
mathematics

Article

Chaotic Synchronization Using a Self-Evolving
Recurrent Interval Type-2 Petri Cerebellar Model
Articulation Controller †

Tien-Loc Le 1,2 , Tuan-Tu Huynh 2,3, Vu-Quynh Nguyen 2 , Chih-Min Lin 3 and
Sung-Kyung Hong 1,*

1 Faculty of Mechanical and Aerospace, Sejong University, Seoul 143-747(05006), Korea; tienloc@sju.ac.kr
2 Department of Electrical Electronic and Mechanical Engineering, Lac Hong University, Bien Hoa 810000,

Vietnam; huynhtuantu@saturn.yzu.edu.tw (T.-T.H.); vuquynh@lhu.edu.vn (V.-Q.N.)
3 Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan; cml@saturn.yzu.edu.tw
* Correspondence: skhong@sju.ac.kr; Tel.: +82-02-3408-3772
† This paper is an extended version of our paper published in 2019 IEEE International Conference on System

Science and Engineering (ICSSE 2019), Dong Hoi, Vietnam, 20–21 July 2019; pp. 420–424.

Received: 2 December 2019; Accepted: 5 February 2020; Published: 9 February 2020
����������
�������

Abstract: In this manuscript, the synchronization of four-dimensional (4D) chaotic systems with
uncertain parameters using a self-evolving recurrent interval type-2 Petri cerebellar model articulation
controller is studied. The design of the synchronization control system is comprised of a recurrent
interval type-2 Petri cerebellar model articulation controller and a fuzzy compensation controller.
The proposed network structure can automatically generate new rules or delete unnecessary rules
based on the self-evolving algorithm. Furthermore, the gradient-descent method is applied to adjust
the proposed network parameters. Through Lyapunov stability analysis, bounded system stability
is guaranteed. Finally, the effectiveness of the proposed controller is illustrated using numerical
simulations of 4D chaotic systems.

Keywords: chaotic systems; self-evolving algorithm; interval type-2 fuzzy system; Petri nets;
cerebellar model articulation controller

1. Introduction

Recently, chaotic synchronization has attracted academic attention due to its nonlinear phenomena
characteristic. Recent studies have demonstrated that chaotic synchronization can be applied to
various disciplines, such as economics and chemistry as well as mechanical systems, information
systems, and electronic and communication systems [1]. In recent years, a number of real-life
applications have been studied by [2–6]. In 2016, Naderi and Kheiri proposed a secure-communication
method using the exponential synchronization of a chaotic system [2]. In 2017, Pappu et al.
presented an electronic implementation of Lorenz chaotic-oscillator synchronization for bistatic-radar
applications [3]. In 2019, Jayaprasath et al. introduced secure optical communication using chaotic
semiconductor lasers [4]. In addition, in 2019, Mandal and Das established chaos-based color
image encryption using microcontrollers [5]. In recent decades, various control methods have
been reported to synchronize master-slave chaotic systems, such as adaptive control [7], fuzzy
control [8], fuzzy-brain emotional-learning networks [9], sliding-mode control [10], and cerebellar
model articulation control [11]. However, the majority of these methods are complex, and the controlling
performance requires improvement.

The cerebellar model articulation controller (CMAC) is a type of neural network based on a model
of the mammalian cerebellum (associative memory), which was proposed by Albus [12]. Compared

Mathematics 2020, 8, 219; doi:10.3390/math8020219 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-9849-9297
https://orcid.org/0000-0002-1479-4791
http://dx.doi.org/10.3390/math8020219
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/219?type=check_update&version=2

Mathematics 2020, 8, 219 2 of 26

with other neural networks, CMAC is advantageous insofar that it has fast learning properties, simple
computations, and good generalization capabilities [13]. In the past decade, CMAC has been applied to
various fields, such as control systems [14–17], classification systems [18–20], signal processing [21–23],
and image processing [24,25]. Due to the work of Zadeh [26], fuzzy modeling and fuzzy control have
attracted many researchers since said methods can be used to convert problems into simple human terms.
The recent progress of fuzzy-control systems has eventuated in many novel results [27–33]. Similar to
the type-1 fuzzy system, the CMAC with type-1 membership functions (T1MFs) cannot effectively
deal with the uncertainty associated with system internalities and externalities [34]. To address these
uncertainties, type-2 membership functions (T2MFs) were introduced by Zadel [35]. Recent studies
have proven the superior effectiveness of T2MFs over T1MFs [36–38]. To reduce the computational
complexity of type-2 fuzzy logic systems (T2FLS), interval type-2 fuzzy logic systems (IT2FLS) were
established in 2000 by Liang and Mendel [39]. Recently, by combining the advantages of CMAC
and IT2FLS, the interval type-2 fuzzy CMAC (IT2CMAC) was developed and applied to various
fields [40–43].

Due to the work of Peterson and Looney [44,45], Petri nets (PNs) and fuzzy PNs (FPNs) have been
widely investigated in various fields [46–50]. A PN is a directed, weighted, and bipartite graph in which
each node is either a place or a transition. The transition nodes are enabled when the value of the inputs
connected to a transition that is greater than, or equal to, the threshold value [51]. In 2019, Rosdi et al.
proposed the speech intelligibility detection of children using an FPN-based classification method [46].
In 2018, Zhu et al. presented model-based fault identification using PNs [47]. In 2018, Hansen et al.
introduced a FPN for soccer-ball recognition and distance prediction [50]. As a special kind of PN,
FPNs have some advantages, such as simple in computation, intuitive and easy to understand [46].

The recurrent neural network (RNN) is a special kind of neural network that naturally comprises
feedback connections used as internal memories [52]. Many studies have used RNNs in their control
network design [53–57] due to their advantages of simple architecture and dynamic characteristics.
In 2018, Yen et al. proposed robust adaptive sliding-mode control using recurrent fuzzy wavelet neural
networks [54]. In 2016, Lin et al. introduced a piezo-flexural nanopositioning stage using a RNN and
intelligent integral backstepping sliding-mode control [55]. In 2016, Sharma et al. presented a robotic
manipulator using a RNN and an adaptive controller similar to proportional–integral–derivative
controllers [56]. In 2016, Wang et al. proposed a switched-reluctance motor-drive system using
adaptive recurrent CMAC [57].

To improve the work of [58], this paper incorporates the advantages of CMAC, IT2FLS, RNN, and
FPNs to propose a recurrent interval type-2 Petri cerebellar model articulation controller (RIT2PC).
However, similar to other neural networks, it is difficult to determine a suitable network size for
the RIT2PC to achieve the desired performance. The majority of studies used the trial-and-error
approach to obtain network size, but this method is not time-effective, and its performance requires
improvement. In the past, studies have provided self-organizing and self-evolving algorithms to
construct network structures autonomously [59–65]. In 2017, Lin et al. introduced a self-evolving
function-link interval type-2 fuzzy neural network for nonlinear system identification and control [60].
In addition, in 2017, Rong et al. proposed a self-evolving fuzzy model controller for hypersonic
vehicles [63]. In 2018, Ge and Zeng provided a self-evolving fuzzy system that can independently
learn dynamic threshold parameters [64]. Besides being able to automatically construct networks to
achieve optimal structure, the self-evolving algorithm also has disadvantages; for instance, choosing
the threshold to generate and delete rules significantly affects system performance [65]. This study
applies a self-evolving algorithm to establish the RIT2PC structure. Thus, the proposed controller has
the advantages of the aforementioned networks, but it has a better control performance. The main
contributions of this study include the following: successful development of a self-evolving RIT2PC
(SRIT2PC) control system; the online learning-parameter adaptation laws are obtained using the
gradient-descent method; the Lyapunov stability function is used to prove the stability of the proposed

Mathematics 2020, 8, 219 3 of 26

synchronization system; the effectiveness of the proposed control method is illustrated using numerical
experiments of four-dimensional (4D) chaotic systems.

This study is organized as follows: system description is given in Section 2; the architecture of the
proposed SRIT2PC is provided in Section 3; the illustrative examples are given in Section 4; finally,
conclusions are drawn in Section 5.

2. System Description

Consider the 4D Lorenz–Stenflo chaotic system, which was provided by Stenflo [66] as follows:

.
x1(t) = α(y1(t) − x1(t)) + γw1
.
y1(t) = τx1(t) − x1(t)z1(t) − λy1(t)
.
z1(t) = x1(t)y1(t) −ϕz1(t)
.

w1(t) = −x1(t) − αw1

(1)

where x1, y1, z1, and w1 are the master chaotic state variables; α, τ, λ, ϕ, and γ are the parameters for
defining the chaotic attractor:

α = (25θ+ 1)
τ = (26− 35θ)
λ = (1− 29θ)
ϕ =

(
2.1+θ

3

)
γ = (θ+ 1.5)

(2)

where θ used to define the feature of the chaotic system.
When the system uncertainties, external disturbances, and control inputs are under consideration,

Equation (1) can be rewritten as

.
x2(t) = α(y2(t) − x2(t)) + γw2 + dx(t) + ∆ f (x2) + ux(t)
.
y2(t) = τx2(t) − x2(t)z2(t) − λy2(t) + dy(t) + ∆ f (y2) + uy(t)
.
z2(t) = x2(t)y2(t) −ϕz2(t) + dz(t) + ∆ f (z2) + uz(t)
.

w2(t) = −x2(t) − αw2 + dw(t) + ∆ f (w2) + uw(t)

(3)

where, x2, y2, z2, and w2 are the slave chaotic state variables; dx(t), dy(t), dz(t), and dw(t) denote the
external disturbances; ∆ f (x2), ∆ f (y2), ∆ f (z2), and ∆ f (w2) denote the system uncertainties; ux(t),
uy(t), uz(t), and uw(t) denote the active control functions. The goal of the control system is to generate
the control signal, which can force the slave system, represented by Equation (3), to synchronize with
the master system, represented by Equation (1).

The tracking errors of synchronization between Equations (1) and (3) can be defined as

ex(t) = x2(t) − x1(t)
ey(t) = y2(t) − y1(t)
ez(t) = z2(t) − z1(t)

ew(t) = w2(t) −w1(t)

(4)

Thus, subtracting Equation (3) from Equation (1), yields

.
ex(t) = α

(
ey(t) − ex(t)

)
+ γew + dx(t) + ∆ f (x2) + ux(t)

.
ey(t) = τex(t) − λey(t) − x2(t)z2(t) + x1(t)z1(t) + dy(t) + ∆ f (y2) + uy(t)
.
ez(t) = x2(t)y2(t) − x1(t)y1(t) −ϕez(t) + dz(t) + ∆ f (z2) + uz(t)
.
ew(t) = −ex(t) − αew(t) + dw(t) + ∆ f (w2) + uw(t)

(5)

Mathematics 2020, 8, 219 4 of 26

Equation (5) can be rewritten as

.
e(t) = Ae(t) + d(t) + ∆f(t) + u(t) (6)

where e(t) =
[
ex(t), ey(t), ez(t), ew(t)

]T
; A =


−α α 0 γ

(τ− z1(t)) −1 −x2(t) 0
y1(t) x2(t) −ϕ 0
−1 0 0 −α


If the system dynamics and the external disturbance can be obtained, the design of the ideal

controller can be given by
u∗(t) = −Ae(t) −Ke(t) − d(t) − ∆f(t) (7)

where
.
e(t) = −Ke(t) and K = diag(k1, k2, k3, k4) is the feedback gain vector.

If K is selected to correspond to the coefficients of the Hurwitz polynomial, then lim
t→∞

e(t)→ 0 .

However, the ideal controller, which is represented by Equation (7), is generally unobtainable because
the external disturbance and system dynamics cannot be precisely known in practical applications.
Therefore, in this paper, an SRIT2PC is proposed to achieve the desired synchronization performance.

3. Architecture of SRIT2PC

The control scheme of the proposed SRIT2PC for the chaotic synchronization system is shown in
Figure 1. It consists of an SRIT2PC main controller and a fuzzy compensation controller. The high-order
sliding surface is applied to guarantee system stability and to achieve satisfactory control performance.

Mathematics 2020, 8, 219 4 of 26

() () () ()()tt t t t= + +Δ+ fe Ae d u (6)

where () (), (), (), ()
T

x y z wt e t e t e t e t = e ; ()1 2

1 2

0
() 1 () 0

() () 0
1 0 0

z t x t
y t x t

α α γ
τ

ϕ
α

− 
 − − − =  −
 

− −  

A

If the system dynamics and the external disturbance can be obtained, the design of the ideal
controller can be given by

* () () () () ()t tt t t= − − − − Δu K d fAe e (7)

where ()(t) t= −e Ke and ()1 2 3 4, , ,= diag k k k kK is the feedback gain vector.

If K is selected to correspond to the coefficients of the Hurwitz polynomial, then lim 0
t

(t)
→ ∞

→e .

However, the ideal controller, which is represented by Equation (7), is generally unobtainable
because the external disturbance and system dynamics cannot be precisely known in practical
applications. Therefore, in this paper, an SRIT2PC is proposed to achieve the desired synchronization
performance.

3. Architecture of SRIT2PC

The control scheme of the proposed SRIT2PC for the chaotic synchronization system is shown
in Figure 1. It consists of an SRIT2PC main controller and a fuzzy compensation controller. The high-
order sliding surface is applied to guarantee system stability and to achieve satisfactory control
performance.

Figure 1. Block diagram of self-evolving recurrent interval type-2 Petri cerebellar model articulation

controller (SRIT2PC) synchronization system.

3.1. Recurrent Interval Type-2 Petri CMAC

The fuzzy inference rules of the novel SRIT2PC are given as

1 1 2 2: , ...,

1, 2, ..., ; 1, 2, ..., ;
1, 2, ..., ; 1, 2, ..., ;

i ijk jk n n jk

jk jk jk

i j

k

Rule IF x is and x is and x is

Then w w w

for i n j n
k n nλ

λ μ μ μ

λ

 =  
= =

= =

  


(8)

where in , jn and kn denote the input dimension, the number of layers, and the number of blocks

in each layer, respectively; nλ denotes the total number of fuzzy rules, which is given by

Figure 1. Block diagram of self-evolving recurrent interval type-2 Petri cerebellar model articulation
controller (SRIT2PC) synchronization system.

3.1. Recurrent Interval Type-2 Petri CMAC

The fuzzy inference rules of the novel SRIT2PC are given as

Rule λ : IF x1 is µ̃1 jk and x2 is µ̃2 jk , . . . , and xni is µ̃ni jk

Then w̃ jk =

[
w

jk
w jk

]
f or i = 1, 2, . . . , ni; j = 1, 2, . . . , n j;
k = 1, 2, . . . , nk; λ = 1, 2, . . . , nλ;

(8)

where ni, n j and nk denote the input dimension, the number of layers, and the number of blocks in
each layer, respectively; nλ denotes the total number of fuzzy rules, which is given by nλ = n j ∗ nk; µ̃i jk
denotes the input membership function; w̃ jk denotes the output weight in the consequent part.

Mathematics 2020, 8, 219 5 of 26

The architecture of the SRIT2PC is composed of seven spaces, shown in Figure 2. The operation in
each space is outlined below.

Mathematics 2020, 8, 219 5 of 26

*j kn n nλ = ; ijkμ denotes the input membership function; jkw denotes the output weight in the

consequent part.
The architecture of the SRIT2PC is composed of seven spaces, shown in Figure 2. The operation

in each space is outlined below.

Figure 2. Structure of the SRIT2PC control system.

(1). Input space: The input signal is given as [], , ,..., ? i
T n

i i i ix x x x= … RX  . Herein, each input

state variable, ix , is directly propagated to the association memory space.
(2). Association memory space: Several elements can be accumulated as a block, with each block

performing a type-2 Gaussian membership function (T2GMF). Applying the ix signal from the
input space into the T2GMF, the membership grade can be given as

()2

2exp
2
ri ijk

ijk
ijk

I m
μ

σ

 − − =  
  

; ()2

2exp
2
ri ijk

ijk
ijk

I m
μ

σ

 − − =  
  

 (9)

() () (1)ri i ijk ijkI t t rx tμ= + − ; () () (1)ri i ijk ijkt t r tI x μ= + − (10)

where ijkμ and
ijkμ denote the lower and upper membership functions (MFs), respectively; the

mean of the T2GMF is denoted by ijkm ;
ijkσ and

ijkσ denote the lower and upper variance,

respectively; riI and riI denote the lower and upper recurrent inputs, respectively.

(3). Petri space: Each node acts as a transition operation to produce the tokens, which are then
used to select suitable fuzzy laws. This can be described as

1,
0,

ijk th
ijk

ijk th

g
t

g
μ
μ

≥
=  <

 (11)

where ijkt denotes the transition nodes; ijkμ denotes the average value of ijkμ and ijkμ ; thg

denotes the dynamic threshold value, which is given as

()
()

exp
1 expth

E
g

E
ϕ ψ

ψ
−

=
+ −

 (12)

Figure 2. Structure of the SRIT2PC control system.

(1). Input space: The input signal is given as X = [xi, xi, . . . xi, . . . , xi]
Tε<ni . Herein, each input

state variable, xi, is directly propagated to the association memory space.
(2). Association memory space: Several elements can be accumulated as a block, with each block

performing a type-2 Gaussian membership function (T2GMF). Applying the xi signal from the input
space into the T2GMF, the membership grade can be given as

µ
i jk

= exp


−

(
I
ri
−mi jk

)2

2σ2
i jk

; µi jk = exp

−
(
Iri −mi jk

)2

2σ2
i jk

 (9)

I
ri
(t) = xi(t) + ri jkµ

i jk
(t− 1); Iri(t) = xi(t) + ri jkµi jk(t− 1) (10)

where µ
i jk

and µi jk denote the lower and upper membership functions (MFs), respectively; the mean of

the T2GMF is denoted by mi jk; σ
i jk

and σi jk denote the lower and upper variance, respectively; I
ri

and

Iri denote the lower and upper recurrent inputs, respectively.
(3). Petri space: Each node acts as a transition operation to produce the tokens, which are then

used to select suitable fuzzy laws. This can be described as

ti jk =

1, µi jk ≥ gth

0, µi jk < gth
(11)

where ti jk denotes the transition nodes; µi jk denotes the average value of µ
i jk

and µi jk; gth denotes the

dynamic threshold value, which is given as

gth =
ϕ exp(−ψE)

1 + exp(−ψE)
(12)

Mathematics 2020, 8, 219 6 of 26

where ϕ and ψ denote the positive constants for adjusting the Petri threshold; E denotes the energy
function, which can be described as E = 1

2 e2, in which the tracking error is denoted by e.
As shown in Equation (11), the transition node, ti jk, is enabled when the value of µi jk is at least

equal to the dynamic threshold value, gth. The operation of simple PN is illustrated in Figure 3.

Mathematics 2020, 8, 219 6 of 26

where ϕ and ψ denote the positive constants for adjusting the Petri threshold; E denotes the
energy function, which can be described as 21

2
E e= , in which the tracking error is denoted by e.

As shown in Equation (11), the transition node, ijkt , is enabled when the value of ijkμ is at least

equal to the dynamic threshold value, thg . The operation of simple PN is illustrated in Figure 3.

Figure 3. The operation of simple Petri net (PN).

(4). Receptive-field space: Each node acts as a t-norm operation. The illustrative mechanism for
mapping two-dimensional inputs is shown in Figure 4. The multi-dimensional receptive-field
function is given by

Figure 4. Mechanism for mapping two-dimensional inputs in the association memory space.

11 1 1

11 1 1

,... ,..., ,...,

,... ,..., ,...,

k j j k

k j j k

jk n n n n

jk n n n n

f f f f

f f f f

 =  
 =  

f

f
 (13)

where

1

i

jk i

n

jk
i

f μ
=

= ∏ and
1

i

jk i

n

jk
i

f μ
=

= ∏ (14)

(5). Weight memory space: Each location jk jk jkf f f =  
 corresponds to a particular adjustable

value in the output weight space, jk jk jkw w w =   , which can be described as

11 1 1

11 1 1

,... ,..., ,...,

,... ,..., ,...,

j k

k j j k

j k

k j j k

n n
jk n n n n

n n
jk n n n n

w w w w

w w w w

 = ∈ 
 = ∈ 

R

R

w

w
 (15)

where jkw denotes the connecting weight between the pre-output space and the receptive-field

space; the adaptive laws for the online adjusting of the weight memory space are given in Section 3.3.

Figure 3. The operation of simple Petri net (PN).

(4). Receptive-field space: Each node acts as a t-norm operation. The illustrative mechanism for
mapping two-dimensional inputs is shown in Figure 4. The multi-dimensional receptive-field function
is given by

f
jk
=

 f
11

, . . . f
1nk

, . . . , f
n j1

, . . . , f
n jnk


f jk =

[
f 11, . . . f 1nk

, . . . , f n j1
, . . . , f n jnk

] (13)

where

f
jk
=

ni∏
i=1

µ
i jk

and f jk =

ni∏
i=1

µi jk (14)

Mathematics 2020, 8, 219 6 of 26

where ϕ and ψ denote the positive constants for adjusting the Petri threshold; E denotes the
energy function, which can be described as 21

2
E e= , in which the tracking error is denoted by e.

As shown in Equation (11), the transition node, ijkt , is enabled when the value of ijkμ is at least

equal to the dynamic threshold value, thg . The operation of simple PN is illustrated in Figure 3.

Figure 3. The operation of simple Petri net (PN).

(4). Receptive-field space: Each node acts as a t-norm operation. The illustrative mechanism for
mapping two-dimensional inputs is shown in Figure 4. The multi-dimensional receptive-field
function is given by

Figure 4. Mechanism for mapping two-dimensional inputs in the association memory space.

11 1 1

11 1 1

,... ,..., ,...,

,... ,..., ,...,

k j j k

k j j k

jk n n n n

jk n n n n

f f f f

f f f f

 =  
 =  

f

f
 (13)

where

1

i

jk i

n

jk
i

f μ
=

= ∏ and
1

i

jk i

n

jk
i

f μ
=

= ∏ (14)

(5). Weight memory space: Each location jk jk jkf f f =  
 corresponds to a particular adjustable

value in the output weight space, jk jk jkw w w =   , which can be described as

11 1 1

11 1 1

,... ,..., ,...,

,... ,..., ,...,

j k

k j j k

j k

k j j k

n n
jk n n n n

n n
jk n n n n

w w w w

w w w w

 = ∈ 
 = ∈ 

R

R

w

w
 (15)

where jkw denotes the connecting weight between the pre-output space and the receptive-field

space; the adaptive laws for the online adjusting of the weight memory space are given in Section 3.3.

Figure 4. Mechanism for mapping two-dimensional inputs in the association memory space.

(5). Weight memory space: Each location f̃ jk =

 f
jk

f jk

 corresponds to a particular adjustable

value in the output weight space, w̃ jk =

[
w

jk
w jk

]
, which can be described as

w
jk
=

[
w

11
, . . . w

1nk
, . . . , w

n j1
, . . . , w

n jnk

]
∈ <

n jnk

w jk =
[
w11, . . . w1nk , . . . , wn j1, . . . , wn jnk

]
∈ <

n jnk

(15)

where w jk denotes the connecting weight between the pre-output space and the receptive-field space;
the adaptive laws for the online adjusting of the weight memory space are given in Section 3.3.

Mathematics 2020, 8, 219 7 of 26

(6). Pre-output space: Each node performs defuzzification to obtain the left and right-most point
values of the type reduction for the SRIT2PC. The output of this space is given by

yl
k =

∑n j

j=1 f
jk

w
jk∑n j

j=1 f
jk

and yr
k =

∑n j

j=1 f jkw jk∑n j

j=1 f jk

(16)

(7). Output layer: The output of this space, which is the final output of the SRIT2PC is given by
the algebraic sum of the left and right most point values in the pre-output space:

ûk
SRIT2PC = uk =

yl
k + yr

k
2

(17)

The control signal, ûk
SRIT2PC, is then applied to estimate the ideal controller in Equation (7).

3.2. Self-Evolving Algorithm

In designing the network structure for the RIT2PC, choosing the number of layers greatly affects
the control system. If the number of layers is large, huge computation times will follow; however, a
few numbers of layers may not cover all cases, especially when the input changes across a wide range
of values. To overcome this problem, this study presents the self-evolving algorithm to construct the
layers of the proposed network autonomously. The flowchart of the self-evolving algorithm is shown
in Figure 5.

The condition for generating new layers can be described as follows:

I f
(
φI

g < Dg
)

Then
{
Generating a new layer

}
(18)

φI
g = max

[
µi11, . . . ,µi1nk , µi21, . . . ,µi2nk , . . . ,µin j1, . . . ,µin jnk

]
(19)

µi jk =

µ
i jk

+ µi jk

2
(20)

where φi
g and Dg denote the maximum membership grades and the generating threshold, respectively.

The T2GMF for a new layer is given as

mM(t)+1
i jk = xi(t) (21)

σM(t)+1

i jk
= vinit − ∆v and σM(t)+1

i jk = σinit + ∆σ (22)

where M(t) denotes the number of the existing rules at time t; σinit denotes the initial value of the
variance; ∆σ denotes the half of the variance uncertain.

The condition for deleting unnecessary layers can be described as

I f
(
φI

d < Dd
)

Then
{
deleting the Ith layer

}
(23)

φI
d = min

[
µi11, . . . ,µi1nk , µi21, . . . ,µi2nk , . . . ,µin j1, . . . ,µin jnk

]
(24)

where φi
d and Dd denote the minimum membership grades and the deleting threshold, respectively.

Mathematics 2020, 8, 219 8 of 26
Mathematics 2020, 8, 219 8 of 26

Figure 5. Self-evolving flowchart for RIT2PC.

3.3. Parameter Learning For SRIT2PC

Herein, we can assume there exists an optimal controller *
2SRIT PCu such that

* * * * * * * * *
2() (, , , , , , ,) ()SRIT PCt w w m r r t tσ σ ξ= −u u (25)

where ()tξ denotes the approximation error; * * * * * * *, , , , , ,w w m r rσ σ denote the optimal
parameters for , , , , , ,w w m r rσ σ , respectively.

Since *
2SRIT PCu cannot be determined, an online estimation controller, 2ˆSRIT PCu , is used to

estimate *
2SRIT PCu . Thus, the control input is denoted as

() ()2
ˆ ˆ ˆˆ ˆ ˆˆ ˆ ˆ(, , ˆ , , , , ,)SR IT PC Ft w w m v v r r t t= −u u u (26)

where ˆ ˆ ˆˆ ˆ ˆ, , , , , ,ˆw w m v v r r denote the estimation of * * * * * * *, , , , , ,w w m v v r r , respectively; ˆFu
denotes the estimation of fuzzy compensator controller.

A high-order sliding surface can be defined as

() () ()1 2
1 0

() n t

n
nt k k dτ τ− −= + …+  es e e (27)

Taking the derivative of Equation (27) and using Equation (6), the following can be obtained:

() () n Tt = +s e K e ()() () () Tt t t tΔ= + + + +Ae d u K ef (28)

The Lyapunov function can be described as

()() ()2
1

1
2

V t t=s s (29)

Taking the derivative of Equation (29) and using Equations (26) and (28), the following can be
obtained:

1 () () ()V t t t= ss ()() n Tt  =  + e K es

[()()2 ˆ() (ˆ ˆ ˆˆ ˆˆ ˆ ˆ() () (, , , , , ,)) , T
SRIT P FCt t wt t w m v v r r t t += Δ ++ − + Ae d u Ks ef u

(30)

Using the gradient descent method, the parameter-updating laws for SRIT2PC can be obtained
as follows:

Figure 5. Self-evolving flowchart for RIT2PC.

3.3. Parameter Learning For SRIT2PC

Herein, we can assume there exists an optimal controller u∗SRIT2PC such that

u∗(t) = u∗SRIT2PC(w
∗, w∗, m∗, σ∗, σ∗, r∗, r∗, t) − ξ(t) (25)

where ξ(t) denotes the approximation error; w∗, w∗, m∗, σ∗, σ∗, r∗, r∗ denote the optimal parameters for

w, w, m, σ, σ, r, r, respectively.
Since u∗SRIT2PC cannot be determined, an online estimation controller, ûSRIT2PC, is used to estimate

u∗SRIT2PC. Thus, the control input is denoted as

û(t) = ûSRIT2PC(ŵ, ŵ, m̂, v̂, v̂, r̂, r̂, t) − ûF(t) (26)

where ŵ, ŵ, m̂, v̂, v̂, r̂, r̂ denote the estimation of w∗, w∗, m∗, v∗, v∗, r∗, r∗, respectively; ûF denotes the
estimation of fuzzy compensator controller.

A high-order sliding surface can be defined as

s(t) = e(n−1) + k1e(n−2) . . .+ kn

∫ t

0
e(τ)dτ (27)

Taking the derivative of Equation (27) and using Equation (6), the following can be obtained:

.
s(t) = e(n) + KTe = Ae(t) + d(t) + ∆f(t) + u(t) + KTe (28)

The Lyapunov function can be described as

V1(s(t)) =
1
2

s2(t) (29)

Mathematics 2020, 8, 219 9 of 26

Taking the derivative of Equation (29) and using Equations (26) and (28), the following can be
obtained:

.
V1(t) = s(t)

.
s(t)= s(t)

[
e(n) + KTe

]
= s(t)[Ae(t) + d(t) + ∆f(t) +

(
ûSRIT2PC(ŵ, ŵ, m̂, v̂, v̂, r̂, r̂, t) − ûF(t)

)
+ KTe

] (30)

Using the gradient descent method, the parameter-updating laws for SRIT2PC can be obtained as
follows:

ŵ
jk
(t + 1) = ŵ

jk
(t) − η̂w

∂
.

V1(t)
∂ŵ

jk

= ŵ
jk
(t) − η̂w

∂
.

V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC

∂yl
k

∂yl
k

∂ŵ
jk

= ŵ
jk
(t) −

1
2
η̂ws(t) f

jk
(31)

ŵ jk(t + 1) = ŵ jk(t) − η̂w
∂

.
V1(t)

∂ŵ jk
= ŵ jk(t) − η̂w

∂
.

V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂yr

k

∂yr
k

∂ŵ jk
= ŵ jk(t) −

1
2
η̂ws(t) f jk (32)

m̂i jk(t + 1) = m̂i jk(t) − η̂m
∂

.
V1(t)
∂m̂i jk

= m̂i jk(t) − η̂m
∂

.
V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂yl

k

∂yl
k

∂ f
jk

∂ f
jk

∂µ
i jk

∂µ
i jk

∂m̂i jk
+
∂ûSRIT2PC

∂yr
k

∂yr
k

∂φ jk

∂ f jk
∂µi jk

∂µi jk
∂m̂i jk

) (33)

σ̂
i jk
(t + 1) = σ̂

i jk
(t) − η̂σ

∂
.

V1(t)
∂σ̂

i jk

= σ̂
i jk
(t) − η̂σ

 ∂
.

V1(t)
∂ûk

SRIT2PC

∂ûk
SRIT2PC
∂ŷl

k

∂ŷl
k

∂ f
jk

∂ f
jk

∂µ
i jk

∂µ
i jk

∂σ̂
i jk

 = σ̂
i jk
(t) − η̂σs(t) f

jk
w

jk

(Ii−m̂i jk)
2

σ̂3
i jk

(34)

σ̂i jk(t + 1) = σ̂i jk(t) − η̂σ
∂

.
V1(t)
∂σ̂i jk

= σ̂i jk(t) − η̂σ

(
∂

.
V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂ŷr

k

∂ŷr
k

∂ f jk

∂ f jk
∂µi jk

∂µi jk

∂σ̂i jk

)
= σ̂i jk(t) − η̂σs(t) f jkw jk

(Ii−m̂i jk)
2

σ̂
3
i jk

(35)

r̂
i jk
(t + 1) = r̂

i jk
(t) − η̂r

∂
.

V1(t)
∂r̂

i jk

= r̂
i jk
(t) − η̂σ

 ∂
.

V1(t)
∂ûk

SRIT2PC

∂ûk
SRIT2PC
∂ŷl

k

∂ŷl
k

∂ f
jk

∂ f
jk

∂µ
i jk

∂µ
i jk

∂Î
ri

∂Î
ri

∂r̂
i jk

 = r̂
i jk
(t) + 1

2 η̂rs(t) f
jk

w
jk
µ

i jk

(Ii−m̂i jk)
σ̂2

i jk

(36)

r̂i jk(t + 1) = r̂i jk(t) − η̂r
∂

.
V1(t)
∂r̂i jk

= r̂i jk(t) − η̂σ

(
∂

.
V1(t)

∂ûk
SRIT2PC

∂ûk
SRIT2PC
∂ŷr

k

∂ŷr
k

∂ f jk

∂ f jk
∂µi jk

∂µi jk

∂Îri

∂Îri
∂r̂i jk

)
= r̂i jk(t) + 1

2 η̂rs(t) f jkw jkµi jk
(Ii−m̂i jk)

σ̂
2
i jk

(37)

where the positive learning-rates are denoted by η̂w, η̂m, η̂σ, η̂r.

3.4. Compensator Controller

To address the approximation error, a simple fuzzy compensator controller can be proposed as
follows:

R1 : I f si is POS, then ui
F is FP

R2 : I f si is ZE, then ui
F is FZ

R3 : I f si is NEG, then ui
F is FN

(38)

where POS, ZE, and NEG denote the positive, zero, and negative inputs of the MFs, respectively; FP,
FZ, and FN denote the positive, zero, and negative outputs the MFs, respectively; si and ui

F denote the
control input and control output, respectively.

Mathematics 2020, 8, 219 10 of 26

Figure 6 shows the input and output MFs of the fuzzy compensator controller. Using the
center-of-gravity method, the control output is given by

ui
F =

3∑
a=1

αi
aβ

i
a

3∑
a=1

βi
a

= αi
1β

i
1 + αi

2β
i
2 + αi

3β
i
3 (39)

where αi =
[
αi

1,αi
2,αi

3

]
denotes the weight vector of the fuzzy rules and βi =

[
βi

1, βi
2, βi

3

]
denotes the

firing-strengths vector of the fuzzy rules, which is given by

Case 1 : (si ≤ −ϑ)
βi

1 = 0; βi
2 = 0; βi

3 = 1;
Case 2 : (−ϑ ≤ si ≤ 0)

βi
1 = 0; βi

2 = (si + ϑ)/ϑ; βi
3 = 1− βi

2;
Case 3 : (0 ≤ si ≤ ϑ)

βi
1 = 1− βi

2; βi
2 = (ϑ− si)/ϑ; βi

3 = 0;
Case 4 : (si > ϑ)

βi
1 = 1; βi

2 = 0; βi
3 = 0;

(40)

where ϑ is the parameter for defining the firing strengths.

Mathematics 2020, 8, 219 10 of 26

where POS, ZE, and NEG denote the positive, zero, and negative inputs of the MFs, respectively; FP,

FZ, and FN denote the positive, zero, and negative outputs the MFs, respectively; is and i
Fu

denote the control input and control output, respectively.
Figure 6 shows the input and output MFs of the fuzzy compensator controller. Using the center-

of-gravity method, the control output is given by

Figure 6. The input and output membership functions (MFs).

3

1
1 1 2 2 3 33

1

i i
a a

i i i i i i ia
F

i
a

a

u
α β

α β α β α β
β

=

=

= = + +



 (39)

where
1 2 3[], ,i i i iα α α=α denotes the weight vector of the fuzzy rules and

1 2 3[], ,i i i iβ β β=β denotes the
firing-strengths vector of the fuzzy rules, which is given by

1 2 3

1 2 3 2

1 2 2 3

1 2 3

1:()
0; 0; 1;

2 :(0)
0; () / ; 1 ;

3 :(0)
1 ; () / ; 0;

4 :()
1; 0; 0;

i
i i i

i
i i i i

i

i
i i i i

i

i
i i i

Case s

Case s
s

Case s
s

Case s

ϑ
β β β

ϑ
β β ϑ ϑ β β

ϑ
β β β ϑ ϑ β

ϑ
β β β

≤ −
= = =

− ≤ ≤
= = + = −
≤ ≤

= − = − =
>

= = =

(40)

where ϑ is the parameter for defining the firing strengths.
By choosing the triangular membership function for the input shown in Figure 6, we can obtain

1 2 3 1i i iβ β β+ + = . Using a singleton membership function for the output, letting

1 2 3ˆ ˆ, 0,i i i
i iα α α α α= = = − , and rewriting Equation (39) using]ˆ ˆ, ,[0i

i iα α= −α , the following can be
obtained:

()1 3ˆi i i
F iu α β β= − (41)

Rewriting Equation (30) and using Equations (25), (26), and (41), the following can be obtained:

()11
1

3() () () ˆ i
i

i

i
m

i i iV s t t s t α β βξ
=

  −= −

()1 3
1

(ˆ() . ())
m

i i i
i

i i
is t t s tξ α β β

=

 ≤  − −
(42)

Figure 6. The input and output membership functions (MFs).

By choosing the triangular membership function for the input shown in Figure 6, we can obtain
βi

1 + βi
2 + βi

3 = 1. Using a singleton membership function for the output, letting αi
1 = α̂i, αi

2 = 0, αi
3 =

−α̂i, and rewriting Equation (39) using αi = [α̂i, 0, −α̂i], the following can be obtained:

ui
F = α̂i

(
βi

1 − β
i
3

)
(41)

Rewriting Equation (30) and using Equations (25), (26), and (41), the following can be obtained:

.
V1 =

m∑
i=1

[
si(t)ξi(t) − si(t)α̂i

(
βi

1 − β
i
3

)]
≤

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣− si(t)α̂i
(
βi

1 − β
i
3

)]
=

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣− α̂i
∣∣∣si(t)

∣∣∣.∣∣∣βi
1 − β

i
3

∣∣∣]
= −

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣βi

1 − β
i
3

∣∣∣](α̂i −
|ξi(t)|∣∣∣βi

1−β
i
3

∣∣∣
)

(42)

Mathematics 2020, 8, 219 11 of 26

where m denotes the dimension of vector si. In Equation (42), if there exists an estimated value

α̂i >
|ξi(t)|∣∣∣βi

1−β
i
3

∣∣∣ , then
.

V ≤ 0 is satisfied. An optimal value α∗i can be defined to achieve a minimum value of

α̂i with the following equation:

α∗i =

∣∣∣ξi(t)
∣∣∣∣∣∣βi

1 − β
i
3

∣∣∣ + Ωi (43)

where Ωi denotes a positive constant.
The estimation-error vector can be described as α̃i = [α̃1, . . . , α̃i, . . . , α̃m]

T, where α̃i is given as

α̃i = α∗i − α̂i (44)

Accordingly, the Lyapunov function can be defined as

V2(s(t)) =
1
2

sT(t)s(t) +
1
2
α̃Tα̃ (45)

Taking the derivative of Equation (45) and using Equations (7), (25), (30), and (41), the following
can be obtained:

=
m∑

i=1

[
si(t)

[
−u∗i (t)

]
+ si(t)

[
ûi

SRIT2PC(t) − ûi
F(t)

]
+ α̃i

.
α̃i

]
=

m∑
i=1

[
si(t)

[
ξ(t) − ûi

SRIT2PC(t)
]
+ si(t)

[
ûi

SRIT2PC(t) − ûi
F(t)

]
+ α̃i

.
α̃i

]
=

m∑
i=1

[
si(t)ξi(t) − α̂isi(t)

(
βi

1 − β
i
3

)
+ α̃i

.
α̃i

]
≤

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣+ α̃isi(t)
(
βi

1 − β
i
3

)
− α∗i

∣∣∣si(t)
∣∣∣.∣∣∣βi

1 − β
i
3

∣∣∣+ α̃i
.
α̃i

]
=

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣+ α̃i

[
si(t)

(
βi

1 − β
i
3

)
+

.
α̃i

]
− α∗i

∣∣∣si(t)
∣∣∣.∣∣∣βi

1 − β
i
3

∣∣∣]
(46)

The estimation laws can be described as

.
α̂i = −

.
α̃i = si(t)

(
βi

1 − β
i
3

)
(47)

Accordingly, rewriting Equation (46) and using Equation (43), the following can be obtained:

.
V2(s(t)) ≤

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣ − ∣∣∣si(t)
∣∣∣ ∣∣∣βi

1 − β
i
3

∣∣∣(|ξi(t)|∣∣∣βi
1−β

i
3

∣∣∣ + Ωi

)]
=

m∑
i=1

[∣∣∣si(t)
∣∣∣.∣∣∣ξi(t)

∣∣∣ − ∣∣∣si(t)
∣∣∣ (∣∣∣ξi(t)

∣∣∣+ Ωi
∣∣∣βi

1 − β
i
3

∣∣∣)]
= −

m∑
i=1

Ωi
∣∣∣si(t)

∣∣∣ ∣∣∣βi
1 − β

i
3

∣∣∣
(48)

Since
.

V2(s(t)) is a negative semidefinite, the stability of the proposed SRIT2PC control system
can be guaranteed by the Lyapunov stability theorem.

4. Illustrative Examples

To verify the feasibility and effectiveness of the proposed controller, an illustrative example is
used to describe the Lorenz–Stenflo chaotic system. Using the proposed parameter-adaptive laws,
the control signals, ûx(t), ûy(t), ûz(t), ûw(t), can be obtained, after which point the synchronization
of the slave and the master chaotic can be obtained. The initial positions for the chaotic system
are [x1, y1, z1, w1] = [0.028, 0.02, 0.03, 0.048]T and [x2, y2, z2, w2] = [0.01, 0.037, 0.029, 0.008]T.
The system uncertainties are [∆ f (x2), ∆ f (y2), ∆ f (z2), ∆ f (w2)] = rd(.)[0.2x2, 0.2y2, 0.2z2, 0.2w2]

T.
The external disturbances are

[
dx, dy, dz, dw

]
= [0.2 cosπt, 0.5 cosπt, 0.3 cosπt, 0.4 cosπt]T, where

Mathematics 2020, 8, 219 12 of 26

rd(.) denotes the random values in the range [0, 1]. The performance of the synchronization system
can be calculated using the root mean square error (RMSE):

RMSE =

√√√
1
nh

nh∑
h=1

(
(exh)

2 +
(
eyh

)2
+ (ezh)

2 + (ewh)
2
)

f or h = 1, 2, . . . nh (49)

where nh denotes the number of samples; exh, eyh, ezh, ewh denote the tracking error for the hth sample.
The parameters of the proposed controller consist of the following: σinit = 0.4, ∆σ = 0.05,

ni = 3, n j = 4, nk = 1, Dg = 0.2, Dd = 0.02, and ϑ = 0.04; the sliding surface order is n = 2; the
adaptive-learning rates are η̂w = 0.01, η̂m = 0.001, η̂σ = 0.001, and η̂r = 0.001. To limit the system
computation burden, the maximum number of membership functions for each input is limited to
seven MFs and the minimum number of MFs in each input is limited to one MF. The comparison
results in RMSE for the proposed method and the other methods are given in Table 1, from which it
is evident that the proposed SRIT2PC is superior over the wavelet CMAC controller (WCMAC) [13],
the interval type-2 Petri CMAC (IT2PCMAC) [58], and the type-2 fuzzy-brain emotional-learning
controller (T2FBELC) [59].

Case 1: θ = 0
Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are

α = 1, τ = 26, λ = 1, ϕ = 0.7, and γ = 1.5. The synchronization results of the 4D Lorenz–Stenflo
chaotic system using the SRIT2PC are depicted in Figure 7; Figure 8 shows the trajectory signals,
x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and w2(t); Figure 9
shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 10 shows the tracking errors, ex(t), ey(t),
ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving algorithm are shown
in Figure 11. In this case, the simulation results suggest that the proposed SRIT2PC can effectively
synchronize the slave chaotic system with the master system.

Mathematics 2020, 8, 219 12 of 26

Since ()()2V t s is a negative semidefinite, the stability of the proposed SRIT2PC control system

can be guaranteed by the Lyapunov stability theorem.

4. Illustrative Examples

To verify the feasibility and effectiveness of the proposed controller, an illustrative example is
used to describe the Lorenz–Stenflo chaotic system. Using the proposed parameter-adaptive laws,
the control signals, ˆxu (t) , ˆ yu (t) , ˆzu (t) , ˆwu (t) , can be obtained, after which point the synchronization

of the slave and the master chaotic can be obtained. The initial positions for the chaotic system are
[] []1 1 1 1, , , 0.028, 0.02, 0.03, 0.048 Tx y z w = and [] []2 2 2 2, , , 0.01, 0.037, 0.029, 0.008 Tx y z w = . The system

uncertainties are [] []2 2 2 2 2 2 2 2(), (), (), () ,(.) 0.2 0.2 0. 0.2,2, Trf x f y f z f w x y zd wΔ Δ Δ =Δ . The external disturbances are

[], , , 0.2cos ,0.5cos ,0.3cos ,0.4cos T
x y z wd d d d t t t tπ π π π =  , where (.)rd denotes the random values in the

range [0, 1]. The performance of the synchronization system can be calculated using the root mean
square error (RMSE):

() () () ()()22 2 2

1

1 hn

xh yh zh wh
hh

RMSE = e e e e
n =

+ + + 1, 2,... hfor h n= (49)

where hn denotes the number of samples; , , ,xh yh zh whe e e e denote the tracking error for the thh
sample.

The parameters of the proposed controller consist of the following: 0.4initσ = , 0.05σΔ = ,

3in = , 4jn = , 1kn = , 0.2gD = , 0.02dD = , and 0.04ϑ = ; the sliding surface order is 2n = ; the

adaptive-learning rates are ˆ 0 .0 1wη = , 0.001ˆmη = , ˆ 0.001ση = , and ˆ 0.001rη = . To limit the
system computation burden, the maximum number of membership functions for each input is
limited to seven MFs and the minimum number of MFs in each input is limited to one MF. The
comparison results in RMSE for the proposed method and the other methods are given in Table 1,
from which it is evident that the proposed SRIT2PC is superior over the wavelet CMAC controller
(WCMAC) [13], the interval type-2 Petri CMAC (IT2PCMAC) [58], and the type-2 fuzzy-brain
emotional-learning controller (T2FBELC) [59].

Case 1: 0θ =

Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are
1α = , 26τ = , 1λ = , 0.7ϕ= , and 1.5γ = . The synchronization results of the 4D Lorenz–Stenflo

chaotic system using the SRIT2PC are depicted in Figure 7; Figure 8 shows the trajectory signals,

1()tx , 1 ()ty , 1()tz , and 1()tw , and the synchronization outputs, 2()tx , 2 ()ty , 2 ()tz , and 2 ()tw ;
Figure 9 shows the control signals, ()x tu , ()y tu , ()z tu , and ()w tu ; Figure 10 shows the tracking

errors, ()x te , ()y te , ()z te , ()w te , and ()w te . The number of layers of the SRIT2PC using the self-

evolving algorithm are shown in Figure 11. In this case, the simulation results suggest that the
proposed SRIT2PC can effectively synchronize the slave chaotic system with the master system.

Mathematics 2020, 8, 219 13 of 26

Figure 7. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 1: (a) x–
y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Figure 8. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 1: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .

Figure 9. Control signals between the proposed SRIT2PC and other synchronization methods for Case
1: (a) xu , (b)

yu , (c) zu , and (d) . wu

Figure 7. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 1: (a) x–y–z
space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Mathematics 2020, 8, 219 13 of 26

Mathematics 2020, 8, 219 13 of 26

Figure 7. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 1: (a) x–
y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Figure 8. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 1: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .

Figure 9. Control signals between the proposed SRIT2PC and other synchronization methods for Case
1: (a) xu , (b)

yu , (c) zu , and (d) . wu

Figure 8. System outputs between the proposed SRIT2PC and other synchronization methods for Case
1: (a) x1, x2, (b) y1, y2, (c) z1, z2, and (d) w1, w2.

Mathematics 2020, 8, 219 13 of 26

Figure 7. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 1: (a) x–
y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Figure 8. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 1: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .

Figure 9. Control signals between the proposed SRIT2PC and other synchronization methods for Case
1: (a) xu , (b)

yu , (c) zu , and (d) . wu
Figure 9. Control signals between the proposed SRIT2PC and other synchronization methods for Case
1: (a) ux, (b) uy, (c) uz, and (d) uw.

Mathematics 2020, 8, 219 14 of 26
Mathematics 2020, 8, 219 14 of 26

Figure 10. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 1: (a) xe , (b) ye , (c) ze , and (d) .

Figure 11. Number of layers using self-evolving algorithm for Case 1.

Case 2: 0.8θ =

Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are
21α = , 2τ = − , 22.2λ = − , 0.9667ϕ = , and 2.3γ = . The synchronization results of the 4D

Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in Figure 12; Figure 13 shows the
trajectory signals, 1()tx , 1 ()ty , 1()tz , and 1()tw , and the synchronization outputs, 2 ()tx , 2 ()ty ,

2 ()tz , and 2 ()tw ; Figure 14 shows the control signals, ()x tu , ()y tu , ()z tu , and ()w tu ; Figure 15

shows the tracking errors, ()x te , ()y te , ()z te , and ()w te . The number of layers of the SRIT2PC

using the self-evolving algorithm is shown in Figure 16. In this case, the simulation results suggest
that the proposed SRIT2PC can effectively synchronize the slave chaotic system with the master
system.

we
Figure 10. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 1: (a) ex, (b) ey, (c) ez, and (d) ew.

Mathematics 2020, 8, 219 14 of 26

Figure 10. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 1: (a) xe , (b) ye , (c) ze , and (d) .

Figure 11. Number of layers using self-evolving algorithm for Case 1.

Case 2: 0.8θ =

Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are
21α = , 2τ = − , 22.2λ = − , 0.9667ϕ = , and 2.3γ = . The synchronization results of the 4D

Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in Figure 12; Figure 13 shows the
trajectory signals, 1()tx , 1 ()ty , 1()tz , and 1()tw , and the synchronization outputs, 2 ()tx , 2 ()ty ,

2 ()tz , and 2 ()tw ; Figure 14 shows the control signals, ()x tu , ()y tu , ()z tu , and ()w tu ; Figure 15

shows the tracking errors, ()x te , ()y te , ()z te , and ()w te . The number of layers of the SRIT2PC

using the self-evolving algorithm is shown in Figure 16. In this case, the simulation results suggest
that the proposed SRIT2PC can effectively synchronize the slave chaotic system with the master
system.

we

Figure 11. Number of layers using self-evolving algorithm for Case 1.

Case 2: θ = 0.8
Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor

are α = 21, τ = −2, λ = −22.2, ϕ = 0.9667, and γ = 2.3. The synchronization results of the 4D
Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in Figure 12; Figure 13 shows the
trajectory signals, x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and
w2(t); Figure 14 shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 15 shows the tracking
errors, ex(t), ey(t), ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving
algorithm is shown in Figure 16. In this case, the simulation results suggest that the proposed SRIT2PC
can effectively synchronize the slave chaotic system with the master system.

Mathematics 2020, 8, 219 15 of 26
Mathematics 2020, 8, 219 15 of 26

Figure 12. Synchronization of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 2: (a)
x–y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Figure 13. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .

Figure 12. Synchronization of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 2: (a)
x–y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Mathematics 2020, 8, 219 15 of 26

Figure 12. Synchronization of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 2: (a)
x–y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Figure 13. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .
Figure 13. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) x1, x2, (b) y1, y2, (c) z1, z2, and (d) w1, w2.

Mathematics 2020, 8, 219 16 of 26
Mathematics 2020, 8, 219 16 of 26

Figure 14. Control signals between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) xu , (b) yu , (c) zu , and (d) wu .

Figure 15. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) xe , (b) ye , (c) ze , and (d) we .

Figure 14. Control signals between the proposed SRIT2PC and other synchronization methods for Case
2: (a) ux, (b) uy, (c) uz, and (d) uw.

Mathematics 2020, 8, 219 16 of 26

Figure 14. Control signals between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) xu , (b) yu , (c) zu , and (d) wu .

Figure 15. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) xe , (b) ye , (c) ze , and (d) we .
Figure 15. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 2: (a) ex, (b) ey, (c) ez, and (d) ew.

Mathematics 2020, 8, 219 17 of 26
Mathematics 2020, 8, 219 17 of 26

Figure 16. Number of layers using self-evolving algorithm for Case 2.

Case 3: 1 .0θ =

Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are
26α = , 9τ = − , 28λ =− , 1.033ϕ = , and 2.5γ = . The synchronization results of the 4D Lorenz–

Stenflo chaotic system using the SRIT2PC are depicted in Figure 17; Figure 18 shows the trajectory
signals, 1()tx , 1 ()ty , 1()tz , and 1()tw , and the synchronization outputs, 2 ()tx , 2 ()ty , 2 ()tz , and

2 ()tw ; Figure 19 shows the control signals, ()x tu , ()y tu , ()z tu , and ()w tu ; Figure 20 shows the

tracking errors, ()x te , ()y te , ()z te , and ()w te . The number of layers of the SRIT2PC using the self-

evolving algorithm is shown in Figure 21. In this case, the simulation results suggest that the
proposed SRIT2PC can effectively synchronize the slave chaotic system with the master system.

Figure 17. Synchronization of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 3: (a)
x–y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Figure 16. Number of layers using self-evolving algorithm for Case 2.

Case 3: θ = 1.0
Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are

α = 26, τ = −9, λ = −28, ϕ = 1.033, and γ = 2.5. The synchronization results of the 4D Lorenz–Stenflo
chaotic system using the SRIT2PC are depicted in Figure 17; Figure 18 shows the trajectory signals,
x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and w2(t); Figure 19
shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 20 shows the tracking errors, ex(t), ey(t),
ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving algorithm is shown
in Figure 21. In this case, the simulation results suggest that the proposed SRIT2PC can effectively
synchronize the slave chaotic system with the master system.

Mathematics 2020, 8, 219 17 of 26

Figure 16. Number of layers using self-evolving algorithm for Case 2.

Case 3: 1 .0θ =

Using Equation (2), the parameters for defining the Lorenz–Stenflo chaotic-system attractor are
26α = , 9τ = − , 28λ =− , 1.033ϕ = , and 2.5γ = . The synchronization results of the 4D Lorenz–

Stenflo chaotic system using the SRIT2PC are depicted in Figure 17; Figure 18 shows the trajectory
signals, 1()tx , 1 ()ty , 1()tz , and 1()tw , and the synchronization outputs, 2 ()tx , 2 ()ty , 2 ()tz , and

2 ()tw ; Figure 19 shows the control signals, ()x tu , ()y tu , ()z tu , and ()w tu ; Figure 20 shows the

tracking errors, ()x te , ()y te , ()z te , and ()w te . The number of layers of the SRIT2PC using the self-

evolving algorithm is shown in Figure 21. In this case, the simulation results suggest that the
proposed SRIT2PC can effectively synchronize the slave chaotic system with the master system.

Figure 17. Synchronization of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 3: (a)
x–y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Figure 17. Synchronization of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 3: (a)
x–y–z space, (b) x–y–w space, (c) x–z–w space, and (d) y–z–w space.

Mathematics 2020, 8, 219 18 of 26
Mathematics 2020, 8, 219 18 of 26

Figure 18. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .

Figure 19. Control signals between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) xu , (b)

yu , (c) zu , and (d) wu .

Figure 18. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) x1, x2, (b) y1, y2, (c) z1, z2, and (d) w1, w2.

Mathematics 2020, 8, 219 18 of 26

Figure 18. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .

Figure 19. Control signals between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) xu , (b)

yu , (c) zu , and (d) wu .
Figure 19. Control signals between the proposed SRIT2PC and other synchronization methods for Case
3: (a) ux, (b) uy, (c) uz, and (d) uw.

Mathematics 2020, 8, 219 19 of 26
Mathematics 2020, 8, 219 19 of 26

Figure 20. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) xe , (b) ye , (c) ze , and (d) we .

Figure 21. Number of layers using self-evolving algorithm for Case 3.

Case 4:

In this case, the parameter for defining the feature of the Lorenz–Stenflo chaotic-system attractor,
θ , is given as a time-varying parameter ranging from zero to one during the control process.
Therefore, the parameters α , τ , λ , ϕ , and γ are also time-varying parameters. The
synchronization results of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in
Figure 22; Figure 23 shows the trajectory signals, 1()tx , 1 ()ty , 1()tz , and 1()tw , and the
synchronization outputs, 2 ()tx , 2 ()ty , 2 ()tz , and 2 ()tw ; Figure 24 shows the control signals, ()x tu
, ()y tu , ()z tu , and ()w tu ; Figure 25 shows the tracking errors, ()x te , ()y te , ()z te , and ()w te . The

number of layers of the SRIT2PC using the self-evolving algorithm is shown in Figure 26. In this case,
the simulation results suggest that the proposed SRIT2PC controller can effectively synchronize the
slave chaotic system with the master system.

Figure 20. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) ex, (b) ey, (c) ez, and (d) ew.

Mathematics 2020, 8, 219 19 of 26

Figure 20. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 3: (a) xe , (b) ye , (c) ze , and (d) we .

Figure 21. Number of layers using self-evolving algorithm for Case 3.

Case 4:

In this case, the parameter for defining the feature of the Lorenz–Stenflo chaotic-system attractor,
θ , is given as a time-varying parameter ranging from zero to one during the control process.
Therefore, the parameters α , τ , λ , ϕ , and γ are also time-varying parameters. The
synchronization results of the 4D Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in
Figure 22; Figure 23 shows the trajectory signals, 1()tx , 1 ()ty , 1()tz , and 1()tw , and the
synchronization outputs, 2 ()tx , 2 ()ty , 2 ()tz , and 2 ()tw ; Figure 24 shows the control signals, ()x tu
, ()y tu , ()z tu , and ()w tu ; Figure 25 shows the tracking errors, ()x te , ()y te , ()z te , and ()w te . The

number of layers of the SRIT2PC using the self-evolving algorithm is shown in Figure 26. In this case,
the simulation results suggest that the proposed SRIT2PC controller can effectively synchronize the
slave chaotic system with the master system.

Figure 21. Number of layers using self-evolving algorithm for Case 3.

Case 4:
In this case, the parameter for defining the feature of the Lorenz–Stenflo chaotic-system attractor,

θ, is given as a time-varying parameter ranging from zero to one during the control process. Therefore,
the parameters α, τ, λ, ϕ, and γ are also time-varying parameters. The synchronization results of the
4D Lorenz–Stenflo chaotic system using the SRIT2PC are depicted in Figure 22; Figure 23 shows the
trajectory signals, x1(t), y1(t), z1(t), and w1(t), and the synchronization outputs, x2(t), y2(t), z2(t), and
w2(t); Figure 24 shows the control signals, ux(t), uy(t), uz(t), and uw(t); Figure 25 shows the tracking
errors, ex(t), ey(t), ez(t), and ew(t). The number of layers of the SRIT2PC using the self-evolving
algorithm is shown in Figure 26. In this case, the simulation results suggest that the proposed SRIT2PC
controller can effectively synchronize the slave chaotic system with the master system.

Mathematics 2020, 8, 219 20 of 26
Mathematics 2020, 8, 219 20 of 26

(a) (b)

(c) (d)

Figure 22. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 4 (a) x-
y-z space, (b) x-y-w space, (c) x-z-w space, (d) y-z-w space.

Figure 23. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .

Figure 22. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 4 (a) x-y-z
space, (b) x-y-w space, (c) x-z-w space, (d) y-z-w space.

Mathematics 2020, 8, 219 20 of 26

Figure 22. Synchronization of 4D Lorenz–Stenflo chaotic system using the SRIT2PC for Case 4 (a) x-
y-z space, (b) x-y-w space, (c) x-z-w space, (d) y-z-w space.

Figure 23. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) 1 2,x x , (b) 1 2,y y , (c) 1 2,z z , and (d) 1 2,w w .
Figure 23. System outputs between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) x1, x2, (b) y1, y2, (c) z1, z2, and (d) w1, w2.

Mathematics 2020, 8, 219 21 of 26

Mathematics 2020, 8, 219 21 of 26

Figure 24. Control signals between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) xu , (b)

yu , (c) zu , and (d) wu .

Figure 25. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) xe , (b) ye , (c) ze , and (d) we .

Figure 24. Control signals between the proposed SRIT2PC and other synchronization methods for Case
4: (a) ux, (b) uy, (c) uz, and (d) uw.

Mathematics 2020, 8, 219 21 of 26

Figure 24. Control signals between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) xu , (b)

yu , (c) zu , and (d) wu .

Figure 25. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) xe , (b) ye , (c) ze , and (d) we .

Figure 25. Tracking errors between the proposed SRIT2PC and other synchronization methods for
Case 4: (a) ex, (b) ey, (c) ez, and (d) ew.

Mathematics 2020, 8, 219 22 of 26
Mathematics 2020, 8, 219 22 of 26

Figure 26. Number of layers using self-evolving algorithm for Case 4.

Figures 11, 16, 21, and 26 show that, at the beginning of the control process, the structure of the
proposed controller is in an adjusting period, after which point it quickly converges to a suitable
number of layers. The simulation results for Case 4 suggest that, by using the online adaptive laws,
the proposed controller can synchronize the chaotic systems effectively, even when θ is a time-
varying parameter. In all cases studied, the proposed controller is superior for the synchronization
of the 4D Lorenz–Stenflo chaotic system, since it has the fasted response and smallest RMSE tracking
errors, even when faced with external disturbances and system uncertainties. Indeed, obtaining the
appropriate threshold to generate and delete rules affects control-system performance. For instance,
a small generating threshold generates a large number of rules and, contrarily, a large generating
threshold will not generate many rules. The same can be said for the deleting threshold: if it is too
small, minimal rules are removed and, contrarily, if it is too large, too many rules are removed. In
this study, we used the trial-and-error method to obtain these thresholds.

Table 1. Comparison results in root mean square error (RMSE) of synchronization the 4-D Lorenz-
Stenflo chaotic system.

Control Method Computation Time
(s)

Case 1
0θ =

Case 2
0.8θ =

Case 3
1.0θ =

Case 4
Time-Varying θ

WCMAC 0.0147 0.1481 0.1804 0.1498 0.1379
T2FBELC 0.0183 0.0902 0.0955 0.0602 0.0797

IT2PCMAC 0.0172 0.0524 0.0716 0.0486 0.0704
SRIT1PC 0.0145 0.0507 0.0422 0.0347 0.0431

SRIT2PC (proposed
controller) 0.0196 0.0476 0.0366 0.0299 0.0322

5. Conclusions

In this paper, an adaptive SRIT2PC controller is proposed for the synchronization of 4D Lorenz–
Stenflo chaotic systems. In doing so, we presented a new controller that can automatically update the
parameters and structure based on the tracking error and the contribution of rules. The proposed
controller has the following advantages: a dynamic threshold of PN, autonomous network
constructing due to the self-evolving algorithm, type-2 fuzzy membership function, and recurrent-
CMAC learning properties. The online adaptive laws of the control system were derived using the
gradient-descent method; system stability was guaranteed using Lyapunov stability theory. Indeed,
the numerical simulation results suggest that the proposed control system is highly effective. In the
future, the estimation method will be applied to estimate the generating and deleting thresholds to
achieve optimal control performance.

Figure 26. Number of layers using self-evolving algorithm for Case 4.

Figure 11, Figure 16, Figure 21, and Figure 26 show that, at the beginning of the control process,
the structure of the proposed controller is in an adjusting period, after which point it quickly converges
to a suitable number of layers. The simulation results for Case 4 suggest that, by using the online
adaptive laws, the proposed controller can synchronize the chaotic systems effectively, even when θ is a
time-varying parameter. In all cases studied, the proposed controller is superior for the synchronization
of the 4D Lorenz–Stenflo chaotic system, since it has the fasted response and smallest RMSE tracking
errors, even when faced with external disturbances and system uncertainties. Indeed, obtaining the
appropriate threshold to generate and delete rules affects control-system performance. For instance,
a small generating threshold generates a large number of rules and, contrarily, a large generating
threshold will not generate many rules. The same can be said for the deleting threshold: if it is too
small, minimal rules are removed and, contrarily, if it is too large, too many rules are removed. In this
study, we used the trial-and-error method to obtain these thresholds.

Table 1. Comparison results in root mean square error (RMSE) of synchronization the 4-D Lorenz-Stenflo
chaotic system.

Control Method Computation
Time (s)

Case 1
θ=0

Case 2
θ=0.8

Case 3
θ=1.0

Case 4
Time-Varying θ

WCMAC 0.0147 0.1481 0.1804 0.1498 0.1379
T2FBELC 0.0183 0.0902 0.0955 0.0602 0.0797

IT2PCMAC 0.0172 0.0524 0.0716 0.0486 0.0704
SRIT1PC 0.0145 0.0507 0.0422 0.0347 0.0431

SRIT2PC (proposed controller) 0.0196 0.0476 0.0366 0.0299 0.0322

5. Conclusions

In this paper, an adaptive SRIT2PC controller is proposed for the synchronization of 4D
Lorenz–Stenflo chaotic systems. In doing so, we presented a new controller that can automatically
update the parameters and structure based on the tracking error and the contribution of rules.
The proposed controller has the following advantages: a dynamic threshold of PN, autonomous
network constructing due to the self-evolving algorithm, type-2 fuzzy membership function, and
recurrent-CMAC learning properties. The online adaptive laws of the control system were derived
using the gradient-descent method; system stability was guaranteed using Lyapunov stability theory.
Indeed, the numerical simulation results suggest that the proposed control system is highly effective.
In the future, the estimation method will be applied to estimate the generating and deleting thresholds
to achieve optimal control performance.

Author Contributions: Conceptualization, T.-L.L.; Data curation, T.-L.L., T.-T.H. and V.-Q.N.; Formal analysis,
T.-L.L.; Investigation, T.-L.L.; Methodology, T.-L.L. and T.-T.H.; Project administration, S.-K.H.; Resources, T.-T.H.;

Mathematics 2020, 8, 219 23 of 26

Software, V.-Q.N.; Supervision, C.-M.L. and S.-K.H.; Validation, T.-T.H. and V.-Q.N.; Writing—original draft,
T.-L.L. and T.-T.H.; Writing—review & editing, T.-L.L., C.-M.L. and S.-K.H. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This research was supported by the Competency Development Program for Industry
Specialists of the Korean Ministry of Trade, Industry and Energy (MOTIE), operated by Korea Institute for
Advancement of Technology (KIAT) (No. N0002431) and the MSIT (Ministry of Science and ICT), Korea, under
the ITRC (Information Technology Research Center) support program (IITP-2018-2019-0-01423) supervised by the
IITP (Institute for Information and Communications Technology Promotion).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sadaoui, D.; Boukabou, A.; Merabtine, N.; Benslama, M. Predictive synchronization of chaotic satellites
systems. Expert Syst. Appl. 2011, 38, 9041–9045. [CrossRef]

2. Naderi, B.; Kheiri, H. Exponential synchronization of chaotic system and application in secure communication.
Opt. Int. J. Light Electron Opt. 2016, 127, 2407–2412. [CrossRef]

3. Pappu, C.S.; Flores, B.C.; Debroux, P.S.; Boehm, J.E. An electronic implementation of lorenz chaotic oscillator
synchronization for bistatic radar applications. IEEE Trans. Aerosp. Electron. Syst. 2017, 53, 2001–2013.
[CrossRef]

4. Jayaprasath, E.; Wu, Z.M.; Sivaprakasam, S.; Hou, Y.S.; Tang, X.; Lin, X.D.; Deng, T.; Xia, G.Q. Investigation of
the Effect of Intra-Cavity Propagation Delay in Secure Optical Communication Using Chaotic Semiconductor
Lasers. Photonics 2019, 6, 49. [CrossRef]

5. Mandal, M.K.; Das, A.K. Chaos-Based Colour Image Encryption Using Microcontroller ATMEGA 32.
In Nanoelectronics, Circuits and Communication Systems; Lecture Notes in Electrical Engineering; Nath, V.,
Mandal, J., Eds.; Springer: Singapore, 2019; Volume 2019, p. 511.

6. Ohtsubo, J. Chaos Synchronization in Semiconductor Lasers. In Semiconductor Lasers; Springer Series in
Optical Sciences; Springer: Cham, Switzerland, 2017; p. 111.

7. Xu, L.; Ma, H.; Xiao, S. Exponential Synchronization of Chaotic Lur’e Systems Using an Adaptive
Event-Triggered Mechanism. IEEE Access 2018, 6, 61295–61304. [CrossRef]

8. Boulkroune, A.; Bouzeriba, A.; Bouden, T. Fuzzy generalized projective synchronization of incommensurate
fractional-order chaotic systems. Neurocomputing 2016, 173, 606–614. [CrossRef]

9. Zhou, Q.; Chao, F.; Lin, C.M. A functional-link-based fuzzy brain emotional learning network for breast
tumor classification and chaotic system synchronization. Int. J. Fuzzy Syst. 2018, 20, 349–365. [CrossRef]

10. Mufti, M.R.; Afzal, H.; Rehman, F.U.; Butt, Q.R.; Qureshi, M.I. Synchronization and antisynchronization
between two non-identical Chua oscillators via sliding mode control. IEEE Access 2018, 6, 45270–45280.
[CrossRef]

11. Mohammadzadeh, A.; Ghaemi, S. Optimal synchronization of fractional-order chaotic systems subject to
unknown fractional order, input nonlinearities and uncertain dynamic using type-2 fuzzy CMAC. Nonlinear
Dyn. 2017, 88, 2993–3002. [CrossRef]

12. Albus, J.S. A new approach to manipulator control: The cerebellar model articulation controller (CMAC). J.
Dyn. Syst. Meas. Control 1975, 97, 220–227. [CrossRef]

13. Lin, C.M.; Le, T.L. WCMAC-based control system design for nonlinear systems using PSO. J. Intell. Fuzzy
Syst. 2017, 33, 807–818. [CrossRef]

14. Lu, H.C.; Chuang, C.Y. Robust parametric CMAC with self-generating design for uncertain nonlinear systems.
Neurocomputing 2011, 74, 549–562. [CrossRef]

15. Lin, C.M.; Li, H.Y. Self-organizing adaptive wavelet CMAC backstepping control system design for nonlinear
chaotic systems. Nonlinear Anal. Real World Appl. 2013, 14, 206–223. [CrossRef]

16. Lin, C.M.; Huynh, T.T.; Le, T.L. Adaptive TOPSIS fuzzy CMAC back-stepping control system design for
nonlinear systems. Soft Comput. 2019, 23, 6947–6966. [CrossRef]

17. Fang, W.; Chao, F.; Yang, L.; Lin, C.M.; Shang, C.; Zhou, C.; Shen, Q. A recurrent emotional CMAC neural
network controller for vision-based mobile robots. Neurocomputing 2019, 334, 227–238. [CrossRef]

http://dx.doi.org/10.1016/j.eswa.2011.01.117
http://dx.doi.org/10.1016/j.ijleo.2015.11.175
http://dx.doi.org/10.1109/TAES.2017.2680661
http://dx.doi.org/10.3390/photonics6020049
http://dx.doi.org/10.1109/ACCESS.2018.2876664
http://dx.doi.org/10.1016/j.neucom.2015.08.003
http://dx.doi.org/10.1007/s40815-017-0326-x
http://dx.doi.org/10.1109/ACCESS.2018.2865016
http://dx.doi.org/10.1007/s11071-017-3427-z
http://dx.doi.org/10.1115/1.3426922
http://dx.doi.org/10.3233/JIFS-161999
http://dx.doi.org/10.1016/j.neucom.2010.09.001
http://dx.doi.org/10.1016/j.nonrwa.2012.05.014
http://dx.doi.org/10.1007/s00500-018-3333-4
http://dx.doi.org/10.1016/j.neucom.2019.01.032

Mathematics 2020, 8, 219 24 of 26

18. Wang, J.G.; Tai, S.C.; Lin, C.J. Medical diagnosis applications using a novel interactively recurrent self-evolving
fuzzy CMAC model. In Proceedings of the 2014 International Joint Conference on Neural Networks (IJCNN),
Beijing, China, 6–11 July 2014; pp. 4092–4098.

19. Chung, C.C.; Chen, T.S.; Lin, L.H.; Lin, Y.C.; Lin, C.M. Bankruptcy prediction using cerebellar model neural
networks. Int. J. Fuzzy Syst. 2016, 18, 160–167. [CrossRef]

20. Guan, J.S.; Lin, L.Y.; Ji, G.L.; Lin, C.M.; Le, T.L.; Rudas, I.J. Breast tumor computer-aided diagnosis using
self-validating cerebellar model neural networks. Acta Polytech. Hung. 2016, 13, 39–52.

21. Tsao, Y.; Chu, H.C.; Fang, S.H.; Lee, J.; Lin, C.M. Adaptive noise cancellation using deep cerebellar model
articulation controller. IEEE Access 2018, 6, 37395–37402. [CrossRef]

22. Zhao, J.; Lin, C.M. Wavelet-TSK-type fuzzy cerebellar model neural network for uncertain nonlinear systems.
IEEE Trans. Fuzzy Syst. 2018, 27, 549–558. [CrossRef]

23. Lin, C.M.; Yang, M.S.; Chao, F.; Hu, X.M.; Zhang, J. Adaptive filter design using type-2 fuzzy cerebellar
model articulation controller. IEEE Trans. Neural Netw. Learn. Syst. 2016, 27, 2084–2094. [CrossRef]

24. Wang, J.G.; Tai, S.C.; Lin, C.J. The application of an interactively recurrent self-evolving fuzzy CMAC
classifier on face detection in color images. Neural Comput. Appl. 2018, 29, 201–213. [CrossRef]

25. Lin, C.M.; Hou, Y.L.; Chen, T.Y.; Chen, K.H. Breast nodules computer-aided diagnostic system design using
fuzzy cerebellar model neural networks. IEEE Trans. Fuzzy Syst. 2013, 22, 693–699. [CrossRef]

26. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
27. Zhang, L.; Yang, G.H. Observer-based fuzzy adaptive sensor fault compensation for uncertain nonlinear

strict-feedback systems. IEEE Trans. Fuzzy Syst. 2017, 26, 2301–2310. [CrossRef]
28. Zhang, L.; Yang, G.H. Low-computation Adaptive Fuzzy Tracking Control for Nonlinear Systems via

Switching-Type Adaptive Laws. IEEE Trans. Fuzzy Syst. 2019, 27, 1931–1942. [CrossRef]
29. Wang, H.; Liu, P.X.; Zhao, X.; Liu, X. Adaptive Fuzzy Finite-Time Control of Nonlinear Systems with Actuator

Faults. Available online: https://ieeexplore.ieee.org/abstract/document/8709959 (accessed on 2 November
2019).

30. Zhao, X.; Wang, X.; Zhang, S.; Zong, G. Adaptive neural backstepping control design for a class of nonsmooth
nonlinear systems. IEEE Trans. Syst. Man Cybern. 2019, 49, 178–183. [CrossRef]

31. Lin, Y.C.; Wang, Y.C.; Chen, T.C.T.; Lin, H.F. Evaluating the Suitability of a Smart Technology Application for
Fall Detection Using a Fuzzy Collaborative Intelligence Approach. Mathematics 2019, 7, 1097. [CrossRef]

32. Djeddi, A.; Dib, D.; Azar, A.T.; Abdelmalek, S. Fractional Order Unknown Inputs Fuzzy Observer for
Takagi–Sugeno Systems with Unmeasurable Premise Variables. Mathematics 2019, 7, 984. [CrossRef]

33. Salamat, N.; Mustahsan, M.; Missen, M.M.S. Switching Point Solution of Second-Order Fuzzy Differential
Equations Using Differential Transformation Method. Mathematics 2019, 7, 231. [CrossRef]

34. Shiev, K.; Ahmed, S.; Shakev, N.; Topalov, A.V. Trajectory control of manipulators using an adaptive
parametric type-2 fuzzy cmac friction and disturbance compensator. In Novel Applications of Intelligent
Systems; Springer: Berlin, Germany, 2016; pp. 63–82.

35. Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci.
1975, 8, 199–249. [CrossRef]

36. Mendel, J.M. Type-2 fuzzy sets. In Uncertain Rule-Based Fuzzy Systems; Springer: Berlin, Germany, 2017;
pp. 259–306.

37. Oh, S.K.; Jang, H.J.; Pedrycz, W. A comparative experimental study of type-1/type-2 fuzzy cascade controller
based on genetic algorithms and particle swarm optimization. Expert Syst. Appl. 2011, 38, 11217–11229.
[CrossRef]

38. Castillo, O.; Marroquín, R.M.; Melin, P.; Valdez, F.; Soria, J. Comparative study of bio-inspired algorithms
applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot. Inf. Sci.
2012, 192, 19–38. [CrossRef]

39. Liang, Q.; Mendel, J.M. Interval type-2 fuzzy logic systems: Theory and design. IEEE Trans. Fuzzy Syst. 2000,
8, 535–550. [CrossRef]

40. Lee, C.H.; Chang, F.Y.; Lin, C.M. An efficient interval type-2 fuzzy CMAC for chaos time-series prediction
and synchronization. IEEE Trans. Cybern. 2014, 44, 329–341. [CrossRef]

http://dx.doi.org/10.1007/s40815-015-0121-5
http://dx.doi.org/10.1109/ACCESS.2018.2827699
http://dx.doi.org/10.1109/TFUZZ.2018.2863650
http://dx.doi.org/10.1109/TNNLS.2015.2491305
http://dx.doi.org/10.1007/s00521-016-2551-x
http://dx.doi.org/10.1109/TFUZZ.2013.2269149
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/TFUZZ.2017.2772879
http://dx.doi.org/10.1109/TFUZZ.2019.2892920
https://ieeexplore.ieee.org/abstract/document/8709959
http://dx.doi.org/10.1109/TSMC.2018.2875947
http://dx.doi.org/10.3390/math7111097
http://dx.doi.org/10.3390/math7100984
http://dx.doi.org/10.3390/math7030231
http://dx.doi.org/10.1016/0020-0255(75)90036-5
http://dx.doi.org/10.1016/j.eswa.2011.02.169
http://dx.doi.org/10.1016/j.ins.2010.02.022
http://dx.doi.org/10.1109/91.873577
http://dx.doi.org/10.1109/TCYB.2013.2254113

Mathematics 2020, 8, 219 25 of 26

41. Chang, C.W.; Xiao, W.R.; Hsiao, C.C.; Chen, S.S.; Tao, C.W. A simplified interval type-2 fuzzy CMAC.
In Proceedings of the Joint 17th World Congress of International Fuzzy Systems Association and 9th
International Conference on Soft Computing and Intelligent Systems (IFSA-SCIS), Otsu, Japan, 27–30 June
2017; pp. 1–4.

42. Lin, C.M.; La, V.H.; Le, T.L. DC–DC converters design using a type-2 wavelet fuzzy cerebellar model
articulation controller. Neural Comput. Appl. 2018. [CrossRef]

43. Zhao, T.; Ping, L.; Cao, J. Self-organising interval type-2 fuzzy neural network with asymmetric membership
functions and its application. Soft Comput. 2019, 23, 7215–7228. [CrossRef]

44. Peterson, J.L. Petri Net Theory and the Modeling of Systems; Prentice-Hall: Upper Saddle River, NJ, USA, 1981.
45. Looney, C.G. Fuzzy Petri nets for rule-based decisionmaking. IEEE Trans. Syst. Man Cybern. 1988, 18,

178–183. [CrossRef]
46. Rosdi, F.S.; Salim, S.; Mustafa, M.B. An FPN-based classification method for speech intelligibility detection of

children with speech impairments. Soft Comput. 2019, 23, 2391–2408. [CrossRef]
47. Zhu, G.; Li, Z.; Wu, N. Model-based fault identification of discrete event systems using partially observed

Petri nets. Automatica 2018, 96, 201–212. [CrossRef]
48. Lin, C.M.; Li, H.Y. Dynamic petri fuzzy cerebellar model articulation controller design for a magnetic

levitation system and a two-axis linear piezoelectric ceramic motor drive system. IEEE Trans. Control Syst.
Technol. 2015, 23, 693–699. [CrossRef]

49. Bibi, Y.; Bouhali, O.; Bouktir, T. Petri type 2 fuzzy neural networks approximator for adaptive control of
uncertain non-linear systems. IET Control Theory Appl. 2017, 11, 3130–3136. [CrossRef]

50. Hansen, P.; Franco, P.; Kim, S.Y. Soccer ball recognition and distance prediction using fuzzy petri nets.
In Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI), Salt Lake
City, UT, USA, 7–9 July 2018; pp. 315–322.

51. Mejía, G.; Niño, K.; Montoya, C.; Sánchez, M.A.; Palacios, J.; Amodeo, L. A Petri Net-based framework for
realistic project management and scheduling: An application in animation and videogames. Comput. Oper.
Res. 2016, 66, 190–198. [CrossRef]

52. Juang, C.F.; Lin, C.T. A recurrent self-organizing neural fuzzy inference network. IEEE Trans. Neural Netw.
1999, 10, 828–845. [CrossRef]

53. Hsu, C.F.; Cheng, K.H. Recurrent fuzzy-neural approach for nonlinear control using dynamic structure
learning scheme. Neurocomputing 2008, 71, 3447–3459. [CrossRef]

54. Yen, V.T.; Nan, W.Y.; Cuong, P.V. Recurrent fuzzy wavelet neural networks based on robust adaptive sliding
mode control for industrial robot manipulators. Neural Comput. Appl. 2018. [CrossRef]

55. Lin, F.J.; Lee, S.Y.; Chou, P.H. Intelligent integral backstepping sliding-mode control using recurrent neural
network for piezo-flexural nanopositioning stage. Asian J. Control 2016, 18, 456–472. [CrossRef]

56. Sharma, R.; Kumar, V.; Gaur, P.; Mittal, A. An adaptive PID like controller using mix locally recurrent neural
network for robotic manipulator with variable payload. Isa Trans. 2016, 62, 258–267. [CrossRef]

57. Wang, S.Y.; Liu, F.Y.; Chou, J.H. Applications on adaptive recurrent cerebellar model articulation controller
for switched reluctance motor drive systems. In Proceedings of the International Symposium on Computer,
Consumer and Control (IS3C), Xi’an, China, 4–6 July 2016; pp. 6–9.

58. Le, T.L.; Lin, C.M.; Huynh, T.T. Interval Type-2 Petri CMAC Design for 4D Chaotic System. Available online:
https://ieeexplore.ieee.org/abstract/document/8823251 (accessed on 2 November 2019).

59. Le, T.L.; Lin, C.M.; Huynh, T.T. Self-evolving type-2 fuzzy brain emotional learning control design for chaotic
systems using PSO. Appl. Soft Comput. 2018, 73, 418–433. [CrossRef]

60. Lin, C.M.; Le, T.L.; Huynh, T.T. Self-evolving function-link interval type-2 fuzzy neural network for nonlinear
system identification and control. Neurocomputing 2018, 275, 2239–2250. [CrossRef]

61. Le, T.L. Self-organizing recurrent interval type-2 Petri fuzzy design for time-varying delay systems. IEEE
Access 2018, 7, 10505–10514. [CrossRef]

62. Lin, C.M.; Le, T.L. PSO-self-organizing interval type-2 fuzzy neural network for antilock braking systems.
Int. J. Fuzzy Syst. 2017, 19, 1362–1374. [CrossRef]

63. Rong, H.J.; Yang, Z.X.; Wong, P.K.; Vong, C.M.; Zhao, G.S. Self-evolving fuzzy model-based controller
with online structure and parameter learning for hypersonic vehicle. Aerosp. Sci. Technol. 2017, 64, 1–15.
[CrossRef]

http://dx.doi.org/10.1007/s00521-018-3755-z
http://dx.doi.org/10.1007/s00500-018-3367-7
http://dx.doi.org/10.1109/21.87067
http://dx.doi.org/10.1007/s00500-017-2932-9
http://dx.doi.org/10.1016/j.automatica.2018.06.039
http://dx.doi.org/10.1109/TCST.2014.2325897
http://dx.doi.org/10.1049/iet-cta.2017.0610
http://dx.doi.org/10.1016/j.cor.2015.08.011
http://dx.doi.org/10.1109/72.774232
http://dx.doi.org/10.1016/j.neucom.2007.10.014
http://dx.doi.org/10.1007/s00521-018-3520-3
http://dx.doi.org/10.1002/asjc.1057
http://dx.doi.org/10.1016/j.isatra.2016.01.016
https://ieeexplore.ieee.org/abstract/document/8823251
http://dx.doi.org/10.1016/j.asoc.2018.08.022
http://dx.doi.org/10.1016/j.neucom.2017.11.009
http://dx.doi.org/10.1109/ACCESS.2018.2889226
http://dx.doi.org/10.1007/s40815-017-0301-6
http://dx.doi.org/10.1016/j.ast.2017.01.008

Mathematics 2020, 8, 219 26 of 26

64. Ge, D.; Zeng, X.J. A self-evolving fuzzy system which learns dynamic threshold parameter by itself. Ieee
Trans. Fuzzy Syst. 2018, 27, 1625–1637. [CrossRef]

65. Le, T.L. Intelligent fuzzy controller design for antilock braking systems. J. Intell. Fuzzy Syst. 2019, 36,
3303–3315. [CrossRef]

66. Vincent, U. Synchronization of identical and non-identical 4-D chaotic systems using active control.
Chaossolitons Fractals 2008, 37, 1065–1075. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TFUZZ.2018.2886154
http://dx.doi.org/10.3233/JIFS-181014
http://dx.doi.org/10.1016/j.chaos.2006.10.005
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	System Description
	Architecture of SRIT2PC
	Recurrent Interval Type-2 Petri CMAC
	Self-Evolving Algorithm
	Parameter Learning For SRIT2PC
	Compensator Controller

	Illustrative Examples
	Conclusions
	References

