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Abstract: Blockchain systems store transaction data in the form of a distributed ledger where each
node stores a copy of all data, which gives rise to storage issues. It is well-known that the tremendous
storage and distribution of the block data are common problems in blockchain systems. In the
literature, some types of secret sharing schemes are employed to overcome these problems. The secret
sharing method is one of the most significant cryptographic protocols used to ensure the privacy
of the data. The main purpose of this paper is to improve the recent distributed storage blockchain
systems by proposing an alternative secret sharing method. We first propose a secure threshold
verifiable multi-secret sharing scheme that has the verification and private communication steps
based on post-quantum lattice-based hard problems. We then apply the proposed threshold scheme
to the distributed storage blockchain (DSB) system to share transaction data at each block. In the
proposed DSB system, we encrypt the data block with the AES-256 encryption algorithm before
distributing it among nodes at each block, and both its secret key and the hash value of the block
are privately shared among nodes simultaneously by the proposed scheme. Thereafter, in the DSB
system, the encrypted data block is encoded by the Reed–Solomon code, and it is shared among nodes.
We finally analyze the storage and recovery communication costs and the robustness of the proposed
DSB system. We observe that our approach improves effectively the recovery communication cost
and makes it more robust compared to the previous DSB systems. It also improves extremely the
storage cost of the traditional blockchain systems. Furthermore, the proposed scheme brings to the
DSB system the desirable properties such as verification process and secret communication without
private channels in addition to the known properties of the schemes used in the previous DSB systems.
As a result of the flexibility on the threshold parameter of the scheme, a diverse range of qualified
subsets of nodes in the DSB system can privately recover the secret values.

Keywords: blockchain; distributed storage blockchain; verifiable secret sharing scheme

1. Introduction

Blockchain is an emerging technology that has many interesting real-world application areas such
as medical, energy, and financial. However, there are several restrictions on this recent technology.
The most significant one is the storage issue in blockchain systems since each node has to store a copy
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of all blocks. As time continues, storage is a huge problem because the number of blocks continuously
increases in blockchain systems. Secret sharing mechanisms have been used in blockchain systems to
share the data block and the secret values among nodes. They assist to strengthen the decentralization
and security of data in blockchain as it helps to distribute information in a decentralized way such that
the private information is protected from unauthorized access. By secret sharing method, blockchain
systems can store information so that every node stores a certain number of shares instead of the entire
body of data. Taking into account these benefits, the secret sharing method has vital importance in
blockchain systems.

Recently, the concept of distributed storage blockchain has been proposed to distribute the
storage costs by the secret sharing method among all nodes in the blockchain network (see for
instance [1–5]). In these works, some types of secret sharing methods such as Shamir’s secret sharing
in [4,5], multi-secret sharing in [1], and local secret sharing in [3] have been employed to distribute the
block data among nodes in the blockchain network. In this framework, we incorporate the threshold
verifiable multi-secret sharing scheme, AES encryption algorithm for privacy, and Reed–Solomon (RS)
code for encoding into the standard distribute storage blockchain to distribute privately the block data
among nodes in the blockchain network.

In medical systems, a lot of devices are connected to share remotely the patient data, to make a
decision on the health status of the patient, or to make research on the medical data anonymously.
This system is so-called the internet of medical things (IoMT). IoMTs need not only to decide on
machine learning tools but also to exchange private data with each other. The data exchange can
be done either with a central authority or in a decentralized manner. In the later one, blockchain is
recently utilized to deploy a practical solution for solving the privacy and security issues, where data
updates are stored as blockchain transactions in the system, see [6–11]. It seems that it is vital to find
new methods to enhance the privacy of the data stored in the blockchain ledger and to reduce the
amount of data stored by each IoMT device.

The main contributions of the paper are listed as follows. First, motivated by the previous secret
sharing methods introduced in [12,13], we enhance a threshold-based verifiable multi-secret sharing
(VMSS) scheme without private channels, which is one of the well-known secret sharing schemes in
cryptography. Second, inspired by the previous works [1–4], we apply the proposed threshold-based
VMSS scheme to the distributed storage blockchain (DSB) system to distribute block data among all
nodes in a blockchain network. We finally analyze the storage and recovery communication costs
and the robustness of the DSB system based on the VMSS scheme. The proposed method reduces the
recovery communication cost and improves robustness in the previous DSB systems. It also improves
significantly the storage cost of traditional blockchain systems. In addition to the desirable properties
of the previous schemes used in the DSB systems, the proposed scheme has the (quantum secure)
verification algorithm and secret communication without private channels. We also note that the
flexible threshold parameter of the proposed scheme eliminates a drawback of the previous DSB
systems on their recovery communication costs and robustness.

The remainder of the paper is structured as follows. In Section 2, we introduce brief history of
secret sharing schemes. In Section 3, we give the previous studies and background for distributed
storage blockchain systems. In Section 4, we propose a secure threshold-based VMSS scheme that
shares securely both a secret key and hash value among nodes in the blockchain system. In Section 5,
we incorporate the proposed VMSS scheme into the DSB system. We also explain the distributing and
recovering processes of the data block in the proposed DSB system. We finally analyze the storage and
recovery communication costs as well as the robustness of the proposed method. We notice that our
recovery communication cost and robustness are much better than the previous ones. We conclude the
paper in Section 6.
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2. Related Works

In this section, we mention the previous studies on the types of secret sharing schemes. A secret
sharing scheme is one of the most significant cryptographic protocols for sharing data securely. The first
secret sharing scheme was introduced in 1979 by Blakley [14] and Shamir [15], independently, which
are the threshold-based schemes. Shamir’s secret sharing scheme is based on polynomial interpolation
over finite fields while Blakley’s scheme is based on finite geometry.

A secret sharing scheme consists of a dealer D, a group P = {P1, P2, . . . , Pn} of n participants,
a secret space S, n share spaces S1, S2, . . . , Sn, a share computing procedure, and a secret recovering
procedure. The dealer D chooses a secret s from S, and computes a share of s (with the sharing
computing procedure) for each participant Pi and then gives the share to Pi for i ∈ {1, . . . , n}.
The sharing computing procedure and the secret s are known only by D, while the secret recovering
procedure is known by all participants in P . A set of participants who can recover s from their shares
is said to be an access set. Indeed, an access set is said to be a minimal access set if any of its proper
subsets cannot recover s from their shares. The set of all access sets is said to be an access structure of
a scheme.

The usual sharing scheme can only resist passive attacks but not active ones; that is, it is not secure
against the dishonest dealer and the malicious participants. Thus, the dealer and the participants
are generally assumed to be honest, however, this assumption is not realistic in real-life applications.
To eliminate this assumption, the first verifiable secret sharing (VSS) scheme has been introduced in
1985 by Chor et al. [16] by adding the verification algorithm to Shamir’s scheme, and later several VSS
schemes have been proposed in the literature (see [12,17–20]). In a VSS scheme, not only a dishonest
dealer but also a malicious participant can be easily detected utilizing the verification process. It can
be then said that a VSS scheme resists against two kinds of active attacks:

• Dishonest dealer can tamper with a share before sending it to participants in the
construction protocol.

• Any malicious participant can submit a fake share to the recovery protocol.

In 1995, He and Dawson [21] introduced the first multi-secret sharing (MSS) scheme based on
Shamir’s scheme that shares multiple secret values simultaneously. In an MSS scheme, only one
share is assigned to each participant (indeed, each participant needs to protect only one share) while
multiple secrets can be shared. Note that the size of the assigned share is almost the same as that of
each secret value.

Harn (1995) [22] introduced the first threshold-based verifiable multi-secret sharing (VMSS)
scheme that not only shares multiple secrets simultaneously but also detects the dishonest dealer
and participants. Moreover, several threshold-based VMSS schemes have been widely studied in the
literature (see [12,13,17,20]). It can be said that the VMSS schemes are secure against both passive and
active attacks.

In the usual secret sharing scheme, it is generally assumed that the shares are distributed and
collected by the dealer through secure channels. However, the establishment of secure channels
between the dealer and the participants has high requirements in the protocol. Thus, for the
secure communication between them in a public channel, several techniques were proposed in
the literature, one of which is public-key cryptography. For example, Hwang and Chang [23] and
Liu et al. [12] made use of the RSA public-key encryption algorithm [24] in their VMSS schemes for
secure communication while Zhao et al. [20] used the Diffie–Helman key exchange protocol [25] in
their practical VMSS scheme.

3. Preliminaries

In this section, the fundamental concepts of data storage in the blockchain systems are briefly
given. We start with the traditional blockchain system, and then we discuss the distributed storage
blockchain system.
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In the traditional blockchain system, every data block and the hash value pointing to the previous
block is stored by each node. It is formalized as follows. Let h1 and h2 be two hash functions.
Let c be a constant and H(0) = c. Let B(t) be the data block to be stored in the t-th block and
W(t) = (H(t−1), h2(B(t))), where H(t−1) = h1(W(t−1)) for t = 1, 2, 3, . . .. Every node in traditional
blockchain system stores all pairs B(t) and W(t) for t = 1, 2, 3, . . .. For example, when a block B(t0)

is created for some t0 by a node N, N needs to share the pair B(t0) and W(t0) with other nodes in
the blockchain network. Then, all nodes will have a copy of the block in their storage. This brings
a lot of storage costs for each node. Similarly, if a block is lost in a node, then it can be recovered
by accessing any node in the blockchain network and copying the data block and the hash value,
which is known as recovery communication cost. Hence, the traditional blockchain system has storage
and recovery communication costs proportional to the size of |B(t)|+ |W(t)| for each node N at each
block t. The maximum number of node failure which can be tolerated by the blockchain network is
called its robustness. It is easy to observe that the traditional blockchain network with n nodes has the
robustness n− 1.

The concept of distributed storage blockchain has been recently studied to reduce the storage cost
of traditional blockchain systems. First, Dai et al. [2] have adopted network coding to the notion of
distributed storage to reduce the storage space for distributed ledger in blockchain systems, and they
achieved significant improvement. Second, Raman and Varshney [4,5] have recently proposed the idea
of a distributed storage blockchain, which significantly decreases the storage of transactions by using
Shamir’s sharing scheme. In DSB, all nodes (say, n nodes exist) are divided into L distinct subsets
of equal size m, that is, let A = {A1, . . . , AL} be the partition of the set of n nodes, and n = m · L.
Each subset Al has the secret key K(t)

l to encrypt a block B(t) as m(t)
l = E

K(t)
l
(B(t)) for l = 1, . . . , L. Then,

m(t)
l is divided into m pieces and distributed to each node in Al . Besides, the secret key K(t)

l (the local
secret) and the hash value W(t) (the global secret) are shared to each node in Al by two independent
Shamir’s (m, m) sharing schemes. Their data distribution method is formalized in Algorithm 1.

Algorithm 1 DSB in [4,5]

Input. Given a partition A = {A1, . . . , A n
m
}

1: for l = 1 to n
m do

2: Generate the secret key K(t)
l .

3: Encrypt B(t) with K(t)
l as m(t)

l = E
K(t)

l
(B(t)).

4: Distribute and store m(t)
l among m peers in Al .

5: Store K(t)
l and W(t) by (m, m) Shamir’s sharing.

6: end for

As seen in Algorithm 1, in DSB, each node has |B
(t) |
m + 2|W(t)| storage cost and |B(t)|+ 2m|W(t)|

recovery communication cost at each block t since the secret key and the hash value may be recovered
by accessing m nodes in another subset. If the size of the hash value is extremely small compared to
the size of the data block, which is usually the case in real-life applications, then the storage cost of
traditional blockchain is excessively reduced by the DSB system. On the other hand, a single node
failure in a subset Al causes the loss of the key in Al and so, data in Al can not be reachable anymore.
This says that a blockchain network based on DSB with n nodes has robustness n

m − 1. We finally note
that a single node failure in every subset in DSB causes the loss of the blockchain data inevitably.

Recently, Kim et al. [3] have proposed a local secret sharing (LSS) scheme to improve the DSB
storage by using locally recoverable codes (LRC) [26] and trivial maximum distance separable (MDS)
codes [27] (Chapter 11). In particular, they first obtain the LSS scheme from LRC, and then LSS is used
suitably in DSB. In DSB with LSS, the hash value W(t) and the secret key K(t)

l are simultaneously shared
by LSS through all nodes in the blockchain network. Since a single error in an (n, k, m− 1)-LRC of
length n and dimension k can be recovered by (m− 1) correct symbols [26], then a single node failure
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in DSB with LSS can be tolerated by the blockchain network due to the proposed (m, m− 1)-threshold
LSS scheme. Right after, the encrypted data block is encoded by a trivial (m, m− 1)-MDS code, which
is a code with a single parity symbol. Hence, a blockchain network based on DSB with LSS has

robustness 2n
m − 1, and each node has |B

(t) |
m−1 + |W(t)| storage cost and |B(t)|+ (m− 1)|W(t)| recovery

communication cost at each block t.
Very recently, to improve the DSB system, Chen et al. [1] have proposed a low-storage scheme

with a multi-secret sharing (MSS) scheme based on polynomial interpolation. The DSB with MSS
divides the transaction block into multiple pieces and then stores them in different nodes, but it
does not encrypt the transaction block. It stores only data block but not secret key and hash value.
In this system, the block B(t) is to be shared between n parties. They first divide the block B(t) into
m equal length pieces denoted by b1, b2, . . . , bm such that their concatenation b1||b2|| . . . ||bm = B(t)

and m < n. The proposed MSS is based on recursion, and to encode the piece bi for i = 1, . . . m,
it generates a sharing polynomial gi(x) = bi + g(i−1,1)x + g(i−1,2)x2 + · · ·+ g(i−1,i)xi of degree i over a
finite field Fq, where q is a large odd prime greater than pieces bi and n. Then, it distributes the shares
gm(x1), gm(x2), . . . , gm(xn) to the corresponding nodes, where x1, x2, . . . , xn are the public indexes
of nodes. This scheme is an (n, m + 1)-threshold secret sharing since any m + 1 nodes or more can
reconstruct the block B(t), but no group of m or fewer nodes can do so. The reconstruction of this
scheme is an inverse process. Any m + 1 of nodes can first reconstruct a polynomial gm(x) of degree
m with the constant term bm, and then reconstruct recursively a polynomial gi(x) of degree i with
the constant term bi for i = 1, . . . , m − 1. Thereafter, the block B(t) is obtained by concatenating

b1||b2|| . . . ||bm = B(t). Hence, in DSB with MSS scheme [1], each node has |B
(t) |
m storage cost and |B(t)|

recovery cost, and its robustness is n−m− 1.

4. A Threshold-Based Verifiable Multi-Secret Sharing (VMSS) Scheme

In this section, we propose a secure threshold-based verifiable multi-secret sharing scheme
based on Feldman’s VSS scheme introduced in [19] (originally, based on Shamir’s threshold scheme
introduced in [15]).

4.1. Description of the Proposed Threshold-Based VMSS Scheme

Let n be a positive integer. Let D be the dealer and P = {P1, . . . , Pn} be a set of n participants.
Let the threshold be denoted by t with 2 ≤ t ≤ n. Let Fp be a finite field for a prime p > 2n− t + 1,
and F∗p = Fp \ {0}. Let F be a function on Fp. These parameters are generated cooperatively by D
and all participants. We now describe a secure (n, t)-threshold verifiable multi-secret sharing scheme
without private channels.

• Construction phase. Let two distinct secrets s0 and s1 in F∗p be given to be shared. The dealer D
performs the following steps.

– D chooses random elements ak ∈ Fp for k = 1, . . . , t− 1, and constitutes the (t− 1)-degree
polynomial f : Fp → Fp as f (x) = s0 + a1x + · · ·+ at−1xt−1.

– D commits all coefficients of f (x) by masking them with a function F , namely computes
C0 = F (s0), Ck = F (ak) for k = 1, . . . , t− 1. This commitment guarantees that no one can do
cheating in the scheme.

– D broadcasts the public commitments: (C0, . . . , Ct−1) for verification.
– D selects randomly distinct elements xi ∈ F∗p and computes the shares yi = f (xi) ∈ Fp for a

participant Pi for i = 1, . . . , n.
– D constitutes the polynomial

f1(x) =
n

∑
i=0

yi

n

∏
j=0,j 6=i

x− xj

xi − xj
(1)
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of degree n by using (n + 1) points (x0 = 0, y0 = s1), (x1, y1), . . . , (xn, yn) ∈ F2
p by the

Lagrange interpolation method.
– D encrypts yi with a public key encryption E as ci = EKi (yi) by using the public key Ki of Pi

for i = 1, . . . , n.
– D sends the pair (xi, ci) to the participant Pi in the public channel for i = 1, . . . , n.
– D selects randomly distinct elements xv ∈ F∗p\{x1, . . . , xn}, and evaluates f1(xv) for v ∈
{n + 1, . . . , 2n− t + 1}.

– D broadcasts the public points (xv, f1(xv)) for v ∈ {n + 1, . . . , 2n− t + 1}.

• Verification phase. Each participant Pi can perform the following verification operation to verify
her own share.

– Pi privately decrypts ci with the public key decryption algorithm D as yi = DK′i
(ci) by using

her own private key K′i for i = 1, . . . , n.
– Pi checks the validity of her share yi and its consistency with the public information, namely,

Pi verifies whether

F (yi) =
t−1

∏
k=0

(Ck)
xk

i . (2)

If the verification in (2) holds for every i = 1, . . . , n, then each yi is valid, and hence D is
assumed to be honest.

• Recovery phase. Suppose that any t authorized participants {Pj1 , . . . , Pjt} ⊆ P , where
{j1, . . . , jt} ⊆ {1, . . . , n}, can recover the shared secrets s0 and s1.

– Each Pjv encrypts her share yjv with a public key encryption E as zjv = EKD (yjv) by using the
public key KD of D, and sends the pair (xjv , zjv) to D in the public channels for v ∈ {1, . . . , t}.

– D decrypts zjv as yjv = DK′D
(zjv) by using her own private key K′D for every v ∈ {1, . . . , t}.

– D verifies the validity of each yjv by using the verification equation in (2) for every v ∈
{1, . . . , t}. If each share yjv is valid, then the points (xj1 , yj1), . . . , (xjt , yjt) are accepted from t
authorized participants.

– The authorized participants {Pj1 , . . . , Pjt} can cooperatively reconstruct the secret s0 by using
their private points (xjv , yjv) for v ∈ {1, . . . , t} from the following formula

s0 =
t

∑
v=1

yjv

t

∏
u=1,u 6=v

−xju
xjv − xju

. (3)

Similarly, by using their private points (xjv , yjv) for v ∈ {1, . . . , t} and (n − t + 1) public
points (xv, f1(xv)) for v ∈ {n + 1, . . . , 2n− t + 1}, they can cooperatively recover the secret s1

from the the following formula

s1 =
t

∑
v=1

yjv

t

∏
u=1,u 6=v

−xju
xjv − xju

2n−t+1

∏
w=n+1

−xw

xjv − xw

+
2n−t+1

∑
v=n+1

f1(xv)
t

∏
u=1

−xju
xv − xju

2n−t+1

∏
w=n+1,w 6=v

−xw

xv − xw
.

(4)

The proposed VMSS scheme has the following desirable properties to be applied in many practical
systems such as decentralized mechanisms.

• The proposed scheme can simultaneously share two secrets while storing only one share by
each participant.
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• Due to the verification algorithm (2) of the proposed scheme, both the dishonest dealer and
malicious participants can be easily detected. To be more precise, the dealer’s cheating can be
detected by a participant, and the dealer can detect any malicious participant.

• The dealer can securely communicate with participants through public channels since the shares
are encrypted with the public key encryption algorithm. Indeed, the proposed scheme realizes
secret sharing without a private channel, which is a very significant property in many practical
applications where a private channel is very hard to be established.

• The participants can reuse repeatedly their shares in another reconstruction round because the
employed function f (x) is fixed and the shares are encrypted by the public key algorithm.

Remark 1. Secret values s0 and s1 may have different threshold parameters, but we prefer to use the same
threshold t for both s0 and s1 in the proposed scheme.

We note that the proposed VMSS scheme has some assumptions on the securities of function
F , encryption E , and decryption D. In the literature, F is generally proposed to be the modular
exponentiation function, so the security of the verification process depends on the hardness of the
discrete logarithm problem (DLP). Similarly, for the encryption E and decryption D, the RSA public
key algorithm is generally proposed in the literature, and its security depends on the hardness of
the integer factorization problem (IFP). In the proposed VMSS scheme, the modular exponentiation
function and RSA public key algorithm may be preferred, respectively, for F , E , and D. In this case,
the security of the proposed scheme is based on two intractable problems DLP and IFP, which are
assumed to be hard problems at present. On the other hand, these intractable problems are not
quantum secure, and they can be broken by Shor’s algorithm on a quantum computer. Therefore,
we also suggest using quantum secure algorithms in the proposed scheme, which is rather important
for its usability in the post-quantum world.

4.2. Post-Quantum Secure Methods

Lattice-based cryptosystems are known to be quantum secure as there has no feasible (traditional
and quantum) attacks against them. Besides, lattices are so easy to implement in software and hardware
environments. Therefore, several secret sharing schemes based on lattices were proposed in [17,28–31].
For instance, the knapsack function Fb : Rd → R,

Fb(X = (X1, X2, ..., Xd)) = 〈X · b〉 =
d

∑
i=0

Xibi (5)

is proposed for the verification function in [31], where R = Zp[x]/g(x) for some irreducible polynomial
g(x) ∈ Zp[x] of degree N, prime p, and random b = (b1, b2, . . . , bd) ∈ Rd. It is known that finding the
inverse of Fb for any b ∈ Rd is as hard as solving the approximate shortest polynomial problem [32].

In this case, f (x) = a0 + a1x + · · · + at−1xt−1 is a polynomial over Rd such that ak ∈ Rd for
k = 0, . . . , t − 1, and f : Zp → Rd. Here, for simplicity, we denote s0 = a0. Then the verification
phase (2) is performed by the participants and the dealer from the public commitments Fb(ak) for
k = 0, . . . , t− 1 as follows

Fb(yi) = Fb(
t−1

∑
k=0

akxk
i ) = 〈

t−1

∑
k=0

akxk
i · b〉 =

t−1

∑
k=0
〈ak · b〉xk

i =
t−1

∑
k=0
Fb(ak)xk

i (6)

for i = 1, 2, . . . , n. Similarly, one can use lattice-based NTRU public key cryptosystem [33] for functions
E and D. Thus, the proposed VMSS becomes a lattice-based post-quantum scheme.
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4.3. Security Analysis of the Proposed VMSS Scheme

In this subsection, we analyze the correctness and the security of the proposed scheme in terms of
verifiability and privacy.

Theorem 1. The proposed (n, t)-threshold VMSS scheme satisfies the following three security requirements.

1. Correctness: Any t or more honest participants can correctly recover the secrets s0 and s1 if D is honest.
2. Verifiability: D cannot distribute a fake share to any participant, and any participant cannot submit a

false share to the recovery algorithm.
3. Privacy: Any group of less than t participants cannot reach the shared secrets s0 and s1.

Proof.

1. The correctness of the proposed scheme follows from the recovery formula given in (4).
2. The dishonest D and any malicious participant cannot pass through the verification process

given in (2) since the employed function F is secure against the known attacks. To be more
precise, when the verification function F is based on the usual modular exponentiation function,
its security depends on the DLP that is assumed to be a hard problem. Moreover, when F is the
lattice-based knapsack function given in (5), the security of the verification process depends on
the lattice-based hard problem that is assumed to be quantum secure.

3. An attacker cannot derive any private information from the public information in the proposed
scheme. The possible scenarios are explicitly explained below.

• An attacker cannot obtain any useful information about the committed secret values ak from
the public commitments C0 = F (s0) and Ck = F (ak) since F is a secure function based on
the DLP or lattice-based hard problem. Hence, an attacker cannot derive any information
about the polynomial f (x) from the public information.

• An attacker cannot obtain any useful information about the private share yi from the
encrypted shares ci = EKi (yi) and zjv = EKD (yjv) since the RSA algorithm and lattice-based
NTRU system are secure cryptosystems. Thus, public information does not leak any
information about the private shares of the participants.

• Even if an attacker corrupts up to (t− 1) authorized participants in the proposed scheme,
s/he still cannot get any useful information about the private share of any other honest
participant, and so cannot reconstruct the secrets s0 and s1.

Theorem 2. In the proposed (n, t)-threshold VMSS scheme, the verification is succeeded if D and participants
follow correctly the protocol.

Proof. Suppose that F is the modular exponentiation function. For simplicity, we assume s0 = a0 in
f (x). If D follows accurately the protocol, then we get the following

F (yi) = F ( f (xi)) = F (a0 + a1xi + · · ·+ at−1xt−1
i ) = F (a0)F (a1)

xi · · · F (at−1)
xt−1

i =
t−1

∏
k=0

(Ck)
xk

i

for every i = 1, . . . , n. If the participants follow accurately the protocol, then we get similarly the
following holds

F (yjv) =
t−1

∏
k=0

(Ck)
xk

jv
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for every v ∈ {1, . . . , t}. Suppose that Fb in (5) is used in the verification algorithm. Then,
the participants can verify their shares as given in [31] by checking

F (yi) = F ( f (xi)) =
t−1

∑
k=0
Fb(ak)xk

i ,

where Fb(ak) is the public commitment of the secret value ak for k = 0, . . . , t− 1. The proof is then
completed.

As a result of Theorems 1 and 2, we conclude that the proposed VMSS is a (post-quantum) secure
scheme against attackers and malicious users (that is, it resists both active and passive attacks).

5. DSB Based on the Proposed VMSS Scheme

In this section, we first incorporate the proposed threshold-based VMSS scheme into the original
DSB system to distribute privately transaction data. We then describe the distribution and recovery
processes of data at each block.

In the DSB system, each data block is stored in certain subsets of the set of all nodes by distributing
it among nodes in each subset. Assume that the setP = {P1, . . . , Pn} of n nodes in a blockchain network
is divided into n

m distinct subsets in A = {A1, . . . , A n
m
} and each subset has m participants. Assume

that each subset Al has the proposed (m, tl)-threshold VMSS scheme to share simultaneously the
global secret s0 and local secret sl for l = 1, 2, . . . , n

m . In the (m, tl)-threshold VMSS scheme of the subset
Al , {Pl,1, . . . , Pl,m} is a set of m participants, Dl is the dealer and tl is its own independent threshold
for l = 1, 2, . . . , n

m . We now incorporate the proposed VMSS scheme into the framework of the DSB
system in Algorithm 2.

Remark 2. In Algorithm 2, we assume t0 ≤ tl for all l = 1, . . . , n
m . Depending upon the applications of the

blockchain systems, we may assume tl ≤ t0 for some l = 1, . . . , n
m . In this case, to recover the global secret

s0, we need at least (t0 − tl) more participants, who may be selected among the rest of the participants of the
corresponding set or from the other subsets. For example, it may be assumed that each subset should collaborate
to reconstruct the global secret s0.

5.1. Storing Data Block

We here describe how to distribute and store transaction data at each block. To distribute
transaction data at each block, we first encrypt it by AES-256 for its confidentiality, then share
privately the hash value of the block by the proposed scheme for its integrity, and finally encode by
Reed–Solomon code.

Each subset Al for l = 1, . . . , n
m follows the following processes to distribute and store data at

each block. Each subset Al has the same data block B(t) and the same hash value W(t) of the t-th
block. Assume that W(t) ∈ Fp and B(t) ∈ Fq, where p is a prime whose size about 256 bit-length

and q is an extremely large prime. Each Al first generates the secret key K(t)
l ∈ Fp and then encrypts

the data block B(t) with the AES-256 symmetric key encryption algorithm using K(t)
l as m(t)

l =

E
K(t)

l
(B(t)). Here, the secret key K(t)

l (the local secret) and the hash value W(t) (the global secret)

are simultaneously shared among m nodes in Al by the proposed (m, tl)-threshold VMSS scheme,
introduced in Algorithm 2. Thereafter, the encrypted data m(t)

l is encoded into c(t)l by Reed–Solomon
code RS(m, tl) before distributing it among m nodes in Al . We note that RS-code is an example of
non-trivial MDS codes [27] (Chapter 11) and this coding process decreases the recovery communication
cost and enhances the robustness. Finally, the encoded data c(t)l are distributed to each node in Al so
that any tl authorized nodes in Al can reconstruct it in the recovery phase. The DSB with the proposed
VMSS scheme is summarized in Algorithm 3.
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Algorithm 2 The proposed (m, tl)-threshold VMSS scheme for DSB

Input. Given a partition A = {A1, . . . , A n
m
} and threshold parameters t0, tl with 2 ≤ t0 ≤ tl ≤ m

1: Set a global secret s0 ∈ F∗p, commit C0 = F (s0) and publish C0.
2: Generate random elements ak ∈ Fp, commit Ck = F (ak) and publish Ck for k = 1, . . . , t0 − 1.
3: Construct a global (t0 − 1)-degree polynomial f (x) = s0 + a1x + · · ·+ at0−1xt0−1.
4: for l = 1 to n

m do
5: Construction in Al : Dl performs the following steps.
6: for i = 1 to m do
7: Select distinct elements xl,i ∈ F∗p and evaluate the share yl,i = f (xl,i).
8: Encrypt yl,i as cl,i = EKl,i (yl,i) by using the public key Kl,i of Pl,i.
9: Send the pair (xl,i, cl,i) to Pl,i in the public channel.

10: end for
11: Set a local secret sl ∈ F∗p.
12: Construct a local m-degree polynomial fl(x) defined as in (1) for the secret sl .
13: for v = m + 1 to 2m− tl + 1 do
14: Select distinct elements xl,v ∈ F∗p, and evaluate fl(xl,v).
15: Broadcast the point (xl,v, fl(xl,v)).
16: end for
17: Verification in Al : Pl,i performs the following steps.
18: for i = 1 to m do
19: Decrypt cl,i as yl,i = DK′l,i

(cl,i) by using own private key K′l,i.

20: Verify F (yl,i) =
t0−1

∏
k=0

(Ck)
xk

l,i .
21: end for
22: Recovery in Al with (m, tl)-threshold VMSS scheme
23: for v = 1 to tl do
24: Pl,jv encrypts yl,jv as zl,jv = EKD (yl,jv) by using the public key KDl of Dl .
25: Pl,jv sends the pair (xl,jv , zl,jv) to Dl in the public channel.
26: Dl decrypts zl,jv as yl,jv = DK′D

(zl,jv) by using own private key K′Dl
.

27: Dl verifies the validity of each yl,jv as in Step 20.
28: if yl,jv is valid then accept the points (xl,jv , yl,jv)

29: else reject
30: end if
31: end for
32: By using the verified private points (xl,jv , yl,jv) for v ∈ {1, . . . , tl}, the global secret s0 can be

cooperatively recovered from the formula in (3). Here, at least t0 points can do it since t0 ≤ tl .
33: By using the verified private points (xl,jv , yl,jv) for v ∈ {1, . . . , tl} and the public points

(xl,v, fl(xl,v)) for v ∈ {m + 1, . . . , 2m− tl + 1}, the local secret sl can be cooperatively recovered

from the formula in (4).
34: return s0 and sl .
35: end for
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Algorithm 3 DSB based on the proposed (m, tl)-threshold VMSS

Input. Given a partition A = {A1, . . . , A n
m
}

1: Set the hash value W(t) = s0 ∈ Fp as the global secret.
2: for l = 1 to n

m do
3: Generate the secret key K(t)

l = sl ∈ Fp for the AES-256.
4: Encrypt B(t) with the AES-256 algorithm as m(t)

l = E
K(t)

l
(B(t)).

5: Share and store K(t)
l and W(t) among m nodes in Al by (m, tl)-threshold VMSS given in Algorithm 2.

6: Encode m(t)
l into c(t)l by RS(m, tl).

7: Distribute and store c(t)l among m nodes in Al .
8: end for

5.2. Recovering Data Block

The recovering method is an inverse process that is performed in a backward and first-out
manner. We below describe how to recover the shared data block at each block. For each subset
Al , where l = 1, . . . , n

m , the following steps are performed to recover the shared data at each block.

Each Al first reconstructs the encoded data c(t)l from the authorized tl nodes, then c(t)l is decoded by

Reed–Solomon code RS(m, tl), and hence Al gets the encrypted data m(t)
l . Thereafter, the authorized

tl nodes from Al can reach the hash value s0 = W(t) and its secret key sl = K(t)
l from the equation

in (4). Next, Al decrypts the encrypted data m(t)
l as B(t)

l = D
K(t)

l
(m(t)) with the AES-256 encryption

algorithm using its secret key K(t)
l , and hence gets the data block B(t) of the t-th block. Finally, Al

checks its integrity with the corresponding hash value W(t). Algorithm 4 formalizes how to recover
the shared data block B(t) of the t-th block.

Algorithm 4 Recovery algorithm for B(t) in the DSB based on VMSS

Input. Given a partition A = {A1, . . . , A n
m
}

1: for l = 1 to n
m do

2: Concatenate c(t)l from the authorized tl nodes in Al .
3: Decode m(t)

l from c(t)l by RS(m, tl).
4: Reconstruct both K(t)

l and W(t) by the proposed (m, tl)-threshold VMSS given in Alg. 2.
5: Decrypt m(t)

l with the AES-256 algorithm as B(t) = E
K(t)

l
(m(t)

l ).
6: Check the integrity of B(t) with the hash value W(t).
7: end for

5.3. Costs Analysis and Robustness for DSB Based on VMSS

In this subsection, we present the storage and recovery communication costs, and also the
robustness of the proposed DSB system. We note that they depend on the threshold parameter tl of
each subset Al for l = 1, 2, . . . , n

m .

We assume that the data block B(t) of the t-th block is stored in Fq, and the secret key K(t)
l and

the hash value W(t) are stored in Fp. In real-world applications, q is an extremely large prime when
comparing a prime p of size about 256 bit-length.

Storage cost. We compute the storage cost for each node at the t-th block. Algorithm 3 distributes
and stores the data block B(t), hash value W(t) and secret key K(t)

l in each subset Al . In Step 5, storing

both K(t)
l and W(t) by the proposed (m, tl)-threshold VMSS scheme has log2 p storage cost for each

node. In Step 7, the cost of storing m(t)
l encoding by RS(m, tl) to c(t)l among m nodes is equal to log2 q

tl
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for each node. Hence, the storage cost SVMSS of the proposed DSB based on VMSS for each node in Al
is equal to

SVMSS =
log2 q

tl
+ log2 p

bit operations.
Recovery communication cost. We first recall that a single node failure can be easily tolerated by

receiving the stored data from any node in the traditional blockchain. Moreover, a single node failure
in each subset can be recovered by accessing all nodes and (m− 1) nodes in the same subset for the
original DSB and the DSB based on LSS, respectively. In the proposed DSB based on (m, tl)-threshold
VMSS scheme, a single node failure in the subset Al can be recovered by accessing only tl nodes in Al .
Thus, the recovery communication cost CVMSS of the proposed DSB based on VMSS is equal to

CVMSS = tl · SVMSS = log2 q + tl log2 p

bit operations. Since 2 ≤ tl ≤ m, the recovery communication cost of the proposed system is much
better than that of both the original DSB in [4] and the DSB based on LSS in [3].

Robustness to node failures. We deal with the robustness of the proposed DSB system.
The robustness is defined as the maximum number of node failures which can be tolerated by the
blockchain network. A single node failure in each subset leads to an effective failure of all m nodes
in the original DSB while each subset can tolerate a single node failure in the DSB based on LSS.
The proposed DSB based on VMSS can tolerate node failures up to (m − tl) due to the employed
(m, tl)-threshold VMSS scheme in Al . This says that the proposed DSB recovers data block up to
(m− tl + 1) n

m − 1 node failures if (m− tl) nodes from one subset and (m− tl + 1) nodes from the
others are failed, which implies that the robustness of the proposed DSB system is much better than
that of both the original DSB in [4] and the DSB based on LSS in [3].

Remark 3. In the proposed DSB system, if (m− tl + 1) nodes from each subset Al are failed (indeed, there are
totally (m− tl + 1) n

m node failures), then data block cannot be recovered.

We summarize in Table 1 the comparison of the previous DSB systems and the proposed DSB
system in terms of storage and recovery communication costs, as well as robustness.

Table 1. Comparison of storage cost (SC), recovery communication cost (RCC), and robustness.

Costs Blockchain DSB in [4] DSB with LSS in [3] DSB with Proposed VMSS

SC log2 q + log2 q log2 q
m + 2 log2 p log2 q

m−1 + log2 p log2 q
tl

+ log2 p
RCC log2 q + log2 p log2 q + 2m log2 p + ρ log2 q + (m− 1) log2 p log2 q + tl log2 p

Robustness n− 1 n
m − 1 2n

m − 1 (m− tl + 1) n
m − 1

Remark 4. On the internet of medical things (IoMT), it is proposed that blockchain may be used for the
immutable storage of data in a decentralized way, see for instance [10,11]. This causes tremendous storage costs
in the blockchain nodes. By using the proposed (m, tl)-threshold VMSS scheme (Algorithm 3) for this case,
one can reduce the storage cost by a factor tl . In addition, the privacy of data does not depend on solely one node,
but at least tl nodes, that is, the data are leaked if at least tl nodes are fraudulent. Furthermore, any malicious
node sharing fake data in the threshold-based VMSS system can be identified by using either (2) or (6). As the
medical records have a high level of privacy for their owner, it seems that the proposed methods in this paper
would be a good candidate for practical applications.

6. Concluding Remarks and Future Works

In this paper, we first proposed a secure threshold-based verifiable multi-secret sharing scheme
without private channels, in which two secrets (secret key and the hash value of the block) are
simultaneously shared in a single sharing process among nodes in a blockchain network. We then
incorporate the proposed scheme into the distributed storage blockchain system to distribute and
store privately the data block. We finally analyzed the storage and recovery communication costs
and the robustness of the proposed DSB system. We observed that the proposed threshold scheme
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reduces effectively the recovery communication cost and makes it more robust compared to the
previous distributed storage blockchain systems. It also improves extremely the storage cost of the
traditional blockchain systems. We note that the proposed scheme brings to the DSB system secure
communication through the public channels and verification process based on the post-quantum
lattice-based hard problems.

It is worth noting that the proposed threshold-based VMSS scheme can be applied in many
practical systems such as decentralized mechanisms (authenticating an electronic voting protocol,
an electronic funds transfer, etc.) and all types of distributed storage systems. Our prospects for this
work can be listed as follows.

• The extensions of the proposed VMSS scheme to more general frameworks would be good
future work.

• Another research problem is to find the best suitable post-quantum encryption and verification
algorithms for the VMSS scheme that can improve the standard DSB systems. For example,
to design a new VMSS scheme based on a code-based post-quantum verification algorithm and
its integration into the DSB system would be interesting future works.

• The standard DSB systems consider the network coding, MDS codes, and LRCs to share storage
among nodes in a blockchain network. It would be a nice future work finding a better code family
to be used in the DSB systems so that it gives better storage and recovery communication costs.

• Deploying the proposed VMSS scheme into the real-world blockchain-based systems such as
IoMT can be considered as a new research direction.
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