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Abstract: Let R = F4 + uF4, with u2 = u and S = F4 + uF4 + vF4, with u2 = u, v2 = v, uv =

vu = 0. In this paper, we study F4RS-cyclic codes of block length (α, β, γ) and construct cyclic DNA

codes from them. F4RS-cyclic codes can be viewed as S[x]-submodules of Fq [x]
〈xα−1〉 ×

R[x]
〈xβ−1〉 ×

S[x]
〈xγ−1〉 .

We discuss their generator polynomials as well as the structure of separable codes. Using the
structure of separable codes, we study cyclic DNA codes. By using Gray maps ψ1 from R to F2

4
and ψ2 from S to F3

4, we give a one-to-one correspondence between DNA codons of the alphabets
{A, T, G, C}2, {A, T, G, C}3 and the elements of R, S, respectively. Then we discuss necessary and
sufficient conditions of cyclic codes over F4, R, S and F4RS to be reversible and reverse-complement.
As applications, we provide examples of new cyclic DNA codes constructed by our results.
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1. Introduction

Linear codes were introduced in the late 1940s by Shannon and have a central role in Information
Theory for recovering the corrupted messages that are sent through a noisy communication channel.
Initially, linear codes were studied over finite fields, but in the early 1970s, these codes were discussed
over finite rings. A great deal of attention was given to linear codes over finite rings from the 1990s
because of their new role in algebraic coding theory and their rich applications. A ground-breaking
work of Hammons et al. [1] showed that certain good binary nonlinear codes such as Preparata and
Kerdock codes can be constructed from linear codes over Z4 via the Gray map. This motivated the
study of linear codes over finite rings. Among algebraic linear codes, cyclic codes played an important
role in coding theory, because of their easiness in practical implementations. As cyclic codes have rich
algebraic structure, they can be efficiently encoded and decoded using shift registers, which explains
their preferred role in engineering. These codes also have excellent error-correcting properties.

In 1997, RifÃ et al. [2] first introduced codes over mixed alphabets. After that, Brouwer et al. [3]
addressed mixed binary/ternary codes and obtained the bounds for the maximum possible size
of this family of codes. Since then, several scholars have focused extensively on mixed alphabets.
In 2010, Borges et al. [4] proceeded to explore codes over mixed alphabets and discussed Z2Z4-additive
codes. To get the structure of such codes, the coordinates were separated into two parts, the first part
corresponds to the coordinates over Z2 and the second part corresponds to the coordinates over Z4.
After that, many other generalizations of additive codes over mixed alphabets were discussed by
several researchers [5,6]. In 2014, Abualrub et al. [7] studied the algebraic structure of Z2Z4-additive
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cyclic codes and determined their generator polynomials and minimal generating sets. They also
studied the relationship between Z2Z4-additive cyclic codes and their duals. By following the approach
of Abualrub et al. [7], many researchers have discussed the structure of cyclic and constacyclic codes
over mixed alphabets and determined their generators as well as minimal generating sets [8–11].

Deoxyribonucleic acid (DNA) is a nucleic acid containing genetic information for the biological
evolution of life. It contains information about how biological cells run and repair themselves.
DNA strands can be viewed as sequences of four nucleotides: adenine (A), guanine (G), thymine
(T), and cytosine (C). Two DNA strands are linked together with a rule named as Watson–Crick
complement (WCC). According to WCC rule, every adenine (A) has a link with a thymine (T),
and every guanine (G) has a link with cytosine (C), and vice versa. By WCC rule, we write
A = T, T = A, C = G and G = C. For example, if we have a DNA strand x = (ATAGGC)
then its complement x = (TATCCG).

In organisms called eukaryotes, DNA is located inside a special region of the cell known as the
nucleus. As the cell is very small and organisms have many DNA molecules per cell, each DNA
molecule must be tightly packaged. This packaged form of the DNA is called a chromosome. DNA code
is made of chemical building blocks known as nucleotides. These building blocks are made of three
parts: a sugar group, a phosphate group and one of four types of nitrogen bases. To form a DNA
strand, nucleotides are linked into chains, with the phosphate and sugar groups alternating.

DNA code contains the instructions required for the growth, survival and reproduction of an
organism. In order to perform these functions, DNA codes must be translated into messages that can
be used to generate proteins, which are complex molecules that do much of the work in our bodies.
Each DNA code that contains instructions for making a protein is called a gene. The size of a gene
might vary significantly, ranging from about one thousand bases to one million bases in humans.
Genes make up just about one percent of the DNA code. DNA codes outside of this one percent are
involved in regulating when, how and how much protein is produced.

There is a two-step process to produce proteins from DNA code instructions. First, enzymes read
the information in a DNA molecule and transcribe it into an intermediary molecule called messenger
ribonucleic acid (mRNA). Second, the information presented in the mRNA molecule is converted into
the language of amino acids, which are the building blocks of proteins. This language informs the
cell’s protein-making machinery of the exact order in which the amino acids are bound together to
produce a specific protein. This is a big challenge since there are twenty types of amino acids that can
be arranged in several different orders to form a wide variety of proteins.

DNA code is a genetic material and carries genetic information from cell to cell and generation to
generation. DNA code is the director, which controls, regulates and determines the nature of proteins
to be synthesized in a cell at a given time. The process of translation requires the transfer of genetic
information from a polymer of nucleotides to a polymer of amino acids.

The changes in nucleic acid are responsible for changes in amino acids in the protein. This led to
the proposition of a genetic code that could direct the sequence of amino acids during the synthesis of
proteins. The group of nucleotides that specify one amino acid is known as a codon. The relationship
between the sequence of amino acids in a polypeptide chain is called the genetic code. DNA code
contains four kinds of nucleotides (A, T, G, C) and proteins are synthesized from different types of
amino acids. In a singlet code, each base specifies one amino acid. Only four of the twenty types
of amino acids could code. In doublet code, two bases specify one amino acid. A triplet code was
suggested by Gamow in 1954. According to triplet code, three letters or bases specify one amino
acid. Thus, 64 triplets of bases determine twenty amino acids. In triplet code, 64 codons are possible.
Thus, each amino acid is coded by more than one codon.

Adleman [12] initiated DNA computing in 1994. In his work, Adleman solved an instance of
an NP-complete problem by using DNA molecules. That discussion was dependent on the WCC
property of DNA strands. Since then, numerous studies have built on their research and expanded
DNA computing to solve other mathematical problems. For instance, Benenson et al. [13] solved the
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boolean satisfiability problem, Kari et al. [14] discussed the bounded post correspondence problem,
an NP-complete problem, etc. Marathe et al. [15] announced four constraints, i.e., the Hamming
constraint, the reverse constraint, the reverse-complement constraint, and the fixed GC-content
constraint to study the DNA codes. The fixed GC-content assures that all codewords have identical
thermodynamic characteristics and the rest three constraints were used to avoid the inadmissible
hybridization between any two different strands.

The increasing complexity of computation and communication technology in the modern age
leads us to the necessity of a new paradigm. As a result, tremendous attention is being paid to new
methods such as DNA coding theory. DNA molecules’ storage ability, processing of information and
transmission properties stimulate both the notion of DNA coding theory and DNA cryptography.
The structure of DNA strands has several applications in genetics and bioengineering. For example,
biomolecular computation is used to design the DNA chips for mutational analysis. DNA strands
are structured to hybridize each strand with its WCC sequence in a unique way and not to any
other sequence. DNA strands concentrate on constructing giant sets of DNA codewords with the
prescribed minimum Hamming distance. The structure of DNA is used as a model to construct
good error-correcting codes, conversely error-correcting codes that have similar properties with DNA
structure are also used to explain DNA itself.

Based on promising theoretical efficiency and preliminary implementations, DNA computing will
have a lot of interest in the near future. Understanding and implementing this feature in the algebraic
codes applied to communication is one of the researchers’ objectives. DNA codes will be of great value
since DNA computing is faster and can store more memory than silicon-based computing systems.

From the biological structure characteristic of DNA, we know that cyclic codes and reversible
codes are analogous to DNA codes. As the concept of cyclic codes and reversible codes evolved,
researchers showed their interest in the study of cyclic DNA codes.

To study DNA computing using the algebraic coding theory techniques, researchers studied
error-correcting codes over finite fields and finite rings of cardinality 4n by mapping the DNA
nucleotides to the elements of finite fields and finite rings. After that, research on cyclic DNA codes
and their generalizations evolved rapidly [16]. Abualrub et al. [17] discussed DNA codes over a
field of four elements. In that article, authors have developed a theory for constructing linear and
cyclic codes of the particular length over GF(4) to study DNA computing. Siap et al. [18] discussed
cyclic DNA codes over the finite ring F2[u]/〈u2 − 1〉. Guenda et al. [19] constructed DNA codes
over the finite ring F2 + uF2(u2 = 0) and constructed an infinite family of BCH DNA codes. Further,
Liang et al. [20] also studied cyclic DNA codes over the same ring and discussed some necessary and
sufficient conditions for reversible and reversible-complement codes. Yildiz et al. [21] considered
cyclic DNA codes of odd length over the ring F2[u]/〈u4− 1〉. In this article, 16 elements of this ring are
matched with the set of paired DNA nucleotides and algebraic properties of cyclic DNA codes have
been studied. After that, Bayram et al. [22] discussed DNA codes and their applications over the ring
F4 + vF4(v2 = v). Zhu et al. [23] considered cyclic codes of an arbitrary length over a finite non-chain
ring F2[u, v]/〈u2, v2 − v, uv− vu〉, where cyclic codes satisfying the reverse and reverse-complement
constraints were discussed. Oztas et al. [24] constructed a new family of polynomials over a finite field
GF(16), which generates reversible codes over this field. More of studies of cyclic DNA codes over
different rings can be found in [25–30].

In 2019, Diao et al. [31] discussed additive cyclic codes over mixed alphabets and their application
in constructing quantum code. Recently, Dinh et al. [32] studied cyclic codes over mixed alphabets and
the construction of LCD codes and quantum codes. However, according to our knowledge, there has
not been any study of DNA codes over mixed alphabets. So motivated by the idea of the construction
of LCD codes and quantum codes over mixed alphabets, in this paper, we study the construction of
cyclic DNA codes over single alphabets. Then, we extend this study to mixed alphabets.

This paper is organized as follows: In Section 2, some definitions are studied and the structure of
F4RS-cyclic codes is discussed. In Section 3, decomposed linear code structure over R and S is explored



Mathematics 2020, 8, 1977 4 of 24

and an extended Gray map from Fα
4 × Rβ × Sγ to Fα+2β+3γ

4 is described. In Section 4, the algebraic
structure of F4RS-cyclic codes are discussed and their generator polynomials are determined. Further,
we discuss the structure of the separable codes. In Section 5, as an application of our study,
we discuss cyclic DNA codes. Section 5 is divided into four subsections: In Section 5.1, we present
necessary and sufficient conditions for cyclic codes to be reversible and reversible-complement over F4.
In Section 5.2, we define a one-to-one correspondence between the elements of the ring R and DNA
codons {A, T, G, C}2 and then necessary and sufficient conditions for cyclic codes to be reversible and
reversible-complement over R are discussed. To illustrate our results, we present some examples and
construct cyclic DNA codes. In Section 5.3, A one-to-one correspondence is also defined between the
elements of the ring S and DNA codons {A, T, G, C}3 and discuss similar results like the previous
subsection. To support the results obtained in this subsection, we present some examples and construct
cyclic DNA codes. In Section 5.4, we extend the results discussed in Sections 5.1–5.3, and discuss
necessary and sufficient conditions for cyclic codes to be reversible and reversible-complement over
F4RS. To illustrate the results discussed in this subsection, we present some examples. We conclude
this paper in Section 6.

2. Preliminaries

Let R be a finite commutative ring. A code C of length n over R is defined as a non-empty
subset of Rn. A code C is called a linear code, if C forms an R-submodule of Rn. A linear code C

of length n over R is called a cyclic code if y = (y0, y1, . . . , yn−1) ∈ C, then its cyclic shift τ(y) :=
(yn−1, y0, . . . , yn−2) ∈ C. The elements of a code C are called codewords.

We denote Rn = R[x]
〈xn−1〉 . We define a map ψ : Rn −→ Rn such that w = (w0, w1, . . . , wn−1) 7→

w0 + w1x + · · · + wn−1xn−1. It can be easily seen that the map ψ is a R-module isomorphism.
By this identification, we can identify every codeword w = (w0, w1, . . . , wn−1) ∈ Rn with a
polynomial w(x) = w0 + w1x + · · · + wn−1xn−1 in Rn. By this polynomial identification, we see
that a linear code C of length n over R is a cyclic code if and only if its corresponding polynomial
representation forms an ideal of the ring R[x]

〈xn−1〉 .
Let y = (y0, y1, . . . , yn−1) ∈ C, then the Hamming weight wH(y) of y is defined as the number

of non-zero coordinates of y. The minimum Hamming weight of a linear code C is denoted
by wH(C), and defined as wH(C)=min{wH(y) | y ∈ C, y 6= 0}. Let y = (y0, y1, . . . , yn−1) and
y′ = (y′0, y′1, . . . , y′n−1) ∈ Rn, then the Hamming distance between y and y′ is defined as dH(y, y′) =
|{i | yi 6= y′i}| such that, dH(y, y′) = wH(y− y′). The minimum Hamming distance of a linear code C

is defined as dH(C)=min{dH(y, y′) | y 6= y′}.
We define the Euclidean inner product between y and y′ in Rn as y · y′ = y0y′0 + y1y′1 + · · ·+

yn−1y′n−1. The dual code of C is defined as C⊥ = {y ∈ Rn | y · y′ = 0, ∀ y′ ∈ C}.
Now we extend the discussion of cyclic codes over single alphabets to the mixed alphabets.
Throughout this paper, we denote by F4 the finite field of order 4 given by F4 = {0, 1, w, w2 =

1 + w}, where 1 + w + w2 = 0 and R = F4 + uF4, with u2 = u and S = F4 + uF4 + vF4, with u2 =

u, v2 = v, uv = vu = 0. Consider Sα,β,γ = F4[x]
〈xα−1〉 ×

R[x]
〈xβ−1〉 ×

S[x]
〈xγ−1〉 . We define the set

F4RS = {(m1, m2, m3) | m1 ∈ F4, m2 ∈ R, m3 ∈ S}.

The set F4RS forms a ring under the componentwise addition and multiplication. Consider an
element d = a + ub + vc ∈ S, we define ρ1 : S → F4 such that ρ1(d) = a and ρ2 : S → R such that
ρ2(d) = a + ub. We can see that both ρ1 and ρ2 are ring homomorphisms. For any d ∈ S, we define the
S-scalar multiplication on F4RS as follows.

• : S× F4RS→ F4RS
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such that
d • (m1, m2, m3) = (ρ1(d)m1, ρ2(d)m2, dm3).

This multiplication can be extend componentwise on Fα
4 × Rβ × Sγ as • : S × (Fα

4 × Rβ × Sγ) →
Fα

4 × Rβ × Sγ such that

d • c = (ρ1(d)a0, ρ1(d)a1, . . . , ρ1(d)aα−1, ρ2(d)b0, ρ2(d)b1, . . . , ρ2(d)bβ−1, dc0, dc1, . . . , dcγ−1),

for any d ∈ S and c = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1, c0, c1, . . . , cγ−1) ∈ Fα
q × Rβ× Sγ. By this S-scalar

multiplication, we can see that Fα
q × Rβ × Sγ forms an S-module.

Now we present the definition of linear codes and constacyclic codes over mixed alphabets.

Definition 1. A non-empty subset C of Fα
4 × Rβ × Sγ is called a F4RS-linear code of block length (α, β, γ) if

C is an S-submodule of Fα
4 × Rβ × Sγ.

Let c = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1, c0, c1, . . . , cγ−1) and c′ =

(a′0, a′1, . . . , a′α−1, b′0, b′1, . . . , b′β−1, c′0, c′1, . . . , c′γ−1) be any two elements of Fα
4 × Rβ × Sγ. Then the inner

product is defined as

c · c′ = u
α−1

∑
i=0

aia′i + v
β−1

∑
j=0

bjb′j +
γ−1

∑
k=0

ckc′k ∈ S.

We define the dual of a F4RS-linear code as follows.

Definition 2. If C is a F4RS-linear code of block length (α, β, γ), then its dual code C⊥ is defined as

C⊥ = {c ∈ Fα
4 × Rβ × Sγ | c · c′ = 0, ∀ c′ ∈ C}.

C is called self-dual if C⊥ = C and self-orthogonal if C ⊆ C⊥.

Definition 3. A F4RS-linear code C of block length (α, β, γ) is called a F4RS-cyclic code if for any
c = (a0, a1, . . . , aα−1, b0, b1, . . . , bβ−1, c0, c1, . . . , cγ−1) ∈ C, its cyclic shift ρ(c) := (aα−1, a0, a1, . . . ,
aα−2, bβ−1, b0, b1, . . . , bβ−2, cγ−1, c0, c1, . . . , cγ−2) ∈ C.

Now we present a relation between F4RS-cyclic codes and their duals.

Lemma 1. Let C be a F4RS-cyclic code of block length (α, β, γ). Then its dual C⊥ is also a F4RS-cyclic code.

Proof. The proof is similar to the [32] (Proposition 3).

Consider an element m′ = (r′0, r′1, . . . , r′α−1, s′0, s′1, . . . , s′β−1, t′0, t′1, . . . , t′γ−1) ∈ Fα
q × Rβ × Sγ.

This element can be identified with an element of Sα,β,γ as

m′(x) = (r′0 + r′1x + · · ·+ r′α−1xα−1, s′0 + s′1x + · · ·+ s′β−1xβ−1, t′0 + t′1x + · · ·+ t′γ−1xγ−1).

For convenience, we denote m′(x) = (r′(x), s′(x), t′(x)). This identification gives us a one-to-one
correspondence between the elements of Fα

4 × Rβ × Sγ and Sα,β,γ. The multiplication of any element
e(x) = e0 + e1x + · · · + et−1xt−1 ∈ S[x] with the element (r′(x), s′(x), t′(x)) ∈ Sα,β,γ is defined
as follows

e(x) ? (r′(x), s′(x), t′(x)) = (ρ1(e(x))r′(x), ρ2(e(x))s′(x), e(x)t′(x)),
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where ρ1(e(x)) = ρ1(e0) + ρ1(e1)x + · · · + ρ1(et−1)xt−1 and ρ2(e(x)) = ρ2(e0) + ρ2(e1)x + · · · +
ρ2(et−1)xt−1. It can be seen that Sα,β,γ forms an S[x]-module with respect to the usual addition
and multiplication ?.

For any m′(x) = (r′0 + r′1x + · · · + r′α−1xα−1, s′0 + s′1x + · · · + s′β−1xβ−1, t′0 + t′1x + · · · +
t′γ−1xγ−1) ∈ Sα,β,γ, we get x ? m′(x) = (r′α−1 + r′0x + · · · + r′α−2xα−1, s′β−1 + s′0x +

· · · + s′β−2xβ−1, t′γ−1 + t′0x + · · · + t′γ−2xγ−1). Therefore, x ? m′(x) corresponds to the element

(r′α−1, r′0, . . . , r′α−2, s′β−1, s′0, . . . , s′β−2, t′γ−1, t′0, . . . , t′γ−2) ∈ Fα
4 × Rβ × Sγ. This implies that x ? m′(x)

is a cyclic shift of the corresponding vector of m′(x). This argument takes us to the result below.

Theorem 1. A linear code C is called a F4RS-cyclic code of block length (α, β, γ) if and only if C is an
S[x]-submodule of Sα,β,γ.

Proof. The proof is similar to the [32] (Proposition 4).

3. Linear Codes over R and S

In this section, we present a idempotent decomposition of the rings R and S, then we discuss the
form of the linear codes from this decomposition. Furthermore, we define a Gray map on Fα

4 × Rβ × Sγ

and study some basic properties of this Gray map.
Let D1, D2 be any two codes such that D1 and D2 intersect trivially. We denote D1 ⊕ D2 =

{d1 + d2 | di ∈ Di, i = 1, 2}.
Any arbitrary element r = r1 + ur2 ∈ R can be written in the form r = r1 + ur2 = ξ1r̂1 + ξ2r̂2,

where r1, r̂1, r2, r̂2 ∈ F4 such that r̂1 = r1, r̂2 = r1 + r2 and

ξ1 = 1− u, ξ2 = u.

We see that ξ2
i = ξi, ξiξ j = 0 and ξ1 + ξ2 = 1, for i, j = 1, 2; i 6= j. Therefore, we get R = ξ1R⊕ ξ2R,

and we note that any element r ∈ R can be uniquely written as r = ξ1a + ξ2b, where a, b ∈ F4.
Now a Gray map on R is defined as follows.

ψ1 : R→ F2
4

given by
ψ1(r) = (a, b).

This map can be extended from Rβ to F2β
4 as

ψ1 : Rβ → F2β
4 ,

given by

(a0, a1, . . . , aβ−1) 7→(a0,1, a1,1, . . . , aβ−1,1, b0,2, b1,2, . . . , bβ−1,2),

where r = (a0, a1, . . . , aβ−1) ∈ Rβ and aj = ξ1aj,1 + ξ2bj,2 for j = 0, 1, . . . , β − 1. For any aj =

ξ1aj,1 + ξ2bj,2 ∈ R, we define the Lee weight of aj as wL(aj) = wH(φ1(aj)), where wH denotes the
Hamming weight over F4. Further, the Lee distance between any two elements r = (a0, a1, . . . , aβ−1)

and r′ = (a′0, a′1, . . . , a′β−1) ∈ Rβ is defined as dL(r, r′) = wL(r− r′) = wH(φ1(r− r′)). It can be easily

seen that the Gray map ψ1 is a F4-linear distance preserving map from Rβ (Lee distance) to F2β
4

(Hamming distance).
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Suppose we have a linear code Cβ of length β over R. Then we define

Cβ,1 = {a ∈ Fβ
4 | ξ1a + ξ2b ∈ Cβ for some b ∈ Fβ

4},

Cβ,2 = {b ∈ Fβ
4 | ξ1a + ξ2b ∈ Cβ for some a ∈ Fβ

4}.

Thus, Cβ,1 and Cβ,2 are linear codes of length β over F4. Hence, we get that Cβ can be uniquely written
as Cβ = ξ1Cβ,1 ⊕ ξ2Cβ,2 and |Cβ| = |Cβ,1||Cβ,2|.

In the above discussion, we have studied the structure of linear codes above R. Now we discuss
linear codes over S in a similar fashion.

Any element t = s1 + us2 + vs3 ∈ S can be written in the form t = s1 + us2 + vs3 = η1 ŝ1 + η2 ŝ2 +

η3 ŝ3, where s1, ŝ1, s2, ŝ2, s3, ŝ3 ∈ F4 such that ŝ1 = s1, ŝ2 = s1 + s2, ŝ3 = s1 + s3 and

η1 = 1− u− v, η2 = u, η3 = v.

We see that η2
i = ηi, ηiηj = 0 and ∑3

i ηi = 1, for i, j = 1, 2, 3; i 6= j. Therefore, S =

η1S⊕ η2S⊕ η3S, and we note that any element t ∈ S can be uniquely written as t = η1t1 + η2t2 + η3t3,
where t1, t2, t3 ∈ F4.

Similar as above, we define a Gray map on S as follows.

ψ2 : S→ F3
4

given by
ψ2(t) = (t1, t2, t3).

This map can be extended from Sγ to F3γ
4 as

ψ2 : Sγ → F3γ
4 ,

given by

(t0, t1, . . . , tγ−1) 7→(t0,1, t1,1, . . . , tγ−1,1, t0,2, t1,2, . . . , tγ−1,2, t0,3, t1,3, . . . , tγ−1,3),

where t = (t0, t1, . . . , tγ−1) ∈ Sγ and ti = η1ti,1 + η2ti,2 + η3ti,3 for i = 0, 1, . . . , γ − 1. For any
ti = η1ti,1 + η2ti,2 + η3ti,3 ∈ S, the Lee weight of ti is defined as wL(ti) = wH(φ2(ti)). Further,
we define the Lee distance between any two elements t = (t0, t1, . . . , tγ−1) and t′ ∈ Sγ as dL(t, t′) =
wL(t− t′) = wH(φ2(t− t′)). It can be easily seen that the Gray map ψ2 is a F4-linear distance preserving
map from Sγ (Lee distance) to F3γ

4 (Hamming distance).
Suppose we have a linear code Cγ of length γ over S. Then we define

Cγ,1 = {t1 ∈ Fγ
4 | η1t1 + η2t2 + η3t3 ∈ Cγ for some t2, t3 ∈ Fγ

4 },
Cγ,2 = {t2 ∈ Fγ

4 | η1t1 + η2t2 + η3t3 ∈ Cγ for some t1, t3 ∈ Fγ
4 },

Cγ,3 = {t3 ∈ Fγ
4 | η1t1 + η2t2 + η3t3 ∈ Cγ for some t1, t2 ∈ Fγ

4 }.

Similar as above, Cγ,1, Cγ,2 and Cγ,3 are linear codes of length γ over F4. Hence, we get that Cγ can be
uniquely written as Cγ = η1Cγ,1 ⊕ η2Cγ,2 ⊕ η3Cγ,3 and |Cγ| = |Cγ,1||Cγ,2||Cγ,3|.

We have studied the structure of linear codes over R and S in our above discussion. We also have
defined Gray maps ψ1 and ψ2 on Rβ and Sγ, respectively. Using these maps, we now define a Gray
map on Fα

4 × Rβ × Sγ.
Any element (m, r, t) ∈ F4RS can be expressed as (m, r, t) = (m, ξ1a + ξ2b, η1t1 + η2t2 + η3t3).

We define a Gray map from F4RS to F6
q as

Ψ : F4RS→ F6
4,
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given by
Ψ(m, r, t) = (m, ψ1(r), ψ2(t)),

such that
(m, r, t) 7→ (m, a, b, t1, t2, t3).

We can see that the map Ψ is a F4-linear map and this can be extended on Fα
4 × Rβ × Sγ as follows.

Ψ : Fα
4 × Rβ × Sγ −→ Fα+2β+3γ

4

given by

(m0, m1, . . . , mα−1, a0, a1, . . . , aβ−1, t0, t1, . . . , tγ−1)

7→ (m0, m1, . . . , mα−1, a0,1, a1,1, . . . , aβ−1,1,

b0,2, b1,2, . . . , bβ−1,2, t0,1, t1,1, . . . , tγ−1,1,

t0,2, t1,2, . . . , tγ−1,2, t0,3, t1,3, . . . , tγ−1,3),

where (m0, m1, . . . , mα−1) ∈ Fα
4 , (a0, a1, . . . , aβ−1) ∈ Rβ, (t0, t1, . . . , tγ−1) ∈ Sγ, and aj = ξ1aj,1 +

ξ2bj,2 ∈ R and ti = η1ti,1 + η2ti,2 + η3ti,3 ∈ S for j = 0, 1, . . . , β− 1 and i = 0, 1, . . . , γ− 1.
By the same argument given in [33], the Lee weight of any element (m, r, t) ∈ Fα

4 × Rβ × Sγ is
defined as wL(m, r, t) = wH(m) + wL(r) + wL(t), where wH denotes the Hamming weight over F4

and wL denotes the Lee weight. Further, we define the Lee distance between any two elements e1 and
e2 ∈ Fα

4 × Rβ × Sγ as dL(e1, e2) = wL(e1 − e2) = wH(Ψ(e1 − e2)).

Proposition 1. Let Ψ be the Gray map defined above. Then

1. Ψ is a F4-linear map which preserves distance from Fα
4 × Rβ × Sγ (Lee distance) to Fα+2β+3γ

4
(Hamming distance).

2. If C is a F4RS-linear code of block length (α, β, γ) with |C| = qk, then Ψ(C) is a [α + 2β + 3γ, k, dH ]

linear code over F4, where dL = dH .

Proof. (1). Consider s1 = (m, r, t), s2 = (m′, r′, t′) ∈ Fα
4 × Rβ × Sγ, where

m = (m0, m1, . . . , mα−1), m′ = (m′0, m′1, . . . , m′α−1) ∈ Fα
q ,

r = ξ1a + ξ2b, r′ = ξ1a′ + ξ2b′ ∈ Rβ,

where

a = (a0,1, a1,1, . . . , aβ−1,1),

b = (b0,2, b1,2, . . . , bβ−1,2),

a′ = (a′0,1, a′1,1, . . . , a′β−1,1),

b′ = (b′0,2, b′1,2, . . . , b′β−1,2) ∈ Fβ
4 ,

and
t = η1t1 + η2t2 + η3t3, t′ = η1t′1 + η2t′2 + η3t′3 ∈ Sγ,

where

ti = (ti,0, ti,1, . . . , ti,γ−1),

t′i = (t′i,0, t′i,1, . . . , t′i,γ−1) ∈ Fγ
4 , for i = 1, 2, 3.
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Then

Ψ(s1 + s2)

= (m + m′, a + a′, b + b′, t1 + t′1, t2 + t′2, t3 + t′3)

= (m, a, b, t1, t2, t3) + (m′, a′, b′, t′1, t′2, t′3)

= Ψ(s1) + Ψ(s2),

and Ψ(λ1s1) = (λ1m, λ1a, λ1b, λ1t1, λ1t2, λ1t3) = λ1Ψ(s1), where λ1 ∈ F4. Hence, Ψ is a
F4-linear map.

As Ψ is a F4-linear map, then we have dL(s1, s2) = wL(s1 − s2) = wH(Ψ(s1 − s2)) =

dH(Ψ(s1), Ψ(s2)). Hence, we get that the map Ψ is a distance preserving map.
(2). As Ψ is a F4-linear distance preserving and bijective map, then we get that Ψ(C) is a [α + 2β +

3γ, k, dH ] linear code over F4.

4. The Structure of F4RS-Cyclic Codes

In this section, we discuss the generator polynomials of F4RS-cyclic codes and separable codes of
block length (α, β, γ). Before determining the generator polynomials of F4RS-cyclic codes, we first see
the algebraic structure and the generator polynomials of cyclic codes over R and S, respectively.

Theorem 2. [34] (Theorem 12.9) Let Cα be a cyclic code of length α over F4. Then there exists a unique monic
polynomial f (x) ∈ F4[x]/〈xα − 1〉 such that Cα = 〈 f (x)〉 and f (x) divides (xα − 1). Furthermore, Cα has
4k1 codewords, where k1 = α− deg( f (x)), and the set { f (x), x f (x), · · · , xk1−1 f (x)} forms a basis of Cα.

Now we present the generator polynomials of cyclic codes over R. These polynomials have been
studied by Bayram et al. [22].

Theorem 3. Let Cβ = ξ1Cβ,1 ⊕ ξ2Cβ,2 be a linear code of length β over R. Then

1. Cβ is a cyclic code of length β if and only if Cβ,1 and Cβ,2 are cyclic codes of length β over F4.
2. If Cβ is a cyclic code of length β over R, then its dual C⊥β = ξ1C⊥β,1 ⊕ ξ2C⊥β,2 is also a cyclic code over R.
3. If Cβ is a cyclic code of length β over R, then Cβ = 〈a(x)〉, where a(x) = ξ1a1(x) + ξ2a2(x) with

a(x) | (xβ − 1) and Cβ,1 = 〈a1(x)〉 and Cβ,2 = 〈a2(x)〉. Moreover, |Cβ| = 42β−∑2
i=1 deg(ai(x)).

Similar to the above theorem, we get the following result for cyclic codes over S.

Theorem 4. Let Cγ = η1Cγ,1 ⊕ η2Cγ,2 ⊕ η3Cγ,3 be a linear code of length γ over S. Then

1. Cγ is a cyclic code of length γ if and only if Cγ,1, Cγ,2 and Cγ,3 are cyclic codes of length γ over F4.
2. If Cγ is a cyclic code of length γ over S, then its dual C⊥γ = η1C⊥γ,1 ⊕ η2C⊥γ,2 ⊕ C⊥γ,3 is also a cyclic code

over S.
3. If Cγ is a cyclic code of length γ over S, then Cγ = 〈t(x)〉, where t(x) = η1t1(x) + η2t2(x) + η3t3(x)

with t(x) | (xγ − 1) and Cγ,1 = 〈t1(x)〉, Cγ,2 = 〈t2(x)〉 and Cγ,3 = 〈t3(x)〉. Moreover, |Cγ| =
43γ−∑3

i=1 deg(ti(x)).

Proof. The proof follows from Theorems 10 and 12 presented in [32].

In Theorems 3 and 4, we have studied the generator polynomials of cyclic codes of length β and γ

over R and S, respectively. By using these polynomials, the generator polynomials of the F4RS-cyclic
codes are now determined as follows.
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Theorem 5. Let C be a F4RS-cyclic code of block length (α, β, γ). Then

C = 〈( f (x), 0, 0), (l(x), a(x), 0), (l1(x), l2(x), t(x))〉,

where f (x) | (xα − 1), a(x) = ξ1a1(x) + ξ2a2(x) with a(x) | (xβ − 1), t(x) = η1t1(x) + η2t2(x) + η3t3(x)
with t(x) | (xγ − 1) and l(x), l1(x) ∈ F4[x], l2(x) ∈ R[x].

Proof. Since C and S[x]
〈xγ−1〉 are S[x]-submodules of Sα,β,γ, we define a map Φ : C → S[x]

〈xγ−1〉 given by
Φ(r1(x), r2(x), r3(x)) = r3(x). We can see that Φ is a homomorphism between two S[x]-modules.
Notice that Φ(C) is an ideal of S[x]

〈xγ−1〉 , i.e., Φ(C) is a cyclic code of length γ over S. Therefore,
by Theorem 4.3, we have Φ(C) = 〈t(x)〉, where t(x) = (η1t1(x) + η2t2(x) + η3t3(x)). Further,
we have Ker(Φ) = {(r1(x), r2(x), 0) ∈ Sα,β,γ | (r1(x), r2(x), 0) ∈ C}. Define I = {(r1(x), r2(x)) ∈
Rα,β | (r1(x), r2(x), 0) ∈ Ker(Φ)}, where Rα,β = F4[x]

〈xα−1〉 ×
R[x]
〈xβ−1〉 . We can see that I is an

R[x]-submodule of Rα,β. Therefore, from [31] (Lemma 3.3), I has the generator polynomials of the
form 〈( f (x), 0), (l(x), a(x)〉, where f (x) | (xα − 1), a(x) = ξ1a1(x) + ξ2a2(x) with a(x) | (xβ − 1) and
l(x) ∈ F4[x]. For any (r1(x), r2(x), 0) ∈ Ker(Φ), we get (r1(x), r2(x)) ∈ I. Then there exist some
polynomials m1(x) ∈ F4[x] and m2(x) ∈ R[x] such that

(r1(x), r2(x)) = m1(x) ? ( f (x), 0) + m2(x) ? (l(x), a(x)).

Hence,

(r1(x), r2(x), 0) = m1(x) ? ( f (x), 0, 0) + m2(x) ? (l(x), a(x), 0),

which implies
Ker(Φ) = 〈( f (x), 0, 0), (l(x), a(x), 0)〉.

Therefore, by the first isomorphism theorem of modules, we get

C/Ker(Φ) ∼= Φ(C) = 〈t(x)〉.

Suppose (l1(x), l2(x), t(x)) ∈ C with Φ((l1(x), l2(x), t(x)) = t(x). Hence, from the above discussion,
we get that any F4RS-cyclic code can be generated as an S[x]-submodule of Sα,β,γ by the elements of
the form ( f (x), 0, 0), (l(x), a(x), 0) and (l1(x), l2(x), t(x)), where l(x), l1(x) ∈ F4[x], l2(x) ∈ R[x] and
f (x) | (xα − 1), a(x) | (xβ − 1), t(x) | (xγ − 1). This completes the proof.

The polynomials l(x), l1(x) and l2(x) obtained in Theorem 5, have some conditions on their
degrees. These conditions are as follows.

Lemma 2. Let C = 〈( f (x), 0, 0), (l(x), a(x), 0), (l1(x), l2(x), t(x))〉 be a F4RS-cyclic code. Then we may
assume deg(l(x)) < deg( f (x)), deg(l1(x)) < deg( f (x)), deg(l2(x)) < deg(a(x)).

Proof. Let deg(l1(x)) ≥ deg( f (x)) and deg(l1(x))− deg( f (x)) = i. Consider

D = 〈( f (x), 0, 0), (l(x), a(x), 0), (l1(x) + xi f (x), l2(x), t(x))〉.

Notice that

(l1(x) + xi f (x), l2(x), t(x)) = xi ? ( f (x), 0, 0) + (l1(x), l2(x), t(x)),

which implies that D ⊆ C.
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On the other hand, we have

(l1(x), l2(x), t(x)) = (l1(x) + xi f (x), l2(x), t(x))− xi ? ( f (x), 0, 0),

which implies C ⊆ D. Thus, we get C = D. Therefore, the degree of l1(x) can be reduced in C. Hence,
deg(l1(x)) < deg( f (x)). Other parts can be proven by using a similar method.

In the above discussion, we have determined the generator polynomials of F4RS-cyclic
codes of block length (α, β, γ). Now we discuss the structure of the separable codes and their
generator polynomials.

A F4RS-linear code C of block length (α, β, γ) is called a separable code if C = C′α × C′β × C′γ,
while considering C′α, C′β and C′γ as punctured codes of C by deleting the coordinates outside the α,
β and γ components, respectively.

Using the result obtained in Theorem 5, we determine the generator polynomials of separable
F4RS-cyclic codes of block length (α, β, γ).

Lemma 3. Let C = 〈( f (x), 0, 0), (l(x), a(x), 0), (l1(x), l2(x), t(x))〉 be a F4RS-cyclic code of block length
(α, β, γ). Then

C′α = 〈gcd( f (x), l(x), l1(x))〉,
C′β = 〈gcd(a(x), l2(x))〉,

C′γ = 〈t(x)〉.

Proof. Consider p′(x) ∈ C′α, then there exist two polynomials q′(x) ∈ R[x]/〈xβ − 1〉 and r′(x) ∈
S[x]/〈xγ − 1〉 such that (p′(x), q′(x), r′(x)) ∈ C. It follows that there exist some polynomials
λ1(x), λ2(x) and λ3(x) ∈ S[x] such that

(p′(x), q′(x), r′(x)) = λ1(x) ? ( f (x), 0, 0) + λ2(x) ? (l(x), a(x), 0) + λ3(x) ? (l1(x), l2(x), t(x)).

This implies

p′(x) = ρ1(λ1(x)) f (x) + ρ1(λ2(x))l(x) + ρ1(λ3(x))l1(x).

Hence, we get gcd( f (x), l(x), l1(x)) | p′(x). Therefore, p′(x) ∈ 〈gcd(g(x), l(x), l1(x))〉, which implies
C′α ⊆ 〈gcd( f (x), l(x), l1(x))〉.

On the other hand, for some polynomials λ′1(x), λ′2(x), λ′3(x) ∈ F4[x], we get

gcd( f (x), l(x), l1(x)) = λ′1(x) f (x) + λ′2(x)l(x) + λ′3(x)l1(x).

Then

(gcd( f (x), l(x), l1(x)), λ′2(x)a(x) + λ′3(x)l2(x), λ′3(x)t(x))

= λ′1(x) ? ( f (x), 0, 0) + λ′2(x) ? (l(x), a(x), 0) + λ′3(x) ? (l1(x), l2(x), t(x)) ⊆ C,

which implies 〈gcd( f (x), l(x), l1(x))〉 ⊆ C′α. Thus, we get C′α = 〈gcd( f (x), l(x), l1(x))〉. Similarly,
we can see C′β = 〈gcd(a(x), l2(x))〉 and C′γ = 〈t(x)〉.

Lemma 4. Let C = 〈( f (x), 0, 0), (l(x), a(x), 0), (l1(x), l2(x), t(x))〉 be a F4RS-cyclic code. Then f (x) | l(x)
if and only if l(x) = 0, and f (x) | l1(x) if and only if l1(x) = 0.

Proof. Suppose l(x) = 0, then obviously f (x) | l(x).
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Conversely, suppose f (x) | l(x), then l(x) = λ(x) f (x) for some λ(x) ∈ F4[x]. Let

D = 〈( f (x), 0, 0), (0, a(x), 0), (l1(x), l2(x), t(x))〉.

On the one hand, notice that

(0, a(x), 0) = (l(x), a(x), 0)− λ(x) ? ( f (x), 0, 0) ∈ C,

therefore D ⊆ C. On the other hand,

(l(x), a(x), 0) = λ(x) ? ( f (x), 0, 0) + (0, a(x), 0) ∈ D,

which implies, C ⊆ D. Thus, we get C = D. Hence, we infer that l(x) = 0. Similarly, we can prove
g(x) | l1(x) if and only if l1(x) = 0.

Similar to the above result, we get the following.

Lemma 5. Let C = 〈( f (x), 0, 0), (l(x), a(x), 0), (l1(x), l2(x), t(x))〉 be a F4RS-cyclic code. Then a(x) |
l2(x) if and only if l2(x) = 0.

By Lemmas 3–5, we get the following result for a F4RS-cyclic code to be a separable code.

Theorem 6. Let C = 〈( f (x), 0, 0), (l(x), a(x), 0), (l1(x), l2(x), t(x))〉 be a F4RS-cyclic code. Then the
following assertions are equivalent:

1. C is a separable code;
2. f (x) | l(x), g(x) | l1(x) and a(x) | l2(x);
3. C′α = 〈 f (x)〉, C′β = 〈a(x)〉 and C′γ = 〈t(x)〉;
4. C = 〈( f (x), 0, 0), (0, a(x), 0), (0, 0, t(x))〉.

Proof. Proof holds directly from Lemmas 3–5.

From the results obtained in the above theorem for a separable code and results discussed in
Theorems 2–4, we get the followings:

C′α = 〈 f (x)〉 = Cα,

C′β = 〈a(x)〉 = Cβ,

C′γ = 〈t(x)〉 = Cγ.

The next result is obtained from these observations.

Theorem 7. Let C = Cα × Cβ × Cγ be a F4RS-linear code of block length (α, β, γ). Then C is a separable
F4RS-cyclic code of block length (α, β, γ) if and only if Cα, Cβ and Cγ are cyclic codes of length α, β and γ

over F4, R and S, respectively.

Proof. The proof follows from [32] (Theorem 24).

From our above discussion, we conclude the following result.

Theorem 8. Let C = Cα × Cβ × Cγ be a separable F4RS-cyclic code of block length (α, β, γ), where Cα =

〈 f (x)〉, Cβ = 〈a(x)〉 and Cγ = 〈t(x)〉. Then C = 〈 f (x)〉 × 〈a(x)〉 × 〈t(x)〉.

To illustrate the above results, we present an example.
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Example 1. Let Sα,β,γ = F4[x]
〈x3−1〉 ×

R[x]
〈x6−1〉 ×

S[x]
〈x9−1〉 . Then

x3 − 1 = (x + 1)(x + w)(x + w2) ∈ F4[x].

Let f (x) = (x + w)(x + w2). Then Cα = 〈 f (x)〉 is a cyclic code of length 3 over F4 and |Cα| = 4.

x6 − 1 = (x + 1)2(x + w)2(x + w2)2 ∈ F4[x].

Let a1(x) = a2(x) = (x + w)(x + w2)2. Then Cβ,1 = Cβ,2 = 〈a1(x)〉 are cyclic codes of length 6 over F4.
Thus, Cβ is a cyclic code of length 6 over R, with cardinality 412−6 = 46. Hence, Cβ = 〈ξ1a1(x) + ξ2a2(x)〉 =
〈a(x)〉.

x9 − 1 = (x + 1)(x + w)(x + w2)(x3 + w)(x3 + w2) ∈ F4[x].

Let t1(x) = (x + w)(x + w2) and t2(x) = t3(x) = (x + w2)(x3 + w)(x3 + w2). Then Cγ,1 = 〈t1(x)〉,
Cγ,i = 〈ti(x)〉; i = 2, 3, are cyclic codes of length 9 over F4. Thus, Cγ = η1Cγ,1 ⊕ η2Cγ,2 ⊕ η3Cγ,3 is a
cyclic code of length 9 over S with cardinality 427−16 = 411. Hence, Cγ = 〈η1t1(x) + η2t2(x) + η3t3(x)〉 =
〈t(x)〉, where

t(x) = (1− u− v)(x + w)(x + w2) + u(x + w2)(x3 + w)(x3 + w2) + v(x + w2)(x3 + w)(x3 + w2)

= (u + v)x7 + (u + v)w2x6 + (u + v)x4 + (u + v)w2x3 + (1 + u + v)x2 + x + (u + v)w + 1.

Hence, C = 〈( f (x), 0, 0), (0, a(x), 0), (0, 0, t(x))〉 = 〈 f (x)〉 × 〈a(x)〉 × 〈t(x)〉 is a separable F4RS-cyclic
code of block length (3, 6, 9). Furthermore, |C| = 418.

5. Applications in Cyclic DNA Codes

In the above discussion, we have studied F4RS-cyclic codes. We have further determined the
structure of separable F4RS-cyclic codes and obtained their generator polynomials. Now in the rest of
this paper, we discuss the application of this family of codes.

We proceed to the discussion of cyclic DNA codes over F4, R, S and F4RS. For this discussion,
we need some basic definitions that are defined next. Throughout this section, we assume α, β and γ

are odd positive integers.
Let R be a finite commutative ring and C be a linear code of length n over R. Consider

z = (z0, z1, . . . , zn−1) ∈ Rn. The reverse of z is defined as zr = (zn−1, zn−2, . . . , z0), the complement
of z is defined as zc = (z0, z1, . . . , zn−1) and the reverse-complement of z is defined as zrc =

(zn−1, zn−2, . . . , z0).

Definition 4. Let C be a linear code of length n over R. Then C is called reversible if for any z ∈ C, zr ∈ C,
complement if for any z ∈ C, zc ∈ C, reversible-complement if for any z ∈ C, zrc ∈ C.

Definition 5. [21] (p. 1172) Let C be a linear code of length n over R. Then C is said to be a cyclic DNA code if

1. C is a cyclic code, and
2. for any z ∈ C, z 6= zrc, zrc ∈ C.

For any polynomial k(x) = k0 + k1x + k2x2 + · · · + ksxs ∈ R[x], with ks 6= 0 the reciprocal
polynomial of k(x) is defined as

k∗(x) = xsk(1/x) = ks + ks−1x + · · ·+ k0xs.

It can be easily seen that if k0 6= 0, then deg(k∗(x)) = deg(k(x)) otherwise deg(k∗(x)) ≤ deg(k(x)).
Further, if k∗(x) = k(x), then k(x) is called self-reciprocal.
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5.1. Reversible and Reversible-Complement Codes over F4

In 2006, Abualrub et al. [17] studied cyclic DNA codes over F4, where F4 = {0, 1, w, w2 = w + 1}
with 1 + w + w2 = 0. They have taken a bijection map between the elements of F4 and DNA alphabets
SD4 = {A, T, C, G} such that 0 7→ A, 1 7→ T, w 7→ C, w2 = w + 1 7→ G. We will use the same bijection
map throughout this section for our study of cyclic DNA codes over R and S.

Lemma 6. [35] (Theorem 1) Let Cα = 〈 f (x)〉 be a cyclic code of length α over F4. Then Cα is reversible if and
only if f (x) is self-reciprocal.

We adopt the next lemma from [17], this lemma will be useful in determining
reversible-complements codes over F4.

Lemma 7. [17] (Lemma 8) Let Cα = 〈 f (x)〉 be a cyclic code of length α over F4. Then Cα is complement if and
only if f (x) is not divisible by x− 1.

By Lemmas 6 and 7, we obtain the following result.

Theorem 9. Let Cα = 〈 f (x)〉 be a cyclic code of length α over F4. Then Cα is reversible-complement if and
only if f (x) is self-reciprocal and f (x) is not divisible by x− 1.

5.2. Reversible and Reversible-Complement Codes over R

This subsection is dedicated to the study of cyclic codes over R, which satisfy the reversible
constraint and reversible-complement constraint. Bayram et al. [22] considered the same ring
R = F4 + uF4, u2 = u and discussed the reversible constraint and reversible-complement constraint.
Here, we also have considered the same ring but we use a different approach to prove these constraints
than Bayram et al. [22].

In the above subsection, we have defined a bijection map between F4 and SD4 . This map can be
extended naturally from R to S2

D4
by considering the Gray images of elements of R from Gray map

ψ1 defined in Section 3. For example, the Gray image of 1 + wu ∈ R is (1, 1 + w) ∈ F2
4. Since 1 7→

T, 1 + w 7→ G over F4, then (1, 1 + w) can be identified with TG ∈ S2
D4

. By this identification, we get a
one-to-one correspondence between the elements of R and S2

D4
. The correspondence from R to S2

D4
is

denoted by γ1 and defined in Table 1.

Table 1. Correspondence between R and S2
D4

.

Elements e ∈ R Gray Images DNA Codons γ1(e)

0 (0, 0) AA
u (0, 1) AT

uw (0, w) AC
u(1 + w) (0, 1 + w) AG

1 (1, 1) TT
1 + u (1, 0) TA

1 + u(1 + w) (1, w) TC
1 + uw (1, 1 + w) TG

w (w, w) CC
w + uw (w, 0) CA

w + u(1 + w) (w, 1) CT
w + u (w, 1 + w) CG

1 + w + u(1 + w) (1 + w, 0) GA
1 + w + u (1 + w, w) GC

1 + w + uw (1 + w, 1) GT
1 + w (1 + w, 1 + w) GG
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By WCC, we have A = T, T = A, C = G and G = C. We can extend this notation to the elements
of S2

D4
such as AT = TA, AA = TT, · · · , GC = CG.

Definition 6. Let Cβ be a linear code of length β over R and r = (a0, a1, . . . , aβ−1) ∈ Cβ. We define

Φ1(r) : Cβ −→ S2β
D4

,

given by
(a0, a1, . . . , aβ−1) 7→ (γ1(a0)γ1(a1) . . . γ1(aβ−1)),

by using Table 1.

For example, (a0, a1, a2) = (1, u, w + u(1 + w)) is mapped to (γ1(1)γ1(u)γ1(w + u(1 + w))) =

(TTATCT).
Now we present some relation between cyclic codes and reversible codes over R.

Theorem 10. Let Cβ = ξ1Cβ,1 ⊕ ξ2Cβ,2 be a cyclic code of length β over R. Then Cβ is reversible over R if
and only if Cβ,1 and Cβ,2 are reversible over F4.

Proof. Suppose Cβ is reversible over R and r = (a0, a1, . . . , aβ−1) ∈ Cβ, where aj = ξ1aj,1 + ξ2bj,2,
for aj,1, bj,2 ∈ F4 and j = 0, 1, . . . , β− 1. Then r = ξ1a + ξ2b, where a = (a0,1, a1,1 . . . , aβ−1,1) ∈ Cβ,1
and b = (b0,2, b1,2, . . . , bβ−1,2) ∈ Cβ,2. Notice that

rr = (aβ−1, aβ−2, . . . , a1, a0)

= (ξ1aβ−1,1 + ξ2bβ−1,2, ξ1aβ−2,1 + ξ2bβ−2,2, . . . , ξ1a1,1 + ξ2b1,2, ξ1a0,1 + ξ2b0,2)

= ξ1(aβ−1,1, aβ−2,1, . . . , a1,1, a0,1) + ξ2(bβ−1,2, bβ−2,2, . . . , b1,2, b0,2)

= ξ1ar + ξ2br.

Since Cβ is reversible over R, then rr = ξ1ar + ξ2br ∈ Cβ, and Cβ = ξ1Cβ,1 ⊕ ξ2Cβ,2. Which implies
ar ∈ Cβ,1 and br ∈ Cβ,2. Thus, Cβ,1 and Cβ,2 are reversible over F4.

Conversely, suppose that Cβ,1 and Cβ,2 are reversible over F4. By considering the above notations,
we have ar ∈ Cβ,1 and br ∈ Cβ,2. Since rr = ξ1ar + ξ2br ∈ Cβ, then Cβ is reversible over R.

To illustrate the above result, we present an example.

Example 2. Let R = F4 + uF4, where u2 = u and F4 = {0, 1, w, w2 = w + 1}.

x5 − 1 = (x + 1)(x2 + wx + 1)(x2 + w2x + 1) ∈ F4[x].

Consider a1(x) = x2 + wx + 1 and a2(x) = x2 + w2x + 1. Then Cβ,1 = 〈a1(x)〉 and Cβ,2 = 〈a2(x)〉 are
cyclic codes of length 5 over F4. By Theorem 3, Cβ = 〈ξ1a1(x) + ξ2a2(x)〉 is a cyclic code of length 5 over R.
As a1(x) and a2(x) are self-reciprocal polynomials, so by Lemma 6, Cβ,1 and Cβ,2 are reversible over F4. Hence,
by Theorem 10, Cβ is reversible over R.

Example 3. Let R = F4 + uF4, where u2 = u and F4 = {0, 1, w, w2 = w + 1}.

x13 − 1 = (x + 1)(x6 + wx5 + w2x3 + wx + 1)(x6 + w2x5 + wx3 + w2x + 1) ∈ F4[x].

Consider a1(x) = x6 + wx5 + w2x3 + wx + 1 and a2(x) = x6 + w2x5 + wx3 + w2x + 1. Then Cβ,1 =

〈a1(x)〉 and Cβ,2 = 〈a2(x)〉 are cyclic codes of length 13 over F4. By Theorem 3, Cβ = 〈ξ1a1(x) + ξ2a2(x)〉 is
a cyclic code of length 5 over R. As a1(x) and a2(x) are self-reciprocal polynomials, so by Lemma 6, Cβ,1 and
Cβ,2 are reversible over F4. Hence, by Theorem 10, Cβ is reversible over R.
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From Table 1, we obtain next useful lemma. This lemma is used in determining reversible-
complement property on cyclic codes over R.

Lemma 8. For any a ∈ R, we have a + 0 = a.

Theorem 11. Let Cβ = ξ1Cβ,1 ⊕ ξ2Cβ,2 be a cyclic code of length β over R. Then Cβ is reversible-complement
over R if and only if (0, 0, . . . , 0) ∈ Cβ and Cβ is reversible over R.

Proof. Suppose Cβ is reversible-complement over R and r = (a0, a1, . . . , aβ−1) ∈ Cβ. Then rrc =

(aβ−1, aβ−2, . . . , a0) ∈ Cβ. Since Cβ is a linear code, then we have (0, 0, . . . , 0) ∈ Cβ, which implies
(0, 0, . . . , 0) ∈ Cβ. By using Lemma 8, we get

rr = (aβ−1, aβ−2, . . . , a0) + (0, 0, . . . , 0)

= (aβ−1, aβ−2, . . . , a0).

Since Cβ is linear as well as reversible-complement, then we get rr ∈ Cβ. Hence, Cβ is reversible over R.
Conversely, suppose (0, 0, . . . , 0) ∈ Cβ and Cβ is reversible. Then for any r = (a0, a1, . . . , aβ−1) ∈

Cβ, we get rr = (aβ−1, aβ−2, . . . , a0) ∈ Cβ. Again by Lemma 8, and linearity of Cβ, we get

rrc = (aβ−1, aβ−2, . . . , a0) + (0, 0, . . . , 0)

= (aβ−1, aβ−2, . . . , a0) ∈ Cβ.

Hence, Cβ is reversible-complement over R.

To illustrate the above results, we present some examples.

Example 4. Let R = F4 + uF4, where u2 = u.

x3 − 1 = (x + 1)(x + w)(x + w2) ∈ F4[x].

Let a1(x) = a2(x) = (x + w)(x + w2). Then Cβ,i = 〈ai(x)〉 are cyclic codes of length 3 over F4, for i = 1, 2.
By Theorem 3, Cβ = 〈ξ1a1(x) + ξ2a2(x)〉 is a cyclic code of length 3 over R. As a1(x) and a2(x) are
self-reciprocal polynomials, hence by Lemma 6, Cβ,i are reversible over F4, for i = 1, 2. Therefore, by Theorem 10,
Cβ is reversible over R. Further, Cβ has 46−4 = 16 codewords. The corresponding DNA codewords obtained by
using Table 1, are listed below.

Notice that Cβ is reversible over R and (TTTTTT) = (0, 0, 0) ∈ Cβ. Thus, by Theorem 11, Cβ is
reversible-complement over R. Moreover, by Definition 5, we conclude that Cβ is a cyclic DNA code. The image
of Cβ under the map ψ1 is a DNA code of length 6, size 16 and minimum Hamming distance 3. The DNA
code given in Table 2 is different from the DNA codes of the same length constructed by Zhu et al. [23] and
Siap et al. [18].

Table 2. DNA code of length 6 obtained from Cβ.

AGAGAG TGTGTG CGCGCG GCGCGC
AAAAAA TCTCTC CCCCCC GTGTGT
ACACAC TTTTTT CTCTCT GGGGGG
ATATAT TATATA CACACA GAGAGA

Example 5. Let R = F4 + uF4, where u2 = u.

x5 − 1 = (x + 1)(x2 + wx + 1)(x2 + w2x + 1) ∈ F4[x].
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Let a1(x) = a2(x) = (x2 + wx + 1)(x2 + w2x + 1). Then Cβ,i = 〈ai(x)〉 are cyclic codes of length 5 over
F4, for i = 1, 2. By Theorem 3, Cβ = 〈ξ1a1(x) + ξ2a2(x)〉 is a cyclic code of length 5 over R. As a1(x) and
a2(x) are self-reciprocal polynomials, hence by Lemma 6, Cβ,i are reversible over F4, for i = 1, 2. Therefore,
by Theorem 10, Cβ is reversible over R. Further, Cβ has 410−8 = 16 codewords. The corresponding DNA
codewords obtained by using Table 3, are listed below.

Table 3. DNA code of length 10 obtained from Cβ.

AAAAAAAAAA TTTTTTTTTT CCCCCCCCCC GGGGGGGGGG
ATATATATAT TATATATATA CACACACACA GAGAGAGAGA

ACACACACAC TCTCTCTCTC CTCTCTCTCT GTGTGTGTGT
AGAGAGAGAG TGTGTGTGTG CGCGCGCGCG GCGCGCGCGC

Notice that Cβ is reversible over R and (TTTTTTTTTT) = (0, 0, 0, 0, 0) ∈ Cβ. Thus, by Theorem 11,
Cβ is reversible-complement over R. Moreover, by Definition 5, we conclude that Cβ is a cyclic DNA code.
The image of Cβ under the map ψ1 is a DNA code of length 10, size 16 and minimum Hamming distance 5.
These codewords are given in Table 3.

5.3. Reversible and Reversible-Complement Codes over S

This subsection is dedicated to the study of cyclic codes over S, which satisfy the reversible
constraint and reversible-complement constraint. We can see that the ring S has 64 elements.
In literature, many researchers [26,27,29] have discussed reversible constraint and reversible-
complement constraint over the ring of order 64. In this subsection, we use a different approach
to study these constraints over the ring of order 64.

In 2020, Liu et al. [29] defined a one-to-one correspondence between the elements of the ring of
order 64 and DNA alphabets set S3

D4
by using the Gray images of the elements of the ring. We also

define a similar kind of one-to-one correspondence between the elements of S and S3
D4

for our study.
The above defined bijection map between F4 and SD4 can be extended naturally from S to S3

D4
by

considering the Gray images of the elements of S from Gray map ψ2 defined in Section 3. For example,
the Gray image of 1 + wu + wv ∈ S is (1, 1 + w, 1 + w) ∈ F3

4. Since 1 7→ T, 1 + w 7→ G over F4,
then (1, 1 + w, 1 + w) can be identified with TGG ∈ S3

D4
. By this identification, we get a one-to-one

correspondence between the elements of S and S3
D4

. The correspondence from S to S3
D4

is denoted by
γ2 and defined in Table 4.

Table 4. Correspondence between S and S3
D4

.

Elements e1 ∈ S Gray Images DNA Codons γ2(e1)

0 (0, 0, 0) AAA
u (0, 1, 0) ATA

uw (0, w, 0) ACA
u(1 + w) (0, 1 + w, 0) AGA

v (0, 0, 1) AAT
vw (0, 0, w) AAC

v(1 + w) (0, 0, 1 + w) AAG
u + v (0, 1, 1) ATT

u + vw (0, 1, w) ATC
u + v(1 + w) (0, 1, 1 + w) ATG

uw + v (0, w, 1) ACT
uw + vw (0, w, w) ACC

uw + v(1 + w) (0, w, 1 + w) ACG
u(1 + w) + v (0, 1 + w, 1) AGT

u(1 + w) + vw (0, 1 + w, w) AGC
u(1 + w) + v(1 + w) (0, 1 + w, 1 + w) AGG



Mathematics 2020, 8, 1977 18 of 24

Table 4. Cont.

Elements e1 ∈ S Gray Images DNA Codons γ2(e1)

1 (1, 1, 1) TTT
1 + u (1, 0, 1) TAT

1 + u(1 + w) (1, w, 1) TCT
1 + uw (1, 1 + w, 1) TGT
1 + v (1, 1, 0) TTA

1 + vw (1, 1, 1 + w) TTG
1 + v(1 + w) (1, 1, w) TTC

1 + u + v (1, 0, 0) TAA
1 + u + vw (1, 0, 1 + w) TAG

1 + u + v(1 + w) (1, 0, w) TAC
1 + uw + v (1, 1 + w, 0) TGA

1 + uw + vw (1, 1 + w, 1 + w) TGG
1 + uw + v(1 + w) (1, 1 + w, w) TGC
1 + u(1 + w) + v (1, w, 0) TCA

1 + u(1 + w) + vw (1, w, 1 + w) TCG
1 + u(1 + w) + v(1 + w) (1, w, w) TCC

w (w, w, w) CCC
w + uw (w, 0, w) CAC

w + u(1 + w) (w, 1, w) CTC
w + u (w, 1 + w, w) CGC
w + v (w, w, 1 + w) CCG

w + vw (w, w, 0) CCA
w + v(1 + w) (w, w, 1) CCT

w + u + v (w, 1 + w, 1 + w) CGG
w + u + vw (w, 1 + w, 0) CGA

w + u + v(1 + w) (w, 1 + w, 1) CGT
w + uw + v (w, 0, 1 + w) CAG

w + uw + vw (w, 0, 0) CAA
w + uw + v(1 + w) (w, 0, 1) CAT
w + u(1 + w) + v (w, 1, 1 + w) CTG

w + u(1 + w) + vw (w, 1, 0) CTA
w + u(1 + w) + v(1 + w) (w, 1, 1) CTT

1 + w (1 + w, 1 + w, 1 + w) GGG
1 + w + u(1 + w) (1 + w, 0, 1 + w) GAG

1 + w + uw (1 + w, 1, 1 + w) GTG
1 + w + u (1 + w, w, 1 + w) GCG
1 + w + v (1 + w, 1 + w, w) GGC

1 + w + vw (1 + w, 1 + w, 1) GGT
1 + w + v(1 + w) (1 + w, 1 + w, 0) GGA

1 + w + u + v (1 + w, w, w) GCC
1 + w + u + vw (1 + w, w, 1) GCT

1 + w + u + v(1 + w) (1 + w, w, 0) GCA
1 + w + uw + v (1 + w, 1, w) GTC

1 + w + uw + vw (1 + w, 1, 1) GTT
1 + w + uw + v(1 + w) (1 + w, 1, 0) GTA
1 + w + u(1 + w) + v (1 + w, 0, w) GAC

1 + w + u(1 + w) + vw (1 + w, 0, 1) GAT
1 + w + u(1 + w) + v(1 + w) (1 + w, 0, 0) GAA

By WCC, we have A = T, T = A, C = G and G = C. We can extend this notation to the elements
of S3

D4
such as AAA = TTT, ATA = TAT, · · · , GAA = CTT.

Definition 7. Let Cγ be a linear code of length γ over S and t = (t0, t1, . . . , tγ−1) ∈ Cγ. We define

Φ2(t) : Cγ −→ S3γ
D4

,
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given by
(t0, t1, . . . , tγ−1) 7→ (γ2(t0)γ2(t1) . . . γ2(tγ−1)),

by using Table 4.

For example, (t0, t1, t2) = (1, uw, v) is mapped to (γ2(1)γ2(uw)γ2(v)) = (TTTACAAAT).
All the results in this subsection have similar proofs to the results discussed in the above

subsection, so we omit their proofs.

Theorem 12. Let Cγ = η1Cγ,1 ⊕ η2Cγ,2 ⊕ η3Cγ,3 be a cyclic code of length γ over S. Then Cγ is reversible
over S if and only if Cγ,1, Cγ,2 and Cγ,3 are reversible over F4.

To illustrate the above result, we present an example.

Example 6. Let S = F4 + uF4 + vF4, and F4 = {0, 1, w, w2 = w + 1}.

x9 − 1 = (x + 1)(x + w)(x + w2)(x3 + w)(x3 + w2) ∈ F4[x].

Let t1(x) = (x + w)(x + w2) and t2(x) = t3(x) = (x3 + w)(x3 + w2). Then Cγ,1 = 〈t1(x)〉, Cγ,2 =

〈t2(x)〉, and Cγ,3 = 〈t3(x)〉 are cyclic codes of length 9 over F4. By Theorem 4, Cγ = 〈η1t1(x) + η2t2(x) +
η3t3(x)〉 is a cyclic code of length 9 over S. As t1(x), t2(x) and t3(x) are self-reciprocal polynomials, so by
Lemma 6, Cγ,1, Cγ,2 and Cγ,3 are reversible over F4. Hence, by Theorem 12, Cγ is reversible over S.

Example 7. Let S = F4 + uF4 + vF4, and F4 = {0, 1, w, w2 = w + 1}.

x13 − 1 = (x + 1)(x6 + wx5 + w2x3 + wx + 1)(x6 + w2x5 + wx3 + w2x + 1) ∈ F4[x].

Let t1(x) = x6 + wx5 + w2x3 + wx + 1 and t2(x) = t3(x) = x7 + wx6 + w2x5 + wx4 + wx3 + w2x2 +

wx + 1. Then Cγ,1 = 〈t1(x)〉, Cγ,2 = 〈t2(x)〉, and Cγ,3 = 〈t3(x)〉 are cyclic codes of length 13 over F4.
By Theorem 4, Cγ = 〈η1t1(x) + η2t2(x) + η3t3(x)〉 is a cyclic code of length 9 over S. As t1(x), t2(x)
and t3(x) are self-reciprocal polynomials, so by Lemma 6, Cγ,1, Cγ,2 and Cγ,3 are reversible over F4. Hence,
by Theorem 12, Cγ is reversible over S.

From Table 4, we get the next useful lemma similar to Lemma 8. This result is used in determining
reversible-complement property of cyclic codes over S.

Lemma 9. For any b ∈ S, we have b + 0 = b.

Theorem 13. Let Cγ = η1Cγ,1 ⊕ η2Cγ,2 ⊕ η3Cγ,3 be a cyclic code of length γ over S. Then Cγ is
reversible-complement over S if and only if (0, 0, . . . , 0) ∈ Cγ and Cγ is reversible over S.

To illustrate the above result, we present an example.

Example 8. Let S = F4 + uF4 + vF4, and F4 = {0, 1, w, w2 = w + 1}.

x3 − 1 = (x + w2)(x + w)(x + 1) ∈ F4[x].

Let t1(x) = t2(x) = t3(x) = (x + w2)(x + w). Then Cγ,j = 〈tj(x)〉 are cyclic codes of length 3 over
F4, for j = 1, 2, 3. By Theorem 4, Cγ = 〈η1t1(x) + η2t2(x) + η3t3(x)〉 is a cyclic code of length 3 over
S. As t1(x), t2(x) and t3(x) are self-reciprocal polynomials, hence by Lemma 6, Cγ,j are reversible over F4,
for j = 1, 2, 3. Therefore, by Theorem 12, Cγ is reversible over S. Further, Cγ has 49−6 = 64 codewords.
The corresponding DNA codewords obtained by using Table 4, are listed below.
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Notice that Cγ is reversible over S and (TTTTTTTTT) = (0, 0, 0) ∈ Cγ. Thus, by Theorem 13, Cγ is
reversible-complement over S. Moreover, by Definition 5, we conclude that Cγ is a cyclic DNA code. The image
of Cγ under the map ψ2 is a DNA code of length 9, size 64 and minimum Hamming distance 3. The DNA code
given in Table 5 is different from the DNA code of the same length and size constructed by Dinh et al. [27].

Table 5. DNA code of length 9 obtained from Cγ.

AAAAAAAAA TTTTTTTTT CCCCCCCCC GGGGGGGGG
ATAATAATA TATTATTAT CACCACCAC GAGGAGGAG

ACAACAACA TCTTCTTCT CTCCTCCTC GTGGTGGTG
AGAAGAAGA TGTTGTTGT CGCCGCCGC GCGGCGGCG
AATAATAAT TTATTATTA CCGCCGCCG GGCGGCGGC
AACAACAAC TTGTTGTTG CCACCACCA GGTGGTGGT
AAGAAGAAG TTCTTCTTC CCTCCTCCT GGAGGAGGA

ATTATTATT TAATAATAA CGGCGGCGG GCCGCCGCC
ATCATCATC TAGTAGTAG CGACGACGA GCAGCAGCA
ATGATGATG TACTACTAC CGTCGTCGT GCTGCTGCT
ACTACTACT TGATGATGA CAGCAGCAG GTCGTCGTC
ACCACCACC TGCTGCTGC CAACAACAA GTAGTAGTA
ACGACGACG TGGTGGTGG CATCATCAT GTTGTTGTT
AGTAGTAGT TCATCATCA CTGCTGCTG GACGACGAC
AGCAGCAGC TCGTCGTCG CTACTACTA GATGATGAT
AGGAGGAGG TCCTCCTCC CTTCTTCTT GAAGAAGAA

Example 9. Let S = F4 + uF4 + vF4, and F4 = {0, 1, w, w2 = w + 1}.

x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1) ∈ F4[x].

Let t1(x) = t2(x) = t3(x) = (x3 + x + 1)(x3 + x2 + 1). Then Cγ,j = 〈tj(x)〉 are cyclic codes of length 7
over F4, for j = 1, 2, 3. By Theorem 4, Cγ = 〈η1t1(x) + η2t2(x) + η3t3(x)〉 is a cyclic code of length 7 over
S. As t1(x), t2(x) and t3(x) are self-reciprocal polynomials, hence by Lemma 6, Cγ,j are reversible over F4,
for j = 1, 2, 3. Therefore, by Theorem 12, Cγ is reversible over S. Further, Cγ has 421−18 = 64 codewords.
The corresponding DNA codewords obtained by using Table 6, are listed below.

Table 6. DNA code of length 21 obtained from Cγ.

AAAAAAAAAAAAAAAAAAAAA TTTTTTTTTTTTTTTTTTTTT
CCCCCCCCCCCCCCCCCCCCC GGGGGGGGGGGGGGGGGGGGG
ATAATAATAATAATAATAATA TATTATTATTATTATTATTAT

CACCACCACCACCACCACCAC GAGGAGGAGGAGGAGGAGGAG
ACAACAACAACAACAACAACA TCTTCTTCTTCTTCTTCTTCT

CTCCTCCTCCTCCTCCTCCTC GTGGTGGTGGTGGTGGTGGTG
AGAAGAAGAAGAAGAAGAAGA TGTTGTTGTTGTTGTTGTTGT

CGCCGCCGCCGCCGCCGCCGC GCGGCGGCGGCGGCGGCGGCG
AATAATAATAATAATAATAAT TTATTATTATTATTATTATTA
CCGCCGCCGCCGCCGCCGCCG GGCGGCGGCGGCGGCGGCGGC

AACAACAACAACAACAACAAC TTGTTGTTGTTGTTGTTGTTG
CCACCACCACCACCACCACCA GGTGGTGGTGGTGGTGGTGGT

AAGAAGAAGAAGAAGAAGAAG TTCTTCTTCTTCTTCTTCTTC
CCTCCTCCTCCTCCTCCTCCT GGAGGAGGAGGAGGAGGAGGA
ATTATTATTATTATTATTATT TAATAATAATAATAATAATAA

CGGCGGCGGCGGCGGCGGCGG GCCGCCGCCGCCGCCGCCGCC
ATCATCATCATCATCATCATC TAGTAGTAGTAGTAGTAGTAG

CGACGACGACGACGACGACGA GCAGCAGCAGCAGCAGCAGCA
ATGATGATGATGATGATGATG TACTACTACTACTACTACTAC
CGTCGTCGTCGTCGTCGTCGT GCTGCTGCTGCTGCTGCTGCT
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Table 6. Cont.

ACTACTACTACTACTACTACT TGATGATGATGATGATGATGA
CAGCAGCAGCAGCAGCAGCAG GTCGTCGTCGTCGTCGTCGTC
ACCACCACCACCACCACCACC TGCTGCTGCTGCTGCTGCTGC

CAACAACAACAACAACAACAA GTAGTAGTAGTAGTAGTAGTA
ACGACGACGACGACGACGACG TGGTGGTGGTGGTGGTGGTGG
CATCATCATCATCATCATCAT GTTGTTGTTGTTGTTGTTGTT
AGTAGTAGTAGTAGTAGTAGT TCATCATCATCATCATCATCA
CTGCTGCTGCTGCTGCTGCTG GACGACGACGACGACGACGAC

AGCAGCAGCAGCAGCAGCAGC TCGTCGTCGTCGTCGTCGTCG
CTACTACTACTACTACTACTA GATGATGATGATGATGATGAT

AGGAGGAGGAGGAGGAGGAGG TCCTCCTCCTCCTCCTCCTCC
CTTCTTCTTCTTCTTCTTCTT GAAGAAGAAGAAGAAGAAGAA

Notice that Cγ is reversible over S and (TTTTTTTTTTTTTTTTTTTTT) = (0, 0, 0, 0, 0, 0, 0) ∈ Cγ.
Thus, by Theorem 13, Cγ is reversible-complement over S. Moreover, by Definition 5, we conclude that Cγ

is a cyclic DNA code. The image of Cγ under the map ψ2 is a DNA code of length 21, size 64 and minimum
Hamming distance 7. These codewords are given in Table 6.

5.4. Reversible and Reversible-Complement Codes over F4RS

In this subsection, we now study reversible constraint and reversible-complement constraint of
F4RS-cyclic codes.

Let s1 = (m0, m1, . . . , mα−1, a0, a1, . . . , aβ−1, t0, t1, . . . , tγ−1) ∈ Fα
4 × Rβ × Sγ. Then, the reverse of

s1 is defined as sr
1 = (mα−1, mα−2, . . . , m0, aβ−1, aβ−2, . . . , a0, tγ−1, tγ−2, . . . , t0), the complement of s1

is defined as sc
1 = (m0, m1, . . . , mα−1, a0, a1, . . . , aβ−1, t0, t1, . . . , tγ−1) and the reverse-complement of s1

is defined as src
1 = (mα−1, mα−2, . . . , m0, aβ−1, aβ−2, . . . , a0, tγ−1, tγ−2, . . . , t0).

Definition 8. Let C be a F4RS-linear code of block length (α, β, γ). Then, C is said to be reversible if for any
s1 ∈ C, sr

1 ∈ C, complement if for any s1 ∈ C, sc
1 ∈ C and reversible-complement if for any s1 ∈ C,

src
1 ∈ C.

Using the results obtained in the above subsections, we now discuss the reversible and
reversible-complement constraints of separable F4RS-cyclic codes.

Theorem 14. Suppose C = Cα × Cβ × Cγ is a separable F4RS-cyclic code of block length (α, β, γ),
where Cα, Cβ and Cγ are cyclic codes of length α, β and γ over F4, R and S, respectively. Then C is
reversible if and only if Cα, Cβ and Cγ are reversible over F4, R and S, respectively.

Proof. Suppose C = Cα × Cβ × Cγ is reversible and s1 = (m0, m1, . . . , mα−1, a0, a1, . . . , aβ−1, t0, t1, . . . ,
tγ−1) ∈ C, where (m0, m1, . . . , mα−1) ∈ Cα, (a0, a1, . . . , aβ−1) ∈ Cβ, and (t0, t1, . . . , tγ−1) ∈ Cγ. Since C
is reversible, then we have sr

1 = (mα−1, mα−2, . . . , m1, m0, aβ−1, aβ−2, . . . , a1, a0, tγ−1, tγ−2, . . . , t1, t0) ∈
C, which implies (mα−1, mα−2, . . . , m1, m0) ∈ Cα, (aβ−1, aβ−2, . . . , a1, a0) ∈ Cβ and (tγ−1, tγ−2, . . . ,
t1, t0) ∈ Cγ. Thus, Cα, Cβ and Cγ are reversible over F4, R and S, respectively.

Conversely, let s1 = (m0, m1, . . . , mα−1, a0, a1, . . . , aβ−1, t0, t1, · · · , tγ−1) ∈ C, where (m0, m1,
. . . , mα−1) ∈ Cα, (a0, a1, . . . , aβ−1) ∈ Cβ and (t0, t1, . . . , tγ−1) ∈ Cγ. Suppose Cα, Cβ and Cγ are reversible
over F4, R and S, respectively. Then (mα−1, mα−2, . . . , m1, m0) ∈ Cα, (aβ−1, aβ−2, . . . , a1, a0) ∈ Cβ

and (tγ−1, tγ−2, . . . , t1, t0) ∈ Cγ. Thus, sr
1 = (mα−1, mα−2, . . . , m1, m0, aβ−1, aβ−2, . . . , a1, a0, tγ−1,

tγ−2, . . . , t1, t0) ∈ C. Therefore, C is reversible.

Example 10. Let C = Cα × Cβ × Cγ be a separable F4RS-cyclic code of block length (7, 5, 9).

x7 − 1 = (x + 1)(x3 + x + 1)(x3 + x2 + 1) ∈ F4[x].
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Let f (x) = (x3 + x + 1)(x3 + x2 + 1). Then by Theorem 2, Cα = 〈 f (x)〉 is a cyclic code of length 7 over F4.
As f (x) is a self-reciprocal polynomial, hence by Lemma 6, Cα is reversible over F4. Further, we consider the
same Cβ as given in Example 2, which is reversible over R and the same Cγ as given in Example 6, which is
reversible over S. Therefore, by Theorem 14, we get C = Cα × Cβ × Cγ is reversible.

In the next result, we discuss the necessary and sufficient conditions for a F4RS-cyclic code to be
reversible-complement.

Theorem 15. Suppose C = Cα × Cβ × Cγ is a separable F4RS-cyclic code of block length (α, β, γ),
where Cα, Cβ and Cγ are cyclic codes of length α, β and γ over F4, R and S, respectively. Then C is
reversible-complement if and only if Cα, Cβ and Cγ are reversible-complement over F4, R and S, respectively.

Proof. Suppose C = Cα ×Cβ ×Cγ is reversible-complement and s1 = (m0, m1, . . . , mα−1, a0, a1, . . . , aβ−1,
t0, t1, . . . , tγ−1) ∈ C, where (m0, m1, . . . , mα−1) ∈ Cα, (a0, a1, . . . , aβ−1) ∈ Cβ and (t0, t1, . . . , tγ−1) ∈ Cγ.
Since C is reversible-complement, then we have src

1 = (mα−1, mα−2, . . . , m1, m0, aβ−1, aβ−2, . . . , a1, a0,
tγ−1, tγ−2, . . . , t1, t0) ∈ C, which implies (mα−1, mα−2, . . . , m1, m0) ∈ Cα, (aβ−1, aβ−2, . . . , a1, a0) ∈ Cβ

and (tγ−1, tγ−2, . . . , t1, t0) ∈ Cγ. Thus, Cα, Cβ and Cγ are reversible-complement over F4, R and
S, respectively.

Conversely, let s1 = (m0, m1, . . . , mα−1, a0, a1, . . . , aβ−1, t0, t1, . . . , tγ−1) ∈ C, where (m0, m1, . . . ,
mα−1) ∈ Cα, (a0, a1, . . . , aβ−1) ∈ Cβ and (t0, t1, . . . , tγ−1) ∈ Cγ. Suppose Cα, Cβ and Cγ are reversible-
complement over F4, R and S, respectively. Then (mα−1, mα−2, . . . , m1, m0) ∈ Cα, (aβ−1, aβ−2, . . . , a0)

∈ Cβ and (tγ−1, tγ−2, . . . , t1, t0) ∈ Cγ. Thus, src
1 = (mα−1, mα−2, . . . , m1, m0, aβ−1, aβ−2, . . . , a1, a0, tγ−1,

tγ−2, . . . , t1, t0) ∈ C. Hence, C is reversible-complement.

Example 11. Let C = Cα × Cβ × Cγ be a separable F4RS-cyclic code of block length (3, 5, 3).

x3 − 1 = (x + 1)(x + w2)(x + w) ∈ F4[x].

Let f (x) = (x + w)(x + w2). Then by Theorem 2, Cα = 〈 f (x)〉 is a cyclic code of length 3 over F4. As f (x) is
self-reciprocal polynomial, not divisible by (x− 1), hence by Theorem 9, Cα is reversible-complement over F4.
Further, we consider the same Cβ as given in Example 5, which is reversible-complement over R and the same Cγ

as given in Example 8, which is reversible-complement over S. Hence, by Theorem 15, we get C = Cα×Cβ×Cγ

is reversible-complement. Therefore, by Definition 5, C is a cyclic DNA code. The image of C under the map Ψ
is a DNA code of length 22, size 3072 and minimum Hamming distance 3.

Example 12. Let C = Cα × Cβ × Cγ be a separable F4RS-cyclic code of block length (5, 3, 7).

x5 − 1 = (x + 1)(x2 + wx + 1)(x2 + wx + 1) ∈ F4[x].

Let f (x) = (x2 + w2x + 1). Then by Theorem 2, Cα = 〈 f (x)〉 is a cyclic code of length 5 over F4. As f (x) is
self-reciprocal polynomial, not divisible by (x− 1), hence by Theorem 9, Cα is reversible-complement over F4.
Further, we consider the same Cβ as given in Example 4, which is reversible-complement over R and the same Cγ

as given in Example 9, which is reversible-complement over S. Hence, by Theorem 15, we get C = Cα×Cβ×Cγ

is reversible-complement. Therefore, by Definition 5, C is a cyclic DNA code. The image of C under the map Ψ
is a DNA code of length 32, size 65536 and minimum Hamming distance 3.

6. Conclusions and Future Direction

This paper considers the rings R = F4 + uF4, with u2 = u and S = F4 + uF4 + vF4, with u2 = u,
v2 = v, uv = vu = 0 as alphabets to construct cyclic DNA codes. We first study the decomposed
structure of both the rings and then discuss linear codes over these rings. We have further studied
the algebraic structure and generator polynomials of over F4, R and S. Using these polynomials,
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we determine the generator polynomials of F4RS-cyclic codes of block length (α, β, γ). Moreover,
we determine the generators of separable F4RS-cyclic codes. We study cyclic DNA codes over the ring
F4, R, S and F4RS from the structure of separable codes. We define a map from R to a set of DNA
alphabets of order 16 and then study reverse constraint and reverse-complement constraint of cyclic
codes over R. A similar kind of map from S to a set of DNA alphabets of order 64 has been defined.
The reverse constraint and reverse-complement constraint of cyclic codes over S are studied. By using
the above-obtained constraints, reverse constraint and reverse-complement constraint of F4RS-cyclic
codes have been discussed. To support our results, we present several examples and construct cyclic
DNA codes. In the modern age of e-business and e-commerce, the security of confidentiality, integrity
and availability of stored and distributed data is essential. The rising technical complexity is leading
us to the need for a new paradigm. As a consequence, unorthodox approaches to coding theory
have evolved from the recent past, and considerable attention is being paid to DNA coding theory.
This method will be a good source for constructing cyclic DNA codes over mixed alphabets. In Section 5,
the applications have only been discussed by using the structure of separable codes. In the future,
we will try to work on such applications over non-separable codes. We will also try to study skew
cyclic DNA codes over single and mixed alphabets. More generally, it would be interesting to study
how cyclic DNA codes involve in the evolution of genetic codes and possible role they may play.
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