
mathematics

Article

Dependence of Dynamics of a System of Two
Coupled Generators with Delayed Feedback on the
Sign of Coupling

Alexandra Kashchenko

Mathematical Department, P.G. Demidov Yaroslavl State University, Yaroslavl 150003, Russia; sa-ahr@yandex.ru

Received: 31 August 2020; Accepted: 12 October 2020; Published: 15 October 2020
����������
�������

Abstract: In this paper, we study the nonlocal dynamics of a system of delay differential equations
with large parameters. This system simulates coupled generators with delayed feedback. Using the
method of steps, we construct asymptotics of solutions. By these asymptotics, we construct a special
finite-dimensional map. This map helps us to determine the structure of solutions. We study the
dependence of solutions on the coupling parameter and show that the dynamics of the system is
significantly different in the case of positive coupling and in the case of negative coupling.
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1. Introduction

Consider equation
u̇(t) = −νu(t) + λF(u(t− T)), (1)

where u is a scalar function, parameters ν, T, and λ are positive, F(u) is some nonlinear compactly
supported function. This equation is a mathematical model in problems of radiophysics and biology.
It simulates a generator with nonlinear delayed feedback with a first-order RC low-pass filter
(see, for example, [1–3]). Such generators are used in the manufacture of sonars, noise radars,
and D-amplifiers [2]. Equation (1) models a biological process where the single state variable u
decays with a rate ν proportional to u in the present and is produced with a rate dependent on the
value of u some time in the past [4]. Such processes arise in a variety of problems in various areas
in biology (see Table 1 and references in [4]). In addition, the dynamics of Equation (1) is of general
scientific interest [5–13]. The authors find complicated periodic solutions [5–7] and chaos [8] in this
model in the case of “step-like” nonlinearity. In Ref. [9], authors study properties of solutions and
find a global attractor of model (1) with delayed positive feedback and in the paper [10] existence
and stability of relaxation cycle of the multidimensional system (1) in the case of large λ is studied.
In Refs. [11–13], the authors study properties of solutions of normalized Equation (1) (parameters
ν = λ = 1) in the case of sufficiently large T (T � 1). They deal with equation

εu̇(t) = −u(t) + f (u(t− 1)), (2)

where ε = 1/T and study how the dynamics of this equation when ε is small (when T is large in (1)) is
related with dynamics of this equation in the case ε = 0.
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In this paper, we deal with a system of two coupled normalized (ν = 1) equations of the form (1){
u̇1 + u1 = λF(u1(t− T)) + γ(u2 − u1),
u̇2 + u2 = λF(u2(t− T)) + γ(u1 − u2).

(3)

Here, delay time T is a positive constant, a nonlinear sufficiently smooth function F(u) is
compactly supported:

F(u) =

{
f (u), |u| ≤ p,

0, |u| > p,

where p is some positive constant.
We assume that function f (u) on the segment u ∈ [−p, p] satisfies the conditions:

f (p) = f (−p) = 0;
f (u) 6= 0 except for a finite number of points;
if f (u∗) = 0, then f ′(u∗) 6= 0 or f ′′(u∗) 6= 0.

(4)

and that coefficient λ is large enough: λ� 1.
This model simulates two coupled D-amplifiers or two noise-radars with a large amount of

feedback. If coupling parameter γ is asymptotically small at λ → +∞, then exponentially orbitally
stable relaxation cycles coexist in model (3) (see [14,15]). Now, we are interested in nonlocal dynamics
of this model in the case γ is some nonzero constant and we study how the dynamic properties of the
system differ in the cases of positive and negative coupling.

The paper is organized as follows. In Section 2, we introduce some set of initial conditions and
integrating by steps system (3) under some non-degeneracy conditions we construct solutions with
initial conditions from the chosen set. By formulas of solution, we obtain the operator of translation
along the trajectories Π and map describing dynamics of this operator. Using this map, we clarify
asymptotics of solutions of system (3) in the case γ > 0 in Section 3 and in the case γ < 0 in Section 4.
In Section 5, as an example, we consider a narrower class of functions f and prove that asymptotic
formulas of solution given in Sections 2–4 are valid for a wide set of initial conditions (for all initial
conditions from this set, non-degeneracy conditions hold) and prove the existence of relaxation cycles
in system (3). We show that the dynamics of system (3) is significantly different in the case of positive
and negative coupling in Section 6 and, in Section 7, we draw conclusions.

2. Constructing the Asymptotics of Solutions

Let’s find relaxation solutions of (3) and study the dynamics of this system. For this
purpose, we consider initial conditions (u1(s), u2(s))T ∈ C[−T,0](R2) outside of the strip
|uj(s)| < p (s ∈ [−T, 0], j = 1, 2) and construct asymptotics of all solutions of system (3) for this set of
initial conditions.

Due to the choice of initial conditions on the segment t ∈ [0, T], system (3) has the form{
u̇1 + u1 = γ(u2 − u1),
u̇2 + u2 = γ(u1 − u2).

(5)

Moreover, system (3) has form (5) until at least one of the components of the solution comes into
the strip |uj| < p. Thus, for t ≥ 0, until at least one of the components of the solution of system (3) for
the first time comes into the strip |uj| < p, a solution of system (3) has form

u1(t) = 1
2 (u1(0) + u2(0))e−t + 1

2 (u1(0)− u2(0))e−(1+2γ)t,
u2(t) = 1

2 (u1(0) + u2(0))e−t − 1
2 (u1(0)− u2(0))e−(1+2γ)t.

(6)
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It follows from (6) that, in the case γ < − 1
2 , there exist solutions of system (3) tending to infinity,

and, in the case γ = − 1
2 , there exist solutions of system (3) tending to a constant at t→ +∞. We are

interested in relaxation solutions, which is why we assume further that γ > − 1
2 .

If γ > − 1
2 , then at least one component of a solution eventually comes into the strip |uj| < p

(j = 1 or 2). Let t1 ≥ 0 be the first time moment such that some component of the solution (we denote
it as ui) gets inside the strip |ui(t)| ≤ p:

|u1(s + t1)| ≥ p, |u2(s + t1)| ≥ p for s ∈ [−T, 0), (7)

|ui(t1)| = p and |ui(t)| < p if t1 < t < t1 + δ (where δ > 0 is some constant and
i equals 1 or 2). Then,

ui(t1) = kp, u3−i(t1) = xp, (8)

where k denotes the sign of ui(t1) (parameter k takes values −1 or 1) and x is some value such
that |x| ≥ 1. We denote the set of pairs of initial functions (u1(s), u2(s))T ∈ C[−T,0](R2) satisfying
conditions (7) and (8) as IC(i, k, x).

We will integrate system (3) using a method of steps. It follows from (7) that, on the first step
(time segment t ∈ [t1, t1 + T]), system (3) has form (5) and the solution has a form

ui(t) = (k+x)p
2 e−(t−t1) + (k−x)p

2 e−(1+2γ)(t−t1),
u3−i(t) = (k+x)p

2 e−(t−t1) + (x−k)p
2 e−(1+2γ)(t−t1).

(9)

Since function ui is inside the strip |ui| < p for t ∈ [t1, t1 + δ], then, for t ∈ [t1 + T, t1 + 2T],
we have that F(ui(t− T)) is not identically equal to 0. In addition, F(u3−i(t− T)) may be identically
equal to 0 or not (it depends on value of x). Then, on the second step (t ∈ [t1 + T, t1 + 2T]), we consider
system (3) as an inhomogeneous system of ordinary differential equations (here functions F(ui(t− T))
and F(u3−i(t− T)) are known from the previous step and we consider them as inhomogeneity). Thus,
the following formula for solution of system (3) holds:

ui(t) =
(k+x)p

2 e−(t−t1) + (k−x)p
2 e−(1+2γ)(t−t1) + λ

2 A(k, x, t, t1),
u3−i(t) =

(k+x)p
2 e−(t−t1) + (x−k)p

2 e−(1+2γ)(t−t1) + λ
2 B(k, x, t, t1),

(10)

where

A(k, x, t, t1) =
t∫

T+t1

(
es−t + e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (k−x)p
2 e(1+2γ)(t1+T−s)

)
ds

+
t∫

T+t1

(
es−t − e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (x−k)p
2 e(1+2γ)(t1+T−s)

)
ds,

B(k, x, t, t1) =
t∫

T+t1

(
es−t − e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (k−x)p
2 e(1+2γ)(t1+T−s)

)
ds

+
t∫

T+t1

(
es−t + e(1+2γ)(s−t)

)
F
(
(k+x)p

2 et1+T−s + (x−k)p
2 e(1+2γ)(t1+T−s)

)
ds.

Let’s introduce the following conditions on the functions A and B:

Assumption 1. Number of points t∗ ∈ [t1 + T, t1 + 2T] for which A(k, x, t∗, t1) = 0 (B(k, x, t∗, t1) = 0) is

finite. If A(k, x, t∗, t1) = 0 (B(k, x, t∗, t1) = 0), then there exists j ∈ N such that
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t∗
6= 0

(
∂jB(k, x, t, t1)

∂tj

∣∣∣
t=t∗
6= 0, respectively).

Assumption 2. Inequality A(k, x, t1 + 2T, t1)B(k, x, t1 + 2T, t1) 6= 0 holds.
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Under Assumption 2, we obtain that

ui(t1 + 2T) = λ
2

(
A(k, x, t1 + 2T, t1) + o(1)

)
,

u3−i(t1 + 2T) = λ
2

(
B(k, x, t1 + 2T, t1) + o(1)

) (11)

at λ→ +∞ and that both functions ui(t) and u3−i(t) at the point t = t1 + 2T are outside of the strip
|uj| < p.

Lemma 1. If Assumptions 1 and 2 hold, then on the segment t ∈ [t1 + 2T, t1 + 3T] functions ui(t) and
u3−i(t) have the form

ui(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

+ λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T),

u3−i(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

− λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T).

(12)

Proof. Let t ∈ [t1 + 2T, t1 + 3T]. On this segment, we consider system (3) as a system of
inhomogeneous linear ordinary differential equations (on this time segment we consider known
functions λF(ui(t − T)) and λF(u3−i(t − T)) as inhomogeneity). Therefore, a solution of this
system on the time segment t ∈ [t1 + 2T, t1 + 3T] has the form of a sum of particular integral (PI)
and complementary function (CF, solution of linear part of system (3)–system (5)) with constants
determined from the initial conditions (11):

ui(t) = uiCF (t) + uiPI (t),
u3−i(t) = u(3−i)CF

(t) + u(3−i)PI
(t).

Let’s find asymptotics of particular integral of this system at λ→ +∞. A particular integral of
the system (3) on the time segment t ∈ [t1 + 2T, t1 + 3T] has the form

uiPI (t) =
λ
2

t∫
t1+2T

(es−t + e(1+2γ)(s−t))F(ui(s− T)) + (es−t − e(1+2γ)(s−t))F(u3−i(s− T))ds,

u(3−i)PI
(t) = λ

2

t∫
t1+2T

(es−t − e(1+2γ)(s−t))F(ui(s− T)) + (es−t + e(1+2γ)(s−t))F(u3−i(s− T))ds.
(13)

Suppose a particular integral (13) is non-zero. This integral on some segment is non-zero only
if functions F(ui(s − T)) or F(u3−i(s − T)) are non-zero on this segment. Function F(ui(t − T))
(F(u3−i(t − T))) is non-zero only if |ui(t − T)| < p (|u3−i(t − T)| < p). For sufficiently large
values of λ this condition holds only if A(k, x, t − T, t1) (B(k, x, t − T, t1) respectively) is in the
neighborhood of zero. Function A(k, x, ·, t1) (B(k, x, ·, t1)) is continuous; consequently, there exists
point t∗ ∈ [t1 + T, t1 + 2T] such that A(k, x, t∗, t1) = 0 (B(k, x, t∗, t1) = 0, respectively).

Consider the point t∗ ∈ [t1 + T, t1 + 2T] such that A(k, x, t∗, t1) = 0. It follows from Assumption 1

that there exist j ∈ N such that
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t∗
6= 0. Let q be the minimum from these numbers j.

Consequently, it follows from (10) that, in the neighborhood of t∗, we have

ui(t− T) =
(k + x)p

2
e−(t−T−t1) +

(k− x)p
2

e−(1+2γ)(t−T−t1)

+
λ

2

(∂q A(k, x, t∗, t1)

∂tq + o(1)
) (t− T − t∗)q

q!
. (14)
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Let’s estimate “time of living” ∆t∗ of function ui(t− T) in the strip |ui| < p in the neighborhood of
the point t− T = t∗ (“time of living” means here length of the maximal interval of values t such that t∗

belongs to this segment and inequality |ui(t)| < p is true for all points t from this segment). From (14),

under the condition that λ is sufficiently large, we get that ∆t∗ ≤ M1λ
− 1

q , where M1 = M1(k, x, γ) is
some positive value. From Assumption 1, we know that number of points t∗ such that A(k, x, t∗, t1) = 0
is finite, which is why there exists Q = qmax—maximum from values q for all points t∗. Then, on
the whole segment t− T ∈ [t1 + T, t1 + 2T] “time of living” ∆ttotal of function ui(t− T) in the strip

|ui| < p has estimate ∆ttotal ≤ M2λ
− 1

Q , where M2 = M2(k, x, γ) is some positive value. Similarly,
for function u3−i(t− T), we have estimate ∆ttotal ≤ M3λ−

1
P , where M3 and P are some positive values.

Function F is bounded, which is why, for a particular integral (13), we have the following estimate:

|uiPI (t)| ≤ Mλ
max{P,Q}−1

max{P,Q} , |u(3−i)PI
(t)| ≤ Mλ

max{P,Q}−1
max{P,Q} ,

where M is some positive value, t ∈ [t1 + 2T, t1 + 3T].
A solution of linear part of system (3) satisfying initial conditions (11) on this segment has form

uiCF (t) =
λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

+ λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T),

u(3−i)CF
(t) = λ

4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T)

− λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T).

Thus, a complementary function gives us the leading term of asymptotics of solution of system (3)
on the segment t ∈ [t1 + 2T, t1 + 3T] and thus a solution on this segment has form (12).

Corollary 1. The leading term of asymptotics of solution of system (3) coincides with solution of system (5)
with initial conditions (11) on the segment t ∈ [t1 + 2T, t1 + 3T].

Let’s study asymptotics of solutions of system (3) for values t > t1 + 3T. While both components
of solution are outside of the strip |uj| < p (j = 1, 2), system (3) has form (5) and solution has form (12).
If some component of solution comes to the strip |uj| < p at the point t = t0 > t1 + 2T, then on
the next step t ∈ [t0 + T, t0 + 2T] nonlinearity F is non-zero and the leading term of asymptotics of
solution may change. Whether it changes or not is determined by the values of the functions

G±(t) = (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1))

±(A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1))e−2γ(t−t1−2T)

in the neighborhood of the point t0.
Note that, in terms of functions G+ and G− on the segment t ∈ [t1 + 2T, t0], we have the following

representation of functions ui and u3−i:

ui(t) =
λ

4

(
G+(t) + o(1)

)
e−(t−t1−2T), (15)

u3−i(t) =
λ

4

(
G−(t) + o(1)

)
e−(t−t1−2T). (16)

There exists two principally different cases when function ui(t) (or u3−i(t)) comes into the strip
|uj| < p at the point t = t0 > t1 + 2T:
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1. The second multiplier in Formula (15) or Formula (16) at some point from an asymptotically small
at λ→ +∞ neighborhood of the point t = t0 is equal to zero.

2. The second multiplier in Formulas (15) and (16) in some (independent from λ) neighborhood of
the point t = t0 is non-zero and the third multiplier is asymptotically small on λ at λ→ +∞ in
the neighborhood of the point t = t0.

Note that, for some functions F and values of parameters k, x, and γ, Case 1 does not take place.
Suppose we have function F and values of parameters k, x, and γ such that this Case occurs. Then, we
have the following Lemma.

Lemma 2. Suppose some component of solution comes into the strip |uj| < p at the point t = t0 > t1 + 2T
and Formula (12) is valid for the leading term of asymptotics of solution on the segment t ∈ [t1 + 2T, t0]. If there
exists a point from an asymptotically small at λ→ +∞ neighborhood of the point t = t0 such that the second
multiplier in (15) or (16) is equal to zero, then asymptotics of solution on the segment t ∈ [t0 + T, t0 + 2T] has
form (12).

Proof. First, note that, if the second multiplier in (15) or (16) is equal to zero at some point from the
small neighborhood of the point t = t0, then there exists value t∗ such that |t∗ − t0| = o(1) at λ→ +∞
and G+(t∗)G−(t∗) = 0.

Each equation G+(t) = 0 and G−(t) = 0 has at most one root and, if one equation has a root,
then another equation has no roots. This root does not depend on λ, and it follows from Assumption 2
that if G+(t∗) = 0 (G−(t∗) = 0), then G′+(t∗) 6= 0 (G′−(t∗) 6= 0, respectively).

Assume without loss of generality that function ui comes into the strip |ui| < p at the point t = t0

and G+(t∗) = 0. Acting like in the proof of Lemma 1, we obtain that “time of living” ∆t∗ of function
ui(t) in the strip |ui| < p in the neighborhood of the point t = t∗ has estimate ∆t∗ ≤ constλ−1. This is
why a particular integral of the system (3) on the segment t ∈ [t0 + T, t0 + 2T] has estimate

|uiPI (t)| ≤ const1, |u(3−i)PI
(t)| ≤ const2,

and a complementary function has estimate

|uiCF (t)| ≥ const3λ, |u(3−i)CF
(t)| ≥ const4λ,

where const3 > 0 and const4 > 0.
Thus, on the segment t ∈ [t0 + T, t0 + 2T], Formula (12) is valid.

For the further reasoning, we need a notation of the time moment of leaving the strip |uj| < p
in Case 1 (if this Case occurs). We denote it as tleave. It follows from Lemma 2 that tleave < t∗ + T.
If Case 1 does not take place, then we define tleave = t1 + 2T. Thus, there exists a constant Mt.l. > 0
independent on λ such that tleave < Mt.l.

Lemma 2 implies the following statement.

Corollary 2. For all t > tleave, both functions ui(t) and u3−i(t) are outside of the strip |uj| < p until
Case 2 occurs.

Let’s study Case 2 in more detail.
First, consider the case γ > 0. If non-degeneracy condition

A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) 6= 0 (17)

holds, then there exist positive constants cmin, cMax, such that

0 < cmin < |G±(t) + o(1)| < cMax
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in some independent on λ neighborhood of the point t = t0. Therefore, |λe−(t0−t1−2T)| < M4 at
λ→ +∞, where M4 is some positive constant. This is why

t0 − t1 = (1 + o(1)) ln λ (18)

at λ→ +∞. In addition, in the neighborhood of the point t = t0, solution of system (3) has form

ui(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T),

u3−i(t) = λ
4 (A(k, x, 2T + t1, t1) + B(k, x, 2T + t1, t1) + o(1))e−(t−t1−2T).

(19)

Consider the case − 1
2 < γ < 0. If non-degeneracy condition

A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) 6= 0 (20)

holds, then, for some positive constants dmin and dMax in some independent on λ neighborhood of the
point t = t0, we have

0 < dmin < |(G±(t) + o(1))e2γ(t−t1−2T)| < dMax.

Therefore, we obtain that |λe−(1+2γ)(t0−t1−2T)| < M5 at λ → +∞, where M5 is some
positive constant. Consequently,

t0 − t1 = ((1 + 2γ)−1 + o(1)) ln λ (21)

at λ→ +∞ and in the neighborhood of the point t = t0 solution of system (3) has form

ui(t) = λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T),

u3−i(t) = − λ
4 (A(k, x, 2T + t1, t1)− B(k, x, 2T + t1, t1) + o(1))e−(1+2γ)(t−t1−2T).

(22)

From Formulas (18) and (21), we get that t0 − tleave > T. In addition, it follows from
Formulas (19) and (22) that if |uj(t0)| = p, then there exists δ > 0 such that |uj(t)| < p for all
t ∈ (t0, t0 + δ). Thus, there exists t2 (it is equal to t0 from the Case 2), such that

t2 − t1 =

{
(1 + o(1)) ln λ, γ > 0,

((1 + 2γ)−1 + o(1)) ln λ, − 1
2 < γ < 0,

(23)

|u1(s + t2)| > p, |u2(s + t2)| > p for all s ∈ [−T, 0), (24)

and
uī(t2) = k̄p, u3−ī(t2) = x̄p (25)

at λ→ +∞.
It follows from Lemmas 1 and 2, Corollaries 1 and 2 and from the reasoning given above that the

next statement is true.

Corollary 3. On the time segment t ∈ [t1 + 2T, t2], a solution of system (3) has form (12).

It follows from Formulas (24) and (25) that we obtain an operator of translation along the
trajectories that map our set of initial conditions IC(i, k, x) to a set IC(ī, k̄, x̄). Thus, at the point
t2, we return to the initial situation with replacement k, x, i, and t1 by k̄, x̄, ī, and t2. If we do the
same steps as in this section and in all the next iterations, Assumptions 1 and 2 and non-degeneracy
condition (17) in the case γ > 0 (non-degeneracy condition (20) in the case − 1

2 < γ < 0, respectively)
hold (with new values k = kn, x = xn, i = in and replacing t1 with tn (n = 2, 3, . . .)), then, from an
operator of translation along the trajectories, we obtain a map on in, kn, and xn. This map determines
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dynamics of the system (3) because on the segments t ∈ [tn, tn+1] solution satisfies Formulas (9), (10)
amd (12) with i = in, k = kn, x = xn, t1 = tn.

In the next two sections, we construct an exact form of maps on i = in, k = kn, and x = xn in the
case γ > 0 (see Section 3) and in the case − 1

2 < γ < 0 (see Section 4) and using dynamical properties
of these maps clarify asymptotics of solution on the intervals t ∈ [tn, tn+1] (n = 2, 3, . . .).

3. Dynamics in the Case of the Positive Coupling

In this section, we construct a map on kn, xn, and in and make conclusions on dynamics of
system (3) in the case of positive coupling (γ > 0).

Define C(n) and D(n) as

C(n) = A(kn, xn, 2T + tn, tn) + B(kn, xn, 2T + tn, tn),
D(n) = A(kn, xn, 2T + tn, tn)− B(kn, xn, 2T + tn, tn),

where n ∈ N. Suppose that
C(n) 6= 0, (26)

((26) is condition (17) with k = kn, x = xn, t1 = tn) and Assumptions 1 and 2 hold for values kn, xn

and tn for all n ∈ N. Then, acting like in Section 2, we get that in the case of positive coupling values
ui(tn+1) and u3−i(tn+1) have form

ui(tn+1) =
λ
4 (C(n) + o(1))e−(tn+1−tn−2T),

u3−i(tn+1) =
λ
4 (C(n) + o(1))e−(tn+1−tn−2T).

Thus, we obtain that, in the case γ > 0, values tn (n = 1, 2, . . .) satisfy

tn+1 − tn = (1 + o(1)) ln λ (27)

at λ→ +∞.
From (12) and (27), we get that the mapping on kn, xn, and in has form

kn+1 = sign(C(n)),

in+1 =

{
in, sign(C(n)D(n)) = −1,

3− in, sign(C(n)D(n)) = 1,
xn+1 = kn+1 + O(λ−2γ)

(28)

at λ→ +∞.
It follows from (28) that we have kn − xn = o(1) for all n = 2, 3, . . . under the condition that

Assumptions 1 and 2 and inequality (26) are fulfilled. Thus, starting from the second iteration
Assumption 1 should be satisfied for parameters k = kn, x = kn + o(1), and t1 = tn. Let’s formulate
this assumption for these values of parameters k, x, and t1. Functions A(kn, kn + o(1), t, tn) and
B(kn, kn + o(1), t, tn) have form

A(kn, kn + o(1), t, tn) = B(kn, kn + o(1), t, tn) + o(1) = 2
t∫

T+tn

es−tF
(
kn petn+T−s) ds + o(1).

In Assumption 1 value t ∈ [tn + T, tn + 2T], so, for each n value, t̃ = t− tn is in the segment
[T, 2T]. Since

t∫
T+tn

es−tF
(

kn petn+T−s
)

ds =
t̃∫

T

es−t̃F
(

kn peT−s
)

ds,
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then Assumption 1 for any n = 2, 3, . . . is the same (only kn may change, but it takes two values only).
Thus, if the following assumption holds, then Assumption 1 holds for all n = 2, 3, . . .

Assumption 3. Number of points t∗ ∈ [T, 2T] such that h(k, t∗) = 0 is finite. If h(k, t∗) = 0, then there

exists j ∈ N such that
∂jh(k, t̃)

∂t̃j

∣∣∣
t̃=t∗

is non-zero. Here, k = 1 or −1 and

h(k, t̃) =
t̃∫

T

es−t̃F
(

kpeT−s
)

ds.

Under Assumption 3, the asymptotics of the solution has form

uin(t) = kn pe−(t−tn) + o(1),
u3−in(t) = kn pe−(t−tn) + o(1)

(29)

on the time segments t ∈ [tn, tn + T], where n = 2, 3, . . . ((29) is Formula (9) with i = in, k = kn,
x = xn = kn + o(1), and t1 = tn). On the segments t ∈ [tn + T, tn + 2T], the main terms of asymptotics
of solution is given by the formula

uin(t) = λ
(
h(kn, t− tn) + o(1)

)
,

u3−in(t) = λ
(
h(kn, t− tn) + o(1)

) (30)

((30) is Formula (10) with i = in, k = kn, x = xn = kn + o(1), and t1 = tn, where functions A and B are
rewritten in terms of function h).

We assume that the following non-degeneracy condition holds:

h(1, 2T)h(−1, 2T) 6= 0 (31)

(the fulfillment of this inequality guarantees that the Assumption 2 and (26) are satisfied for all
n = 2, 3, . . .).

Then, on the segments, a t ∈ [tn + 2T, tn+1] solution satisfies equalities

uin(t) = λ
(

h(kn, 2T) + o(1)
)

e−(t−tn−2T),

u3−in(t) = λ
(

h(kn, 2T) + o(1)
)

e−(t−tn−2T).
(32)

at λ→ +∞ ((32) is Formula (12) with i = in, k = kn, x = xn = kn + o(1), and t1 = tn, where functions
A and B are rewritten in terms of function h).

Thus, we have the following theorem:

Theorem 1. Suppose γ > 0 and for values of k1 and x1 Assumptions 1, 2, and inequality (17) hold. Suppose
Assumption 3 and inequality (31) hold. Then, for any sufficiently large λ > 0, there exists t2 = t2(k1, x1) > 0
such that for all t > t2 solution of system (3) satisfies Formulas (29), (30), and (32).

In Figure 1, an example of a solution of system (3) in the case of γ > 0 is shown.
Since F is smooth and xn+1 − kn+1 = O(λ−2γ) at λ→ +∞, then, in the case γ > 1

2 , we have the
following statement.
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Figure 1. Example of solution. Values of parameters: T = 1, γ = 0.1, p = 1, λ = 10,000.
Black line—u1(t), orange dashed line—u2(t).

Corollary 4. Suppose γ > 1
2 and for values k1 and x1 Assumptions 1 and 2 hold and inequality (17) is true.

Suppose Assumption 3 and inequality (31) are true. Then, for any sufficiently large λ > 0, there exists
t2(k1, x1) > 0 such that for all t > t2 inequality |u1(t)− u2(t)| = o(1) is true.

4. Dynamics in the Case of Negative Coupling

In this section, we assume that − 1
2 < γ < 0. We construct map on kn, xn, and in for these values

of γ and make conclusions about dynamics of system (3).
Suppose inequality

D(n) 6= 0 (33)

and Assumptions 1 and 2 for values kn, xn, and tn hold for all n ∈ N. Then, like in Section 2, we obtain
that, in the case − 1

2 < γ < 0, values ui(tn+1) and u3−i(tn+1) have the form

ui(tn+1) =
λ
4 (D(n) + o(1))e−(1+2γ)(tn+1−tn−2T),

u3−i(tn+1) =
λ
4 (−D(n) + o(1))e−(1+2γ)(tn+1−tn−2T).

Thus, we obtain that, in the case of negative coupling,

tn+1 − tn =

(
1

1 + 2γ
+ o(1)

)
ln λ (34)

at λ→ +∞. It follows from (12) and (34) that the mapping on kn, xn, and in has form

kn+1 =

{
sign(D(n)), sign(C(n)D(n)) = −1,

− sign(D(n)), sign(C(n)D(n)) = 1,

in+1 =

{
in, sign(C(n)D(n)) = −1,

3− in, sign(C(n)D(n)) = 1,

xn+1 = −kn+1 + O
(

λ
2γ

1+2γ

)
,

(35)

at λ→ +∞.
Thus, under Assumptions 1, 2 and (33) on the n-th (where n ≥ 2) iteration of mapping, we have

kn + xn = o(1) at λ→ +∞. Thus, starting from the second iteration, Assumption 1 should be satisfied
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for k = kn, x = −kn + o(1), and t1 = tn. Let’s formulate this assumption for these values of parameters.
Functions A(kn,−kn + o(1), t, tn) and B(kn,−kn + o(1), t, tn) have the form

A(kn,−kn + o(1), t, tn) =
t∫

T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds + o(1),

B(kn,−kn + o(1), t, tn) =
t∫

T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds + o(1).

Value t in Assumption 1 on the n-th iteration of steps described in Section 2 is in the segment
[tn + T, tn + 2T]; therefore, for each step value, t̃ = t− tn is in the segment [T, 2T]. Note that

t∫
T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds

=
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(

kn pe(1+2γ)(T−s)
)

ds +
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(
−kn pe(1+2γ)(T−s)

)
ds

and

t∫
T+tn

(
es−t − e(1+2γ)(s−t)

)
F
(

kn pe(1+2γ)(tn+T−s)
)

ds

+
t∫

T+tn

(
es−t + e(1+2γ)(s−t)

)
F
(
−kn pe(1+2γ)(tn+T−s)

)
ds

=
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(

kn pe(1+2γ)(T−s)
)

ds +
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(
−kn pe(1+2γ)(T−s)

)
ds.

Thus, for each n = 2, 3, . . ., Assumption 1 is the same (only kn may change). Thus, if the following
assumption holds, then Assumption 1 holds for all n = 2, 3, . . ..

Assumption 4. Number of points t∗ ∈ [T, 2T] such that g1(k, t∗) = 0 (g2(k, t∗) = 0) is finite. If g1(k, t∗) =

0 (g2(k, t∗) = 0), then there exists j ∈ N such that
∂jg1(k, t̃)

∂t̃j

∣∣∣
t̃=t∗

(
∂jg2(k, t̃)

∂t̃j

∣∣∣
t̃=t∗

, respectively) is non-zero.

Here, k = 1 or k = −1 and

g1(k, t̃) =
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(

kpe(1+2γ)(T−s)
)

ds

+
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(
−kpe(1+2γ)(T−s)

)
ds,

g2(k, t̃) =
t̃∫

T

(
es−t̃ − e(1+2γ)(s−t̃)

)
F
(

kpe(1+2γ)(T−s)
)

ds

+
t̃∫

T

(
es−t̃ + e(1+2γ)(s−t̃)

)
F
(
−kpe(1+2γ)(T−s)

)
ds.
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Thus, under Assumption 4, the asymptotics of the solution has form

uin(t) = kn pe−(1+2γ)(t−tn) + o(1),
u3−in(t) = −kn pe−(1+2γ)(t−tn) + o(1)

(36)

on the segments t ∈ [tn, tn + T] ((36) is Formula (9) with i = in, k = kn, x = xn = −kn + o(1),
and t1 = tn). On the segments, the t ∈ [tn + T, tn + 2T] solution satisfies equalities

uin(t) =
λ
2

(
g1(kn, t− tn) + o(1)

)
,

u3−in(t) =
λ
2

(
g2(kn, t− tn) + o(1)

) (37)

((37) is Formula (10) with i = in, k = kn, x = xn = −kn + o(1), and t1 = tn, where functions A and B
are rewritten in terms of functions g1 and g2).

Suppose that the following non-degeneracy condition holds:

g1(1, 2T)g1(−1, 2T)g2(1, 2T)g2(−1, 2T) 6= 0,
g1(1, 2T) 6= g2(1, 2T),

g1(−1, 2T) 6= g2(−1, 2T),
(38)

(the fulfillment of these inequalities leads to fulfillment of Assumption 2 and inequality (33) for all
n = 2, 3, . . .). Thus, under condition (38) on the segments t ∈ [tn + 2T, tn+1], we have the following
asymptotics of solution:

uin(t) =
λ
2

(
2T∫
T

es
(

F
(

kn pe(1+2γ)(T−s)
)
+ F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
etn−t

+ λ
2

(
2T∫
T

e(1+2γ)s
(

F
(

kn pe(1+2γ)(T−s)
)
− F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
e(1+2γ)(tn−t),

u3−in(t) =
λ
2

(
2T∫
T

es
(

F
(

kn pe(1+2γ)(T−s)
)
+ F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
etn−t

− λ
2

(
2T∫
T

e(1+2γ)s
(

F
(

kn pe(1+2γ)(T−s)
)
− F

(
−kn pe(1+2γ)(T−s)

))
ds + o(1)

)
e(1+2γ)(tn−t)

(39)

((39) is Formula (12) with i = in, k = kn, x = xn = −kn + o(1), and t1 = tn, where functions A and B
are rewritten in terms of function F).

We obtain the following result on dynamics of system (3).

Theorem 2. Suppose − 1
2 < γ < 0 and for values of k1 and x1 Assumptions 1, 2, and inequality (20) hold.

Suppose Assumption 4 and inequalities (38) hold. Then, for any sufficiently large λ > 0, there exists
t2 = t2(k1, x1) > 0 such that for all t > t2 solution of system (3) satisfies Formulas (36), (37), and (39).

In Figure 2, an example of the solution in the case of − 1
2 < γ < 0 is shown.
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Figure 2. Example of solution. Values of parameters: T = 0.9, γ = −0.2, p = 1, λ = 10,000.
Black line—u1(t), orange dashed line—u2(t).

5. Example

In this section, we show how method described in Sections 2–4 works in the case when function f
satisfies conditions (4) and inequality

u f (u) > 0 if 0 < |u| < p (40)

and initial conditions satisfy inequalities

kx > 0 if γ > 0,
kx < 0 if − 1

2 < γ < 0
(41)

(here k and x are defined as in Section 2).
As in Section 2, we construct asymptotics of all solutions of system (3) with initial conditions

outside of the strip |uj| < p (j = 1, 2) and satisfying inequality (41). Let t1 and i be defined as in
Section 2. Then, the following lemmas hold.

Lemma 3. If initial conditions fulfill (41), then functions ui(t) and u3−i(t) do not change their signs on the
segment t ∈ [t1, t1 + T] and for all t ∈ [t1, t1 + T] inequalities

ui(t)u3−i(t) > 0 if γ > 0,
ui(t)u3−i(t) < 0 if − 1

2 < γ < 0
(42)

hold.

Proof. Consider the case k = 1. If γ > 0, then x ≥ 1 > 0. For these values of k, x, and γ system
of inequalities, {

|k + x| > |x− k|,
e−(t−t1) ≥ e−(1+2γ)(t−t1)

(43)

holds. Since ui(t) and u3−i(t) have form (9), k + x > 0 and (43) holds, then we get that

ui(t) > 0, u3−i(t) > 0 (44)
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on the interval t ∈ [t1, t1 + T]. If − 1
2 < γ < 0, then x ≤ −1 < 0. This is why we obtain that{
|k + x| < |x− k|,
e−(t−t1) ≤ e−(1+2γ)(t−t1).

(45)

It follows from (9), k− x > 0, and (45) that

ui(t) > 0, u3−i(t) < 0 (46)

on the interval t ∈ [t1, t1 + T].
Consider the case k = −1. If γ > 0, then x ≤ −1 < 0. Then, from (9), k + x < 0, and (43),

we obtain that
ui(t) < 0, u3−i(t) < 0 (47)

on the interval t ∈ [t1, t1 + T]. In addition, in the case − 1
2 < γ < 0, we get that x ≥ 1 > 0 and from (9),

k− x > 0, and (45), we get
ui(t) < 0, u3−i(t) > 0 (48)

on the interval t ∈ [t1, t1 + T].
It follows from (44), (46)–(48) that inequalities (42) hold.

Lemma 4. If function ui(t) comes into the strip |ui(t)| < p at the point t = t1, then (1) x satisfies inequality

|x| ≤ |1 + 1/γ|; (49)

(2) function ui is in the strip |ui(t)| < p for all t ∈ (t1, t1 + T].

Proof. It follows from (9) that

u′i(t) = −
(k + x)p

2
e−(t−t1) − (1 + 2γ)

(k− x)p
2

e−(1+2γ)(t−t1), (50)

therefore
u′i(t1) = −

( k + x
2

p + (1 + 2γ)
k− x

2
p
)

.

Consider the case k = 1. For k = 1 value, ui(t1) is equal to p. If this function comes into the strip
|ui(t)| < p at the point t = t1, then derivative u′i(t1) is non-positive. For k = 1 inequality, u′i(t1) ≤ 0 is
equivalent to 1 + γ ≥ γx. It follows from condition (41) that γx > 0 in the case k = 1. Thus, in the
case k = 1, inequality (49) holds.

Consider the case k = −1. For k = −1 value ui(t1) = −p and if this function comes into the strip
|ui(t)| < p at the point t = t1, then derivative u′i(t1) is non-negative. For k = −1 condition, u′i(t1) ≥ 0
is equivalent to inequality −1− γ ≤ γx. From (41), we get that γx < 0, so inequality (49) is true in
this case, too.

It follows from (41) and (49) that in the case γ > 0 system of inequalities{
|k + x| ≥ |(1 + 2γ)(x− k)|,
e−(t−t1) > e−(1+2γ)(t−t1)

(51)

holds and in the case − 1
2 < γ < 0 system of inequalities{

|k + x| ≤ |(1 + 2γ)(x− k)|,
e−(t−t1) < e−(1+2γ)(t−t1)

(52)

is true on the interval t ∈ (t1, t1 + T]
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Using (50)–(52), and (41), we obtain that

u′i(t) < 0 if k = 1,
u′i(t) > 0 if k = −1

(53)

on the interval t ∈ (t1, t1 + T]. Combining (44), (46)–(48) with (53), we get that function ui(t) is in the
strip |ui(t)| < p for all t ∈ (t1, t1 + T].

Lemma 5. If function f satisfies (4) and (40), initial conditions satisfy (41) and

|x| < |1 + 1/γ|, (54)

then Assumptions 1–4 hold.

Proof. Consider some function f (u), satisfying conditions (4) and (40).
Let us prove that for this function Assumption 1 holds. From Lemmas 3 and 4, we obtain that

ui(t) is in the strip |ui(t)| < p and it does not change sign on the interval t ∈ (t1, t1 + T]. This is why
from condition (40) we get that the first summands in A(k, x, t, t1) and B(k, x, t, t1) are non-zero. Thus,
from formulas (44), (46)–(48), and assumption (40), we obtain that the following inequalities hold

A(k, x, t, t1) > 0, B(k, x, t, t1) > 0 if k = 1, γ > 0
A(k, x, t, t1) > 0, B(k, x, t, t1) < 0 if k = 1, − 1

2 < γ < 0
A(k, x, t, t1) < 0, B(k, x, t, t1) < 0 if k = −1, γ > 0
A(k, x, t, t1) < 0, B(k, x, t, t1) > 0 if k = −1, − 1

2 < γ < 0

(55)

on the interval t ∈ (t1 + T, t1 + 2T]. Thus, we have proved that under condition (40) functions
A(k, x, t, t1) and B(k, x, t, t1) are non-zero on the interval t ∈ (t1 + T, t1 + 2T]. If t∗ = t1 + T,

then A(k, x, t∗, t1) = B(k, x, t∗, t1) = 0. Derivatives
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

= 0 for j = 1, 2 and

derivatives
∂jB(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

= 0 for j = 1, 2, 3. Expressions

∂3 A(k, x, t, t1)

∂t3

∣∣∣
t=t1+T

= 2 f ′′(kp)
( k + x

2
p + (1 + 2γ)

k− x
2

p
)2

and
∂4B(k, x, t, t1)

∂t4

∣∣∣
t=t1+T

= 2γ f ′′(kp)
( k + x

2
p + (1 + 2γ)

k− x
2

p
)2

,

are non-zero: under condition (54) last factor in these derivatives is non-zero and f ′′(kp) 6= 0 because

of (4) (if x = ±(1+ 1/γ), then for all j ∈ N expressions
∂j A(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

and
∂jB(k, x, t, t1)

∂tj

∣∣∣
t=t1+T

equal zero). Consequently, Assumption 1 holds under condition (54). This assumption holds for
x = ±k + o(1) at λ→ +∞, so Assumptions 3 and 4 hold.

Since the system of inequalities (55) is true for t = t1 + 2T, then Assumption 2 holds.

Note that if function ui(t) comes to the strip |ui(t)| < p, then x satisfies inequality (49), and for all x
such that (54) hold, Assumption 1 is true. Thus, only for two values of parameter x : x1,2 = ±(1+ 1/γ)

is Assumption 1 false.

Lemma 6. If function f satisfies (4) and (40), then inequalities (26) and (31) are true in the case γ > 0 and
inequalities (33) and (38) hold in the case − 1

2 < γ < 0.

Proof. It follows from Lemma 5 that A(k, x, t1 + 2T, t1) and B(k, x, t1 + 2T, t1) have the same sign
in the case γ > 0 and the opposite signs in the case − 1

2 < γ < 0. Therefore, in the case γ > 0
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(− 1
2 < γ < 0) inequality (26) (inequality (33) respectively) holds for all n = 1, 2, 3, . . .. Thus, inequalities

(31) and (38) are fulfilled because they are equivalent to Assumption 2 and conditions (26) and (33) for
n = 2, 3, . . ..

Thus, we have proved that all assumptions in Theorems 1 and 2 are true if function f satisfies (4)
and (40) and for x1 conditions (41) and (54) hold. Therefore, for class of functions f considered in this
section, the following theorems are true.

Theorem 3. Suppose γ > 0 and inequalities (41) and x1 6= ±(1 + 1/γ) hold. Then, for any sufficiently large
λ > 0 there exists t2 = t2(k1, x1) > 0 such that for all t > t2 solution of system (3) satisfies Formulas (29),
(30) and (32).

Theorem 4. Suppose− 1
2 < γ < 0 and inequalities (41) and x1 6= ±(1+ 1/γ) hold. Then, for any sufficiently

large λ > 0 there exists t2 = t2(k1, x1) > 0 such that for all t > t2 solution of system (3) satisfies Formulas (36),
(37) and (39).

Remark 1. If x1 = ±(1 + 1/γ), then Assumption 1 is not true, so Theorems 3 and 4 are not proven. However,
probably, they are true because for all initial conditions in the neighborhood of these values they are true.

Consider the map (28). If we take set {1} × [1, 1 + 1/γ− δ] (where δ is a small positive constant
(0 < δ < 1/γ)) of pairs (k, x), then it follows from Lemmas 3–6 that the image of this set under the
map (28) is set {1} × [1, 1 + a], where a = o(1) at λ → +∞. Therefore, there exists at least one fixed
point of the operator of translation along the trajectories and positive relaxation cycle of system (3)
corresponds to this fixed point (if k1 and x1 fulfill (41) and function f satisfies (40), then in the case of
positive coupling solution of system (3) does not change its sign). Similarly, there exists at least one
negative relaxation cycle of system (3) in the case of positive coupling.

In Figure 3, there are examples of two coexisting relaxation cycles of system (3).

10 20 30 40 50 t0

2000

4000

6000

8000

10 000

12 000

u1, u2

10 20 30 40 50 t

-14 000

-12 000

-10 000

-8000

-6000

-4000

-2000

0
u1, u2

Figure 3. Two coexisting relaxation cycles of the system (3). Values of parameters: T = 1, γ = 0.4,
p = 1, λ = 10,000. Black line—u1(t), orange dashed line—u2(t).

If − 1
2 < γ < 0, then it follows from (35) that xn+1 = −kn+1 + o(1) at λ → +∞. It follows from

Lemmas 3–6 that for all (kn, xn) ∈ {−1} × [1, 1 + 1/γ− δ] and (kn, xn) ∈ {1} × [−1− 1/γ + δ,−1]
Theorem 4 is true. Therefore, there exists at least one q ∈ N, such that image of the set {−1} ×
[1, 1 + 1/γ− δ] (or {1} × [−1− 1/γ + δ,−1]) under the q-th iteration of map (35) belongs to the set
{−1} × [1, 1 + 1/γ− δ] (or {1} × [−1− 1/γ + δ,−1] respectively). Thus, in the case of − 1

2 < γ < 0,
there exists at least one relaxation cycle.

Thus, the following statement holds.

Corollary 5. Suppose conditions (4) and (40) are true. Then, in the case γ > 0, there exists at least two
relaxation cycles of system (3) and in the case of − 1

2 < γ < 0 there exists at least one relaxation cycle of
system (3).
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6. Dependence of Dynamics of System (3) on the Sign of Coupling

In this section, we show how asymptotics and difference tn+1 − tn (analog of period) of solutions
of system (3) depends on the value γ in the case γ > 0 and in the case − 1

2 < γ < 0 (in this section
below, we discuss only such solutions of system (3) for those assumptions of Theorem 1 or 2 fulfill).

First, consider the case γ > 0. From Formulas (29), (30), and (32), we obtain that components
u1(t) and u2(t) have the same leading terms of asymptotics on the interval t ∈ [t2,+∞) and that
these leading terms of asymptotics do not depend on γ. Thus, from Formulas (9), (10), (12), (29), (30)
and (32), we obtain that the leading term of asymptotics of solution of system (3) depends on γ only
for t ∈ [0, t2] (see Figure 4). From Corollary 4, we get that in the case γ > 1

2 difference u1(t)− u2(t)
has order o(1) at λ → +∞ for all t ≥ t2, so we may say that in the case γ > 1

2 oscillators u1(t) and
u2(t) “synchronize” (for smaller values of γ oscillators u1(t) and u2(t) may “synchronize”, too, but in
the case γ > 1

2 they must “synchronize”).
The leading term of asymptotics of the difference tn+1 − tn does not depend on γ, too.
Figure 4 illustrates dependence of solutions of system (3) on γ in the case γ > 0. There are

solutions of system (3) with identical function F, parameters λ and T, and initial conditions for
different parameters γ in Figure 4.

(a) (b)

(c) (d)

Figure 4. Solutions of system (3) for different values of parameter γ. Values of parameters: T = 2,
p = 1.5, λ = 1000, k = 1, x = 3, (a) γ = 0.2; (b) γ = 0.6; (c) γ = 1; (d) γ = 1.5. Black line—u1(t),
orange dashed line—u2(t).

Now, consider the case − 1
2 < γ < 0.

From (9), (10), (12), (36), (37), and (39), we get that asymptotics of solutions of system (3) depends
crucially on the value of parameter γ for all t ≥ 0 in the case − 1

2 < γ < 0 and that oscillators u1(t)
and u2(t) are not close to each other (the leading terms of their asymptotics are different for all t ≥ t2).

It follows from (34) that difference tn+1 − tn increases with the decreasing of parameter γ

(see Figure 5).
Thus, asymptotics and shape of solution and difference tn+1 − tn depend crucially on the value of

γ in the case − 1
2 < γ < 0 (see Figure 5).
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Figure 5 illustrates the dependence of solutions of system (3) on γ in the case − 1
2 < γ < 0.

Solutions of system (3) with identical function F, parameters λ and T, and initial conditions for
different parameters γ are presented in Figure 5.

(a) (b)

(c) (d)
Figure 5. Solutions of system (3) for different values of parameter γ. Values of parameters: T = 2,
p = 1.5, λ = 1000, k = 1, x = −4, (a) γ = −0.1; (b) γ = −0.25; (c) γ = −0.4; (d) γ = −0.45.
Black line—u1(t), orange dashed line—u2(t).

7. Conclusions

In this paper, we have studied the nonlocal dynamics of a system of two coupled generators with
delayed feedback and dependence of solutions on the value of coupling.

For a wide set of initial conditions from the phase space of system (3) using method of steps and
special constructed finite dimensional map, we get asymptotics of relaxation solutions. We obtain
relaxation cycles of system (3).

We prove that the dynamics of system (3) are qualitatively different in case γ > 0 and case
− 1

2 < γ < 0: in the case γ > 0, there exists a moment of time t2 after that both components of
solution have the same leading term of asymptotics and this leading term does not depend on γ if
t > t2, generators u1(t) and u2(t) “synchronize” if γ > 1

2 ; in the case of − 1
2 < γ < 0, the leading

term of asymptotics and shape of solution depend on γ, oscillators u1(t) and u2(t) are not close to
each other; the leading term of asymptotics of the value tn+1 − tn (this value serves us an analog of
period) increase with decreasing of the value γ in the case − 1

2 < γ < 0 and remains unchanged with
changing γ in the case γ > 0.

The method of research used in this paper is applicable for systems of higher dimensions (case of n
identically diffusion coupled oscillators, where n > 2) and for systems of n (n ≥ 2) coupled oscillators
with other types of coupling.
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