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Abstract: Low-coverage next-generation sequencing experiments assisted by statistical methods are
popular in a genetic association study. Next-generation sequencing experiments produce genotype
data that include allele read counts and read depths. For low sequencing depths, the genotypes
tend to be highly uncertain; therefore, the uncertain genotypes are usually removed or imputed
before performing a statistical analysis. It may result in the inflated type I error rate and in a
loss of statistical power. In this paper, we propose a mixture-based penalized score association
test adjusting for non-genetic covariates. The proposed score test statistic is based on a sandwich
variance estimator so that it is robust under the model misspecification between the covariates and the
latent genotypes. The proposed method takes advantage of not requiring either external imputation
or elimination of uncertain genotypes. The results of our simulation study show that the type I
error rates are well controlled and the proposed association test have reasonable statistical power.
As an illustration, we apply our statistic to pharmacogenomics data for drug responsiveness among
400 epilepsy patients.

Keywords: allele read counts; low-coverage; mixture model; next-generation sequencing; sandwich
variance estimator

1. Introduction

Genome-wide association study (GWAS) is a powerful tool for screening a high-dimensional
genome data set and selecting candidate genetic variants such as single nucleotide polymorphisms
(SNPs) in genetic association studies. Next-generation sequencing (NGS) technology is widely
used to produce a large amount of genetic information in a fast way. In the past decade,
there have been numerous studies using NGS data such as rare variants association study [1,2],
pharmacogenomics [3,4], machine learning and deep learning applications [5,6], and big data
analysis [7,8]. Many NGS experiments are based on low-coverage sequencing with a large sized sample
since there is a trade-off between sample size and sequencing depth in the NGS experiments [9,10].
For the low-coverage NGS data, a high uncertainty of the inferred genotypes is common; however,
it causes biased and unreliable results on genetic association analyses. In genetic research based on
NGS data, therefore, it is important to obtain accurate genotypes to perform an association analysis.

A number of researchers have worked on the effects of genotype misclassification in genetic
association studies. There are two types of genotype misclassifications: differential and non-differential
misclassifications, determined by whether the misclassification mechanism differs in the case and
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control groups or not. In summary, non-differential misclassifications result in a loss of statistical
power and differential misclassifications distort type I error rates in a genetic case-control association
study [11–14].

While there have been many research on improving the accuracy of genotypes such as the
joint genotype calling algorithms across all samples were suggested to increase the accuracy of
genotype calls [15–17], several researchers have tried to develop new association statistics accounting
for the genotype errors. Their approaches are based on the raw measurements rather than inferred
genotypes. In statistical genetics literature, Kim et al. [18] extended a chi-squared test of independence
and developed a mixture likelihood based association test using the continuous measurements for
copy number polymorphisms. Barnes et al. [19] proposed a mixture model linear trend test for the
continuous copy number measurements. In NGS experiments, a likelihood ratio test based on allele
read counts of pooled samples was proposed to test independence of genetic variants with a binary
phenotype [20]. Gordon et al. [21] proposed a likelihood ratio test of the binomial mixture model of
allele read counts with known error parameters. Kim et al. [13,22] proposed an extended version of
Cochran–Armitage (CA) trend test and a multi-variant linear trend test for next-generation sequences
data by using binomial mixture models. For a case-parent trio design, the binomial mixture model
was applied to develop extended transmission disequilibrium tests (TDTs) based on read counts and
read depths and to provide power analysis and sample size formulas [23]. All these approaches do not
require genotype calls that can be highly uncertain when the read depth or coverage is low. However,
none of these previous research has addressed how to include covariates in their mixture-based
association studies.

When the covariates are independent of the latent genotypes, the extension of the mixture model
based association tests is straightforward. However, if the latent genotype variable is associated with
other covariates, then a likelihood based approach requires a model specification between the genotype
variable and the other covariates as opposed to the previous research [16–23]. To our knowledge, this
is the first study that investigates a genetic case-control association test controlling for covariates in
low-coverage NGS experiments. Since we do not know the true model, we apply a sandwich variance
estimator to develop a robust genetic association test statistic.

2. Materials and Methods

2.1. Mixture Model Accounting for Covariates

Let w be a covariate vector. Let y be a random variable indicating the case-control status of an
individual such that y = 1 if a subject is in the case group and y = 0, otherwise. Let z = (z0, z1, z2)

denote an unobservable latent genotype vector, where ∑2
g=0 zg = 1 and zg = 1 if and only if the

genotype is equal to g. Let x and v denote the minor allele read count and the read depth, respectively.
The probability function is given by

p(y, x, v, w) = ∑
z

p(y, x, v, w, z)

= ∑
z

p(x|v, w, z, y)p(y|v, w, z)p(z|w, v)p(w, v) (1)

= p(w, v)∑
z

p(x|v, z, y)p(y|z, w)p(z|w).

If the probability function of the read count x does not depend on the phenotype y, that is,
p(x|v, z, y) = p(x|v, z), then it is called a non-differential error model. We apply a binary logit model
to the case-control phenotype response variable y that is the same model for Cochran–Armitage trend
test when perfect genotypes are available:

p(y|z, w) =
ey(βsTz+βT

ww)

1 + eβ0+βsTz+βT
ww

. (2)
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We assume a binomial error model to the allele read counts as in previous research [13,16,20,21,23]:

p(x|v, z, y) =

(
v
x

)(
uT

ε z
)x (

1− uT
ε z
)v−x

, (3)

where uε = (ε, 1/2, 1− ε)T . For a differential error model, we can use uε = y(ε1, 1/2, 1− ε1)
T +

(1 − y)(ε0, 1/2, 1 − ε0)
T . When perfect genotypes are available, we do not need the conditional

probability of the genotype z given covariates w to perform genetic association tests since the logistic
regression model is a conditional model given the genotypes and covariates. In this work, we assume
a multinomial logit model for the latent genotype given the covariates as follows:

p(z|w) =
∑2

g=0 zgeγT
g w

∑2
m=0 eγT

mw
, (4)

where γ0 = (0, 0, 0)T to remove over-parametrization. Other statistical models without the
assumptions of a multinomial logit model may also be used for the relationship between covariates
and latent genotypes, where we do not know the true model.

The likelihood function L and the log-likelihood function ` are written as

L =
N

∏
k=1

[
∑
zk

p(yk|zk, wk)p(xk|vk, zk, yk)p(zk|wk)p(wk, vk)

]

=
N

∏
k=1

2

∑
i=0

{(
eyk(βsi+βT

wwk)

1 + eβsi+βT
wwk

)((
vk
xk

)
(uεi)

xk (1− uεi)
vk−xk

)(
eγT

i wk

∑2
m=0 eγT

mwk

)
p(wk, vk)

}
, (5)

` =
N

∑
k=1

log

[
2

∑
i=0

{(
eyk(βsi+βT

wwk)

1 + eβsi+βT
wwk

)(
(uεi)

xk (1− uεi)
vk−xk

)( eγT
i wk

∑2
m=0 eγT

mwk

)}]

+
N

∑
k=1

log
(

vk
xk

)
p(wk, vk). (6)

The error parameter ε is commonly small and hence the estimate of ε is often equal to zero. The zero
estimate of the error parameter results in a divergent information matrix. It prevents us from calculating
Rao’s score test statistic. In order to overcome this issue, we include a beta density penalty term to
prevent from zero estimate of the error parameter. The penalized log-likelihood function is given by

`p = `+ C log
[
εaε(1− ε)bε

]
. (7)

During this work, we choose C = 1 as in [24,25]. The penalized complete-data likelihood function is
given by

LC =
N

∏
k=1

2

∏
i=0

[
eyk(βsi+βT

wwk)

1 + eβsi+βT
wwk
×
(

vk
xk

)
(uεi)

xk (1− uεi)
vk−xk ε

aε
N (1− ε)

bε
N × eγT

i wk

∑2
m=0 eγT

mwk

]zik

(8)

The complete data log-likelihood function is written as

`C =
N

∑
k=1

2

∑
i=0

zik

[
yk(βsi + βT

wwk)− log
(

1 + eβsi+βT
wwk
)]

+
N

∑
k=1

2

∑
i=0

zik [xk log(uεi) + (vk − xk) log(1− uεi)] + aε log ε + bε log(1− ε) (9)

+
N

∑
k=1

2

∑
i=0

zik

[
γT

i wk − log

(
2

∑
m=0

eγT
mwk

)]
.
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2.2. Derivation of EM Algorithm under H0

We apply the Expectation–Maximization (EM) algorithm [26] to estimate the parameters in our
mixture model. Given data and the (r)-th step estimated parameters, the (r + 1)-th E-step of the EM
algorithm is written as

Q(r+1) =
N

∑
k=1

2

∑
i=0

τ
(r)
ik

[
yk(βsi + βT

wwk)− log
(

1 + eβsi+βT
wwk
)]

+
N

∑
k=1

2

∑
i=0

τ
(r)
ik [xk log(uεi) + (vk − xk) log(1− uεi)] + aε log ε + bε log(1− ε) (10)

+
N

∑
k=1

2

∑
i=0

τ
(r)
ik

[
γT

i wk − log

(
2

∑
m=0

eγT
mwk

)]
,

where

τ
(r)
ik =

(
eyk(β(r)si+β

(r)T
w wk)

1+eβ(r)si+β
(r)T
w wk

)(
(u(r)

εi )
xk (1−u(r)

εi )
vk−xk

) e
γ
(r)T
i wk

∑2
m=0 eγ

(r)T
m wk


∑2

g=0

( eyk(β(r)sg+β
(r)T
w wk)

1+eβ(r)sg+β
(r)T
w wk

)(
(u(r)

εg )
xk (1−u(r)

εg )
vk−xk

) e
γ
(r)T
g wk

∑2
m=0 eγ

(r)T
m wk

 . (11)

We note that the posterior probability of subject k belonging to genotype class i depends on the all
parameters. In M-step, the (r + 1)-th estimates of the parameters are obtained by maximizing Q(r+1):

∂Q(r+1)

∂β
=

N

∑
k=1

2

∑
i=0

τ
(r)
ik si (yk − πik) = 0 (12)

∂Q(r+1)

∂βw
=

N

∑
k=1

2

∑
i=0

τ
(r)
ik wk (yk − πik) = 0 (13)

∂Q(r+1)

∂ε
=

N

∑
k=1

[
τ
(r)
0k

(
xk
ε
− vk − xk

1− ε

)
+ τ

(r)
2k

(
vk − xk

ε
− xk

1− ε

)]
+

aε

ε
− bε

1− ε
= 0 (14)

∂Q(r+1)

∂γi
=

N

∑
k=1

wk

(
τ
(r)
ik − pik

)
= 0, (15)

where we use notations πik = πik(β, βw) = eβsi+βT
wwk

1+eβsi+βT
wwk

and pik = pik(γ1, γ2) = eγT
i wk

∑2
m=0 eγT

mwk
for

simplicity. From Equation (14), we derive a closed form iteration formula to update the allele read
error parameter ε:

ε(r+1) =
∑N

k=1

[
τ
(r)
0k xk + τ

(r)
2k (vk − xk)

]
+ aε

∑N
k=1

[
(τ

(r)
0k + τ

(r)
2k )vk

]
+ aε + bε

. (16)

There is no closed form iteration formulas to update other parameters β, βw, γi. The M-step
for β, βw, and γ can be obtained by the Newton–Raphson method. The Hessian matrix of Q(r+1) is
given by

∂2Q(r+1)

∂β2 = −
N

∑
k=1

2

∑
i=0

τ
(r)
ik s2

i [πik(1− πik)] (17)

∂2Q(r+1)

∂β∂βw
= −

N

∑
k=1

2

∑
i=0

τ
(r)
ik siwk [πik(1− πik)] (18)
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∂2Q(r+1)

∂βw∂βT
w

= −
N

∑
k=1

2

∑
i=0

τ
(r)
ik wkwT

k [πik(1− πik)] (19)

∂2Q(r+1)

∂γi∂γT
i

= −
N

∑
k=1

wkwT
k [pik(1− pik)] (20)

∂2Q(r+1)

∂γi∂γT
j

=
N

∑
k=1

wkwT
k

[
pik pjk

]
(21)

∂2Q(r+1)

∂γi∂βT
w

=
∂2Q(r+1)

∂γi∂β
= 0 (22)

Let M = diag
(

∑2
i=0 τikπik(1− πik)

)
be an N × N diagonal matrix. Let W = (wik) be the N × p

matrix of covariates. Let µ be an N× 1 vector of µk = ∑ik τikπik and Y be an N× 1 vector of yk. Initially,
we set β[0] = β(r) and update the parameter estimate by

β[t+1] = β[t] + (WT MW)−1WT(Y− µ). (23)

Let D11 = diag (p1k(1− p1k)) , D12 = D21 = −diag (p1k p2k), and D22 = diag (p2k(1− p2k)). Let
τi = (τik) be the N × 1 vector and pi = (pik) be the N × 1 vector. Initially, set γ

[0]
i = γ

(r)
i and update

the parameters γi by(
γ
[t+1]
1

γ
[t+1]
2

)
=

(
γ
[t]
1

γ
[t]
2

)
+

(
WT D11W WT D12W
WT D21W WT D22W

)−1(
WT(τ1 − p1)

WT(τ2 − p2)

)
. (24)

In order to obtain β
(r+1)
w and γ

(r+1)
i , we stop the iterations in the M-step for β and γi when ||β[t+1] −

β[t]||2 + ||γ[t+1]
1 − γ

[t]
1 ||2 + ||γ

[t+1]
2 − γ

[t]
2 ||2 ≤ tol2 or the number of iterations reaches the prespecified

maximum number of iterations. In our work, we set tol = 10−6 and fix the maximum iteration as 1000.

2.3. Hypothesis Tests of Genetic Association Controlling for Covariates

To test genetic association between the latent genetic variables and the binary response variable
while controlling covariates, we employ Rao’s score test. There are several advantages for the use
of the score test. Cochran-Armitage trend test with perfect genotypes is a score test, and we extend
this test to when the genotypes are highly uncertain. The score test requires less computational cost
compared to the likelihood ratio test since it requires the parameter estimates only under the null
hypothesis of no association. The score function calculated in previous section is given by

S =
N

∑
k=1

2

∑
i=0

τik(0)si

yk −
eβT

w(0)wk

1 + eβT
w(0)wk

 (25)

where the subscript (0) denotes the estimated parameter under the null hypothesis. Another important
issue to be considered when we include the covariates in a low-coverage next-generation sequencing
genetic association study is a model misspecification of the latent genotypes on the covariates.
To overcome this model misspecification problem, we employ the sandwich variance estimator [27].
In this work, we derive a robust generalized score test using the sandwich variance–covariance
estimator. In general, one of the difficulties in applying the sandwich estimator in practice is that it
requires analytic derivation for the covariance matrix of the proposed model. For simplicity in our
derivation of the sandwich variance estimator, θ denotes the vector of all parameters θ = (β, βw, γ, ε),
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and φ = (βw, γ, ε) denotes the parameter vector except β, and hence θ = (β, φ). The sandwich variance
estimator for the score function S under H0 is given by

vs = Vββ −Vβφ J−1
φφ Jφβ − Jβφ J−1

φφ Vφβ + Jβφ J−1
φφ Vφφ J−1

φφ Jφβ, (26)

where V = E f0

[
∂`
∂θ

∂`
∂θ

T]
and J = −E f0

[
∂2`

∂θ∂θT

]
under the unknown true distribution f0. For simplicity,

we may use hik during derivation of the sandwich variance estimator:

hgk =

(
eyk(βsg+βT

wwk)

1 + eβsg+βT
wwk

)((
uεg
)xk
(
1− uεg

)vk−xk
)( eγT

g wk

∑2
m=0 eγT

mwk

)
, (27)

so that the likelihood function is written as

` =
N

∑
k=1

log

[
2

∑
g=0

hgk

]
+ C. (28)

The relationship between J and V can be written as

J =
1
N

N

∑
k=1

[
2

∑
g=0

τgk
∂

∂θ
log hgk

] [
2

∑
g=0

τgk
∂

∂θT log hgk

]

− 1
N

N

∑
k=1

2

∑
g=0

τgk

[(
∂

∂θ
log hgk

)(
∂

∂θT log hgk

)
+

∂2

∂θ∂θT log hgk

]
(29)

= V − 1
N

N

∑
k=1

2

∑
g=0

τgk

[(
∂

∂θ
log hgk

)(
∂

∂θT log hgk

)
+

∂2

∂θ∂θT log hgk

]

If there is no model misspecification, we have J = V and the robust score test statistic
is reduced to Rao’s score test statistic. We denote the difference R = V − J so that
R = 1

N ∑N
k=1 ∑2

g=0 τgk

[(
∂
∂θ log hgk

) (
∂

∂θT log hgk

)
+ ∂2

∂θ∂θT log hgk

]
. The components of ∂

∂θ log hgk are
calculated by

∂

∂β
log hgk = sg[yk − πk] (30)

∂

∂βw
log hgk = wk[yk − πk] (31)

∂

∂ε
log hgk = δg(0)

[
Xk
ε
− Vk − Xk

1− ε

]
+ δg(2)

[
Vk − Xk

ε
− Xk

1− ε

]
+

aε

Nε
− bε

N(1− ε)
(32)

∂

∂γi
log hgk = wk [I(g = i)− pik] , (33)

where δg(i) = 1 if g = i and δg(i) = 0 if g 6= i. It is straightforward to calculate V from the above first

derivatives. The second term ∂2

∂θ∂θT log hgk of R has components as

∂2

∂β2 log hgk = −s2
gπk(1− πk) (34)

∂2

∂βw∂βT
w

log hgk = −wkwT
k πk(1− πk) (35)

∂2

∂βw∂β
log hgk = −wksgπk(1− πk) (36)

∂2

∂γi∂γT
i

log hgk = −wkwT
k pik(1− pik) (37)
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∂2

∂γi∂γT
3−i

log hgk = wkwT
k pik p3−i,k (38)

∂2

∂ε2 log hgk = −
(

δg(0)
[

Xk
ε2 +

Vk − Xk
(1− ε)2

]
+ δg(2)

[
Vk − Xk

ε2 +
Xk

(1− ε)2

]
+

aε

Nε2 +
bε

N(1− ε)2

)
, (39)

where i = 1 or 2. All other second derivatives that are not presented are equal to zero. Using these first
and second derivatives of log hgk, we can obtain the components of the difference matrix R as follows:

Rββ =
1
N

N

∑
k=1

2

∑
g=0

τgks2
g

[
(yk − πk)

2 − πk(1− πk)
]

(40)

Rβw β =
1
N

N

∑
k=1

2

∑
g=0

τgksgwk

[
(yk − πk)

2 − πk(1− πk)
]

(41)

Rβw βw =
1
N

N

∑
k=1

wkwT
k

[
(yk − πk)

2 − πk(1− πk)
]

(42)

Rεε =
1
N

N

∑
k=1

(
τ0k

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1− ε

]2
+ τ1k

[
aε

Nε
− bε

N(1− ε)

]2

+τ2k

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1− ε

]2
− τ0k

[
Xk + aε/N

ε2 +
Vk − Xk + bε/N

(1− ε)2

]
(43)

−τ1k

[
aε

Nε2 +
bε

N(1− ε)2

]
− τ2k

[
Vk − Xk + aε/N

ε2 +
Xk + bε/N
(1− ε)2

])
Rβε =

1
N

N

∑
k=1

[yk − πk]

(
τ0ks0

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1− ε

]
+ τ1ks1

[
aε

Nε
− bε

N(1− ε)

]
+τ2ks2

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1− ε

])
(44)

Rβwε =
1
N

N

∑
k=1

wk[yk − πk]

(
τ0k

[
Xk + ε/N

ε
− Vk − Xk + bε/N

1− ε

]
+ τ1k

[
aε

Nε
− bε

N(1− ε)

]
+τ2k

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1− ε

])
(45)

Rγiγi =
1
N

N

∑
k=1

wkwT
k [(τik − pik)(1− 2pik)] (46)

Rγ1γ2 =
1
N

N

∑
k=1

wkwT
k [p1k(p2k − τ2k) + p2k(p1k − τ1k)] (47)

Rγi β =
1
N

N

∑
k=1

wk(yk − πk)

[
τiks1 − pik

2

∑
g=0

τgksg

]
(48)

Rγi βw =
1
N

N

∑
k=1

wkwT
k (yk − πk) [τik − pik] (49)

Rγ1ε =
1
N

N

∑
k=1

wk

(
−p1kτ0k

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1− ε

]
+(1− p1k)τ1k

[
aε

Nε
− bε

N(1− ε)

]
(50)

−p1kτ2k

[
Vk − Xk + aε/N

ε
− Xk + bε/N

1− ε

])
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Rγ2ε =
1
N

N

∑
k=1

wk

(
−p2kτ0k

[
Xk + aε/N

ε
− Vk − Xk + bε/N

1− ε

]
− p2kτ1k

[
aε

Nε
− bε

N(1− ε)

]
+(1− p2k)τ2k

[
Vk − Xk + ε/N

ε
− Xk + bε/N

1− ε

])
(51)

Therefore, our proposed robust score test statistic ZR can be written as

ZR =
S√
Nvs

, (52)

which asymptotically has a standard normal distribution under H0.
Another common approach to obtain p-values is to use Monte Carlo permutation method based

on the score vector or function. However, the Monte Carlo permutation p-value calculation given
a very small Bonferroni’s corrected level of significance needs high computational expenses since it
requires at least 107 or 108 permuted resamples. In this work, we employ the asymptotic permutation
p-value calculation. The score function is given by

S =
N

∑
k=1

2

∑
i=0

τik(0)si

yk −
eβT

w(0)wk

1 + eβT
w(0)wk


=

N

∑
k=1

rkek (53)

where the subscript (0) denotes the estimated parameter under the null hypothesis. We define

a score rk = ∑2
i=0 τik(0)si associated with subject k and the kth residual ek =

(
yk − e

βT
w(0)wk

1+e
βT

w(0)wk

)
.

We can permute the residuals ek’s to calculate the permutation p-value for adjusting covariate effects.
The asymptotic permutation test statistic ZAP for a large sample size is given by

ZAP =
S− N · r · e√

1
N−1

[
∑N

i=1 e2
i − N(e)2

] [
∑N

i=1 r2
i − N(r)2

] (54)

where r = 1
N ∑N

i=1 ri and e = 1
N ∑N

i=1 ei. The simple linear rank test statistic ZAP asymptotically has a
standard normal distribution under the null hypothesis [28].

3. Results

3.1. Simulation Study

In this section, we simulate data from the following process:

P(Y = 1|w) f (w) =
2

∑
i=0

P(Y = 1|G = i, w)P(G = i) f (w) (55)

For simplicity, we assume genetic relative risk Ri =
P(Y=1|G=i,w)
P(Y=1|G=0,w)

, for i = 1, 2, does not depend on
the covariate W. We assume that the genotype frequency πi = P(G = i) satisfies Hardy–Weinberg
equilibrium (HWE), so that P(G = 0) = p2, P(G = 1) = 2pq, and P(G = 2) = q2, where q is the minor
allele frequency. Then, the prevalence is given by

φ =
∫

P(Y = 1|w) f (w)dw

=
∫ [

p2 f (w|G = 0) + 2pqR1 f (w|G = 1) + q2R2 f (w|G = 2)
]

P(Y = 1|G = 0, w)dw (56)
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We consider two scenarios when generating covariates w: (1) f (w|G = i) is equal to a standard normal
N(0, 1) for all i = 0, 1, 2, called by a single normal, and (2) f (w|G = i) has a normal distribution with
mean µi and standard deviation σ = 1, we call this a normal mixture. For the single normal model,

φ =
[

p2 + 2pqR1 + q2R2

] ∫
P(Y = 1|G = 0, w) f (w)dw (57)

We finally assume P(Y = 1|G = 0, w) = eα+βww

1+eα+βww . During the simulation study, we compute α by
numerical integration given prevalence φ and other parameters.

3.1.1. Simulation Study for Null Distribution

To evaluate the type I error rate of the proposed test statistic, we perform simulations with
5000 replicates per each parameter setting. We fixed the proportion of cases as 0.5. The parameter
settings that we consider are:

(i) Prevalence (φ): 0.1, 0.3
(ii) Coverage (v): 4, 30
(iii) Minor allele frequency (q): 0.05, 0.3
(iv) Total sample size (n): 500, 1000, 1500
(v) Covariate (w1): single normal or normal mixture with mean µ = (0, 1

2 , 1
2 ) given genotype

(0, 1, 2)
(vi) Regression coefficient βw: 0, 1

We consider prevalence φ = 0.3 that may be large in a genetic association study. It is chosen to
reflect pharmacogenomics data that we use in the real data analysis.

Figure 1 shows boxplots of the null simulations. The permutation method appears to have
more variability of the empirical rejection rates over different configurations and to have the smaller
empirical rejection rates compared to the proposed robust score test based on the sandwich variance
estimator. When the sample size was small as 500 and the coverage was 4×, the permutation-based
test had less than 2.5% rejection rate though the desired value is 5%. The smallest empirical rejection
rate for the proposed robust test was greater than 3.5%, and it appears the empirical rejection rates
become closer to 5% as the sample size increases. If the coverage is 30× or higher, then the estimated
posterior probabilities in our approach are close to zero-or-one and most inferred genotypes are quite
clear. When the coverage was 30×, our proposed test seems to well control the type I error rates
regardless of other parameter settings as expected. Table 1 shows the empirical rejection rates under
the null settings by combining our simulation results for the lower level of significance.

Table 1. Empirical rejection rates under null settings for level 1× 10−2, 1× 10−3, 1× 10−4, and 1× 10−5.

Method (cvrg) 1 × 10−2 1 × 10−3 1 × 10−4 1 × 10−5

Permutation (4×) 7.13× 10−3 6.14× 10−4 4.44× 10−5 0
Permutation (30×) 7.73× 10−3 7.08× 10−4 6.11× 10−5 5.56× 10−6

Sandwich (4×) 8.34× 10−3 6.89× 10−4 4.44× 10−5 5.56× 10−6

Sandwich (30×) 1.02× 10−2 1.01× 10−3 8.75× 10−5 8.33× 10−6

3.1.2. Simulation Study for Statistical Power

We used the same parameter settings as in the null simulation study. Additionally, we set
multiplicative genetic relative risks vector (1, 1.5, 1.52) in the alternative parameter configurations.
In the alternative simulations, we calculated empirical rejection rates under Bonferroni corrected
level of significance, that is, 5× 10−8. Figure 2 shows the boxplots of empirical power under various
alternative settings. We removed the results when the sample size was 500 or the minor allele frequency
was 0.05 since all the rejection rates were small in Figure 2. It appears interesting that the power of the
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proposed test when the coverage was 4× and the sample size was 1500 is higher than the power of the
test when the coverage was 30× and the sample size was 1000. If the two design costs are similar, then
the low-coverage with more samples seems more effective than the high-coverage with less samples.

500.4 1000.4 1500.4 500.30 1000.30 1500.30
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Figure 1. Boxplot of the empirical rejection rates under the null hypothesis.
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Figure 2. Boxplots of statistical power of the proposed robust test under the alternative settings.
The level of significance was set as 5× 10−8. The notation 0.1.1000.4 represents prevalence 0.1, total
sample size 1000, and coverage 4×.

Table 2 summarizes statistical power of our proposed method and a naive approach. The naive
approach uses uncertain genotypes by the maximum posterior probability classification rule [29].
The standard logistic regression was applied to the uncertain genotypes. As expected, the proposed
robust method shows higher power than the naive approach when the sequencing coverage is as low
as 4×. When the sequencing coverage is high as 30×, two approaches show similar performance in
terms of statistical power.
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Table 2. Empirical rejection rates under alternative hypothesis. The level of significance was set as
5× 10−8.

Coverage Total Sample Size Covariate βw Naive Proposed

4 1000 Normal mixture 0 0.102 0.113
4 1000 Normal mixture 1 0.233 0.261
4 1000 Single normal 0 0.190 0.277
4 1000 Single normal 1 0.269 0.374
4 1500 Normal mixture 0 0.398 0.429
4 1500 Normal mixture 1 0.657 0.701
4 1500 Single normal 0 0.626 0.741
4 1500 Single normal 1 0.736 0.840

30 1000 Normal mixture 0 0.384 0.355
30 1000 Normal mixture 1 0.617 0.603
30 1000 Single normal 0 0.622 0.637
30 1000 Single normal 1 0.734 0.760
30 1500 Normal mixture 0 0.792 0.761
30 1500 Normal mixture 1 0.959 0.954
30 1500 Single normal 0 0.933 0.939
30 1500 Single normal 1 0.978 0.978

3.2. Real Data Analysis

The proposed robust generalized score test was applied to the pharmacogenomics data consisting
of 400 epilepsy patients [22]. The data were collected from several epilepsy clinics in Korea and were
genotyped for whole-exomes by NGS experiments [30]. All study participants followed the criteria
in [31] if the participants had drug-resistant (case group) or drug-responsive (control group) epilepsy.
We defined the drug resistance as the occurrence of at least four unprovoked seizures during the past
one year at the time of recruitment, with trials of two or more appropriate antiepileptic drugs (AEDs)
at maximal tolerated doses. Patients who underwent surgical treatment for drug-resistant epilepsy
were classified as having drug-resistant epilepsy, regardless of the surgical outcome. We excluded
some patients from the study if they were frequently in poor compliance with AED therapy and had
reported seizures with a questionable semiology. In addition, we defined the drug responsiveness as
complete freedom from seizures for at least one year up to the date of the last follow-up visit.

We included two non-genetic covariates in our association analysis. The two covariates were age
of patient and duration of epileptic seizures. The age variable was definitely independent of genetic
information, whereas duration variable may be associated with genetic variables. Due to the relatively
small sample size 400, we did not expect to find a significantly associated SNP controlling for the two
covariates. Therefore, instead of reporting a genome-wide association study, we illustrated the results
of a SNP with low read depths and a SNP with high read depths. For the low read depths example, we
selected a SNP from chromosome 1, which is rs3811406. The distribution of read depths for the SNP
was summarized in Table 3. More than 10% of the sample had five or less read depths and more than
30% of the sample had 10 or less read depths at the SNP. When applying our proposed mixture-based
association test, the test statistic value was zR = 2.864 and the p-value was p = 4.183× 10−3, while
the standard logistic regression analysis using pooled genotype calls had z = 2.601 and the p-value
p = 9.30× 10−3 that was more than twice the p-value of the proposed robust test.

Table 3. Distribution of read depths at rs3811406.

Read Depth v v ≤ 5 5 < v ≤ 10 10 < v ≤ 30 v > 30 Total

Frequency 43 86 95 176 400
Proportion 0.1075 0.215 0.2375 0.44 1
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In addition, we applied our proposed test to SNP rs4915154 at which all patients had 13× or
higher read depths and 85% patients had 25× or higher read depths. For this SNP, the proposed robust
test statistic was zR = 2.940 with p-value = 3.28× 10−3 and the multiple logistic regression with the
pooled genotype calls reported z = 2.963 with p-value = 3.05× 10−3. The two results were quite close,
as expected, due to high read depths at the SNP.

4. Discussion and Conclusions

In the present study, we developed the mixture-based genetic association tests adjusting the
effects of non-genetic covariates in low-coverage NGS data. In order to construct a robust test
statistic under model misspecification, we derived the sandwich variance estimator of the mixture
model. The proposed test statistic is calculated from allele read counts and read depths instead of
inferred genotypes so that we can apply this association test to low-coverage NGS data controlling for
non-genetic covariates without external imputation or elimination of uncertain genotypes. Another
important issue that we addressed in the present study is that the proposed test takes account
of potential dependence between latent genotypes and the non-genetic covariates. Regarding
computational cost, our proposed method is efficient because it is a generalized score test that uses the
estimates of the parameters only under the null hypothesis of no association. When the sequencing
depth is 4×, it takes around 1.2 s for sample size 500, 4 s for sample size 1000, and 9 s for sample
size 1500 to simulate a dataset and to calculate both test statistics ZAP and ZR. When the sequencing
depth is 30×, it takes approximately 0.13 s for sample size 500, 0.3 s for sample size 1000, and 0.53
s for sample size 1500. Time for these computations is measured based on a single core work of a
3.5 GHz Intel Xeon processor. As illustrated in the real data analysis section, the read depth is not
a fixed constant. Therefore, the computational time for real data is usually less than that for the
coverage 4× simulation setting. We used statistical software R, which is known to be slow. It would
be computationally beneficial to run our proposed methods in other faster program languages for a
high-dimensional genome-wide association study.

We applied the penalized likelihood method to avoid singularity of information matrix when
calculating the proposed score test statistic. Therefore, the penalty term is not necessary for a non-zero
estimate of the error parameter. During our work, we fixed the degree of penalization C = 1, aε = 0.01,
and bε = 0.99 that implies 1% of allele read error as prior information. This parameter choice does
not affect the proposed test statistic much since the likelihood function is merely changed when the
sample size is greater than 500. It may be of interest to find optimal values for the parameters of the
penalty term.

The simulation study confirms that the type I error rates of the proposed test are well controlled
under the various parameter settings. The proposed robust test appears to perform better than the
permutation based approach. Simulation results indicate that coverage 4× with sample size 1500
shows higher power as compared to coverage 30× with sample size 1000. Our method can be applied
to an NGS experimental design by simulations to select coverage and sample size given a fixed amount
of budget.

We presented a real data example in which the proposed test and multiple logistic regression
results are similar to one another if the sequencing depth is high, whereas the test results may differ
when the sequencing depth is low. This might have been caused because the proposed test is an
extension of the multiple logistic regression with the unobserved latent genotype predictor. If the
sequencing depth is high enough to call accurate genotypes, then our probability model becomes
identical to the probability model of the multiple logistic regression. It would be more beneficial
to compare with the previous methods by evaluating our proposed methods using a larger sized
public dataset.

In this work, we focused on a single variant association test while controlling covariates.
By adopting a multivariate mixture model, the proposed method can be extended to the multi-variant
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genetic association test including covariates. We can also extend the present method to differential
genotype misclassifications.
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