provider is unable to sign
(e.g., due to the loss of the private key), the Recovery Server is brought back online to collaborate
with the uncompromised party in order to perform the signature (e.g., transferring the funds to a
new wallet).

Let us give an example of an application in the context of cryptocurrencies. Suppose that Carol,
who will become the Client in our protocol, would like to open a wallet to make transactions with
some cryptocurrency. She is also aware that, by handling a single private key on her own, she is
exposed to risks (e.g., private key loss, no inheritance). Therefore, she chooses an MPC multisignature
solution, which allows her to recover the funds even in case of the loss of her private key. For this
reason, she turns to a third-party service, namely the Service Provider, which enrolls Carol as the
Client. When Carol wants to transfer funds from her wallet, she prepares the transaction and signs it
with the collaboration of the Service Provider. If Carol loses her private key, she contacts the Recovery
Server so that it starts the recovery signature phase with the Service Provider, signing a transaction
that moves all of her funds to a new address. In contrast, if the Service Provider loses the private keys
it is protecting (maybe due to an attack or a system failure, or if the company goes bankrupt), then the
Recovery Server performs the same recovery signature phase with each client. As a result, this scheme
ensures that Carol’s funds are not lost.

Now, let us recall the trade-off logic of security versus spendability that we introduced at the very
beginning of Section 2. This scheme reconciles the two aspects: the user usually signs transactions with
the Service Provider, which is always online and guarantees spendability. Meanwhile the Recovery
Server guarantees security and safety as long as it does not collude with the Service Provider.

A practical application of this solution could exploit a public notary or a bank as the trusted
offline third party (i.e., the Recovery Server). This requires a single preliminary arrangement between
the Service Provider and the chosen trusted party, and later on multiple users can take advantage of
it to protect their assets with much lower costs. Note that, unlike what was proposed in Section 2.4,
here the notary is not a single point of failure and trust is shared with the service party, since both
must collude to allow foul play. Moreover, these kinds of choices for the recovery server also solve
the problem of inheritance since as the heirs accept the inheritance, the notary or the bank are able to
transfer the funds to the heirs collaborating with the Service Provider.

The protocol enjoys all the properties of a generic threshold MPC signature scheme (see Section 3).
In particular, we want to highlight what is effectively a blockchain-agnostic system, where multiple
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parties are involved and funds can be safely recovered in case of emergency. This signature is available
for both ECDSA [35] and EdDSA [36] signatures, and so it can be applied to any cryptocurrency
using ECDSA signatures (e.g., Bitcoin) or EdDSA signatures (e.g., Tezos, Stellar). Indeed, a practical
use-case of this protocol can be found in Ethereum [37] (for ECDSA) and Libra [38] (for EdDSA) wallets.
In addition, the scheme is completely compatible with a deterministic derivation of public and private
keys (see Section 2.4), which is useful in contexts that need the generation of many keys from a single
key, as is required in the Bitcoin Improvement Proposal 32 [39] (BIP32). Finally, the scheme integrates
a mnemonic encoding of secret data that adds another layer of resiliency (see Section 3.2.4).

3.2.1. Let the Recovery Server Stay Offline

In this section, we will explain how the Recovery Server is able to stay offline during the
Enrollment phase but still be able to sign when needed (even if it skipped the shards generation
shown in Figure 1).

During the initialization phase, the Recovery Server generates a long-term private/public key
pair for a given asymmetric cryptosystem and sends the public key to the Service Provider. After that,
the Recovery Server is allowed to go offline.

For any new Client who wants to enroll in the system, the Service Provider is involved. Together,
they perform the same steps shown in the previous section, with the following changes:

• At the very beginning, the Service Provider sends the Recovery Server’s public key to the Client.
• In order to “surrogate” the shards creation by the Recovery Server (would have taken the role of

the actor B), the Service Provider (A) and the Client (C) randomly pick σB,A and σB,C, respectively.
• Both parties encrypt the shards pair σB,i, σi,B with the Recovery Server’s public key, and they

exchange them among themselves. In this way, both parties have the information needed for the
Recovery Server to eventually join the protocol.

Let us now explain how the recovery signature works. Without loss of generality, we can assume
that the party that loses its private key material is the Client (that is also the most realistic scenario).
In this case:

1. The Service Provider contacts the Recovery Server, which comes back online and receives the
encrypted shards.

2. The Recovery Server decrypts the received shards and computes xB, which should be the sum
of the shards σA,B, σC,B and σB,B. But the last one does not exist. This is not a problem since the
shards σi,j are effectively a (2, 3)-threshold secret sharing of some secret ui, so the information
given by σB,A and σB,C is enough to compute a unique σB,B that is compatible with this scheme.
To sum up, the Recovery Server “generates” its secret uB starting from the shares received.

3. Finally, the Recovery Server and the Service Provider can turn their secrets xA and xB into
(2, 2)-threshold shares wA and wB of x and proceed with an ordinary signature.

3.2.2. EdDSA Version

Regarding the EdDSA version, the protocol is quite different in the signature phase but shares the
same ideas to let one party to stay offline. Let us briefly explain the differences with ECDSA:

• The enrollment phase is repeated twice, namely, at the end each party will have two secrets ui, u′i,
two shares xi, x′i , and two shared values A, K.

• The idea behind the signature of a message M is the following:

1. Both parties transform their shares from (2, 3)-threshold into (2, 2)-threshold shares: xi → wi
and x′i → ki.

2. Each party computesRi := ki H(K, M)B, and they exchange them (H is the hash function
used in EdDSA, and B is the base point of the elliptic curve group).
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3. Both parties can compute the first component of the signature as:

R := R1 +R2 = (k1 + k2)H(K, M)B. (6)

4. Each party computes the shard Si := ki H(K, M) + wi H(R,A, M), and they exchange them.
5. Both parties can compute the second component of the signature

S := S1 + S2 = (r′1 + r′2)H(K, M) + (w1 + w2)H(R,A, M). (7)

Note that the signature can be verified by the standard EdDSA algorithm, and both parties verify
it before completing the protocol successfully.

3.2.3. Key Derivation

During the enrollment phase, the Service Provider and the Client also generate a common secret
D that the Recovery Server can recover by decrypting the encrypted shards. The threshold shares
obtained in the Enrollment Phase can be utilized directly to sign messages, or they can be used to derive
deterministically other key pairs using this common secret. For example, in Bitcoin it is good practice
to always use fresh addresses, which correspond to different keys (see, for example, BIP32 [39]).

For this purpose, it is sufficient that A and C agree on a (public) derivation index i. Then, using the
common secret D computed during the Enrollment Phase, they can independently derive the shards
w(i)

A and w(i)
C and use them in the Signature Phases in place of wA and wC, respectively. Note that the

derived secret keys correspond to a new public key Y (i). The derivation can also be compound, that is,
more keys can be derived from a derived key.

3.2.4. Mnemonic

The protocol allows saving critical private data as a list of common words, known as mnemonic
encoding, that can be memorized and later used to reconstruct the original data. This allows avoiding
the Recovery Signature Phase (and thus the cost of involving the Recovery Server), as long as the
mnemonic is available. In a practical scenario, the usage of mnemonic encoding is quite convenient
and less expensive since the Recovery Signature Phase leads to another Enrollment Phase as well as
an Ordinary Signature Phase to transfer the funds to the new wallet.

The protocol generates the mnemonic (using an approach similar to the one used in Bitcoin’s
BIP39 [40]) from the secret parameters of a user and includes a few checksum bits extracted from the
shared secrets and the public key. When the restoration of this data is needed (e.g., when the Client
changes or upgrades the device that stored their secret material), the other uncompromised party
provides the shared values whose integrity is verified using the checksum bits.

3.2.5. Security

The protocols presented in Section 3.1 and in this section are provable as secure in the standard
model. More precisely, the signatures are proven unforgeable following the standard notion of
existential unforgeability against chosen message attacks (EU-CMA) as introduced in [41], adapted for
a threshold multiparty scheme.

Definition 1 (Existential Unforgeability of a (2,3)-Threshold Signature Protocol). Consider a malicious
Probabilistic Polynomial Time (PPT) adversary A who participates in a (2,3)-threshold signature scheme S for
the creation of a public key Y and in the creation of signatures on adaptively chosen messages. Let M be the set
of messages queried by A. The protocol is said to be existentially unforgeable if there is no such PPT adversary A

that can produce a signature on a message m /∈ M, except with negligible probability.

The main results are the following:



Mathematics 2020, 8, 1773 12 of 17

Theorem 1. Assuming that

• the ECDSA signature scheme is unforgeable;
• the strong RSA assumption holds;
• (Com, Ver) is a non-malleable commitment scheme;
• the Decisional Diffie Hellman Assumption holds;
• and that the encryption algorithm used by the Recovery Server is IND-CPA;

the threshold ECDSA protocol is unforgeable.

Theorem 2. Assuming that

• H is a cryptographic hash function with some good PRNG properties;
• the EdDSA signature scheme with parameters (p, b, H, c, n, a, d,B, q) is unforgeable;
• Com, Ver is a non-malleable commitment scheme;
• the Decisional Diffie Hellman Assumption holds;
• the encryption algorithm used by the Recovery Server is IND-CPA;

the threshold protocol built with the hash function H is unforgeable.

The proofs are omitted here but can be found in [35,36].
The addition of an offline party does not deeply impact the signature phase of the protocol, so the

security proof in [35] is largely derived from [28]; however, the analysis considers the changes in the
enrollment phase and proves that the tricks used to keep the recovery party offline do not compromise
the security, and takes into account the differences when the adversary is online or not.

The theorems above are focused on the unforgeability of the signature; however, with an offline
party (and more so in the application context of crypto-assets management), there is another security
aspect worth considering: the resiliency of recovery in the presence of a malicious adversary. Of course,
if the offline party is malicious and unwilling to cooperate in fund recovery, then there is nothing we
can do about it; however, the security can be strengthened considering that one of the online parties
may corrupt the recovery material. In this case, a generic CPA asymmetric encryption scheme is not
sufficient to prevent malicious behavior because the protocol needs a verifiable scheme that allows the
parties to prove that the recovery material is consistent, just like they prove that they computed the
shards correctly.

3.3. Access Structures for Digital Signatures

An alternative approach to the scheme of Gennaro and Goldfeder [28] was proposed around the
same time by Lindell et al. in [29], where the authors propose a threshold ECDSA-based signature
scheme that replaces Paillier homomorphic encryption with ElGamal in the exponent, reaching similar
results with different security assumptions.

Their signature system can be applied to solve the problem of custody of crypto-assets exactly as
for the methods previously described.

An important feature that the authors highlight about their protocol is the fact that it easily
supports very complex access structures for signatures, combining additive sharing and key replication.
The case we have seen so far of the access structure is the following: we have a set U of n users, and we
set a threshold t ≤ n; they can sign only if at least t users of U agree. The access structure considered
here is instead more generic: we have l sets of users U1, . . . , Ul of size n1, . . . , nl , respectively, and we
fix the respective thresholds t1, . . . , tl , one for each set of users. At this point, we write the necessary
condition for signing as a boolean formula comprising AND and OR operators on these sets.

For example, by imposing (A1 ∨ A2) ∧ A3 as condition, we mean that at least one of the sets A1

and A2 must reach the threshold, and so must A3.
Such complex access structures allow managing the trade-off between security and transaction

time in a very fine way for each set of actors. For example, let a group be comprised of employees of
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a bank, then we can set for it a certain threshold, while we can set a higher threshold for a group of
servers (since involving a group of human beings is usually more complicated).

3.4. Alternative Application of MPC Signatures: CHECKPOINT

Having presented the structure of MPC signatures and some protocols, we now discuss an
interesting proposal introduced in [42], which makes an alternative use of threshold MPC signatures.
Instead of simply applying the MPC scheme to enhance the signature, CHECKPOINT exploits an
auxiliary blockchain and shifts all the computations on a group of custodians.

The actors involved are the user C and a fixed set of custodians A1, . . . , An. Upon enrollment of
the user C, an MPC key generation is performed between the custodians, which leads to the creation
of the shares sk1, . . . , skn of a private key, associated to the user C, for a given blockchain (e.g., Bitcoin).
The user C is instead provided with a different private key, sk, which is used to sign on an auxiliary
blockchain. Let Carol be a user who wants to sign a transaction on the real blockchain, then she
must use her private key sk to sign a transaction on the auxiliary one, in which she specifies the data
of the transaction she wants to carry out (amount, recipient(s), . . . ). As soon as the custodians see
the transaction on the auxiliary blockchain, they perform an MPC threshold signature on the real
blockchain, on behalf of Carol.

The additional intermediate signature brings a fundamental advantage over the other threshold
MPC schemes: the user’s device does not have to participate directly in the multiparty computation,
greatly reducing the computations to be performed on the user side.

Furthermore, nothing prevents Carol from being able to manage more than one blockchain at a
time, always keeping only one private key. It would be sufficient that, when signing on the auxiliary
blockchain, Carol specifies on which blockchain she wants to sign the transaction, alongside the
other data.

On the other hand, it is obvious that performing an intermediate signature, especially on another
blockchain, can considerably slow down the total time for the real transaction to be completed.

A more critical point is that the burden of custodying the original wallet’s key is simply transferred
to the custody of the new key used to authorize transactions on the auxiliary blockchain, unless the
system is integrated with other authentication mechanisms that allow a safe recovery.

4. Conclusions

In this paper, we analyzed the custody of crypto-assets as the problem of protecting the private
key that controls said assets, both from possible attackers and from loss due accidents of various nature
(system or device failure, theft or misplacement, human error or memory deficits, death of the key
holder), without compromising the accessibility and transactional ease of use of the funds.

With this in mind, we presented several possible solutions that are largely in use, discerning
between self-custody and third-party custody solutions, describing hot storage and cold storage,
showing specific solutions for the problem of private key recovery and also the new approaches of
threshold multisignature, remarking how each solution has to undergo a trade-off between security
and usability, and we summarize the comparison of the schemes in Table 1.

So far, most financial institutions (e.g., Fidelity) have opted for a cold-storage approach: easier
to implement and safeguard but impractical for transactions. As a result, such “static” solutions are
not suitable for the incoming wave of stablecoins and digital currencies, which are to be used for
transactional purposes [43].

We believe that the crypto-assets custody solutions of the future must be “dynamic”. That is,
they must provide the same level of security as the static ones, and at the same time allow for
easy transactional use. Our belief is also echoed by the CEO of the Nomura-backed Komainu,
whose custodial solution claims to “offer the same level of security as cold storage solutions while
allowing for the speed and user flexibility of online hot wallets” [44].
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Table 1. Qualitative comparison.

Method Pros Cons

Self-custody
(in general)

• The user has complete control. • The user bears full responsibility for
security and safety.

Full third-party
custody
(e.g., exchange
platforms)

• The user is not responsible for the
security.

• Usually high safety and ease
of use.

• The service provider has to be fully
trusted for honesty, security, safety
practices, and existence of funds.

Hardware wallets

• Protection against online attacks.
• Enhanced security compared to

traditional storage.
• The user retains direct control.

• A little bit slower and less easy to use
compared to traditional storage.

• The device may be lost or suffer faults.
• The user may forget the PIN.
• The user may die before telling the PIN

or the device position to anyone else.
• The private key may be stolen at the

moment of the signature.

Offline software
wallet

• Protection against online attacks.
• The user retains direct control.

• Low ease of use.
• Similar problems to hardware wallets,

possibly more subject to failures due to
the greater complexity.

Notary as
recovery service

• High safety.
• Perfectly compatible with

inheritance procedures.

• The user has to trust the notary.
• Expensive.

Secret-sharing of
private key

• Enhanced safety.
• May be combined with other

solutions to further enhance
safety and security.

• Great flexibility.

• Key vulnerable when signing.
• Lowered ease of use since multiple

parties or devices have to be involved.

On-chain
multisignatures

• Enhanced security with no single
point of failure.

• Enhanced safety.
• Accountability of

transaction signers.
• Ease of use helped by the

non-interactive nature
of the scheme.

• Higher cost of transaction fees.
• Diminished privacy.
• Blockchain-dependent solution.

Threshold MPC
signatures

• High security with no single point
of failure.

• Enhanced safety.
• More flexibility and lower fees

due to off-chain approach.
• Blockchain-agnostic.
• Privacy: transactions and wallets

are indistinguishable from
standard ones.

• Complex protocols, especially key
generation.

• Ease of use hampered by interactive
signature protocol.

• No accountability.

Therefore, here we have described in more detail a couple of threshold signature schemes based
on multiparty computation that show many desirable properties in their application to both custody
and transactional use of cryptocurrencies. As a matter of fact, they are trustless, since an “almighty”
private key is never created, and they overcome the limitations of blockchains that do not have native
multisignature support. In addition, they allow reducing the transaction size and cost in blockchains
that already support multisignature schemes (e.g., Bitcoin) and improve the overall level of privacy
since the multiple signers are not exposed to public view and the address is indistinguishable from
normal ones.

In particular, in Section 3.2 we presented a solution that consists in a 2-of-3 threshold signature
scheme, which inherits all the properties of threshold signature schemes just listed and, in addition,
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allows one party to not participate in the key generation phase. This enhances the practicality of the
protocol since one party is only rarely involved (just in case it is necessary to recover the crypto-asset).
This means that the third actor can be a very secure and trustworthy entity that would be too
cumbersome and/or expensive to involve in the enrollment of each and every user.

Future research on this topic may involve the development of a threshold MPC version of other
digital signature schemes used to control crypto-assets. Some (e.g., Schnorr signatures that have been
recently introduced in Bitcoin [33]) may be relatively easily derived from other protocols. Others,
however, will require some effort (e.g., Ring Signatures used in Monero [45]). Further research in the
field of MPC schemes may aim to speed up the whole protocol, especially improving the ZK proofs
that are the heaviest component. One direction could be to investigate how to modify the scheme
in order to reduce the number of ZK proofs; another one could be to look for improvements in the
sub-protocol itself in terms of both computations and communication steps. Further research efforts
may be spent aiming to reduce the overall number of communication rounds in the protocol, towards
one-round protocols that could be run asynchronously.
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