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1. Introduction

Integral inequalities play a vital role in the field of fractional differential equations. In the past few
decades, researchers have paid their valuable consideration to this area. The significant developments
in this area have been investigated, for example, [1–3], and [4] (cf. references cited therein). In [5],
Ngo et al. established the following inequalities

∫ 1

0
gσ+1(t)dt ≥

∫ 1

0
tσg(t)dt (1)

and ∫ 1

0
gσ+1(t)dt ≥

∫ 1

0
tgσ(t)dt, (2)

where σ > 0 and the positive continuous function g on [0, 1] such that

∫ 1

x
g(t)dt ≥

∫ 1

x
tdt, x ∈ [0, 1].

Later on, Liu et al. [6] established the following inequalities

∫ b

a
gσ+γ(t)dt ≥

∫ b

a
(t− a)σgγ(t)dt, (3)
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where σ > 0, γ > 0, and the positive continuous g on [a, b] is such that

∫ b

a
gδ(t)dt ≥

∫ b

a
(t− a)δdt, δ = min(1, γ), t ∈ [a, b].

Liu et al. [7] derived two theorems for integral inequalities as follows:

Theorem 1. Suppose that the functions f1 and g1 are positive and continuous on [a, b], (a < b) with f1 ≤ g1

on [a, b] such that the function f1
g1

, (g1 6= 0) is decreasing and the function f1 is increasing. Assume that the
function Φ is a convex with Φ(0) = 0. Then, the following inequality holds∫ b

a f1(t)dt∫ b
a g1(t)dt

≥
∫ b

a Φ ( f1(t)) dt∫ b
a Φ (g1(t)) dt

.

Theorem 2. Suppose that the functions f1, f2, and f3 be positive and continuous on [a, b], (a < b) with
f1 ≤ f2 on [a, b] such that the function f1

f2
, ( f2 6= 0) is decreasing and the functions f1 and f3 are increasing.

Assume that the function Φ is a convex with Φ(0) = 0. Then, the following inequality holds∫ b
a f1(t)dt∫ b
a f2(t)dt

≥
∫ b

a Φ ( f1(t)) f3(t)dt∫ b
a Φ ( f2(t)) f3(t)dt

.

The inequalities in Equations (1)–(3) and their various generalizations have gained attention of
the researchers [8–12].

Furthermore, the research of fractional integral inequalities is also of prominent importance.
In [13,14], the authors presented some weighted Grüss type and new inequalities involving
Riemann–Liouville (R-L) fractional integrals. In [15], Nisar et al. introduced many inequalities
for extended gamma and confluent hypergeometric k-functions. Certain Gronwall inequalities for
R-L and Hadamard k-fractional derivatives with applications are observed in [16]. The inequalities
concerning the generalized (k, ρ)-fractional integral operators can be seen in [17].

The generalized fractional integral and Grüss type inequalities via generalized fractional integrals
can be found in [18,19]. In [20], the authors examined the (k, s)-R-L fractional integral and its
applications. In [21], the authors presented generalized Hermite–Hadamard type inequalities through
fractional integral operators. Dahmani [22] introduced some classes of fractional integral inequalities by
employing a family of n positive functions. Further the applications of fractional integral inequalities
can be found [23,24].

In the last few decades, the researchers have paid their valuable consideration to the field
of fractional calculus. This field has received more attention from various researchers due to its
wide applications in various fields. In the growth of fractional calculus, researchers concentrate to
develop several fractional integral operators and their applications in distinct fields (see, e.g., [25–33]).
Zaher et al. [34] presented a new fractional nonlocal model.

Such types of these new fractional integral operators promote the future study to develop
certain new approaches to unify the fractional operators and secure fractional integral inequalities.
Especially, several striking inequalities, properties, and applicability for the fractional conformable
integrals and derivatives are recently studied by various researchers. We refer the interesting readers
to the works by [35–44], and [45]. The applications of conformable derivative can be found in [46–49]
(cf. references cited therein).
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2. Preliminaries

Jarad et al. [50] proposed the following left and right generalized proportional integral operators,
which are sequentially defined by(

aJ ξ,δ f
)
(τ) =

1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − t)](τ − t)ξ−1 f (t)dt, a < τ (4)

and (
J ξ,δ

b f
)
(τ) =

1
δξ Γ(ξ)

∫ b

τ
exp[

δ− 1
δ

(t− τ)](t− τ)ξ−1 f (t)dt, τ < b, (5)

where the proportional index δ ∈ (0, 1] and ξ ∈ C with Re(ξ) > 0 and Γ(τ) is the well-know gamma
function defined by Γ(τ) =

∫ ∞
0 tτ−1e−tdt [51–53].

Remark 1. Setting δ = 1 in Equations (4) and (5), we obtain the following left and right R-L:

(
aJ ξ f

)
(τ) =

1
Γ(ξ)

∫ τ

a
(τ − t)ξ−1 f (t)dt, a < τ,

and (
J ξ

b f
)
(τ) =

1
Γ(ξ)

∫ b

τ
(t− τ)ξ−1 f (t)dt, τ < b,

where ξ ∈ C with Re(ξ) > 0.

Recently, the generalized proportional derivative, and integral operators are established and
studied in [54,55]. Certain new classes of integral inequalities for a class of n (n ∈ N) positive
continuous and decreasing functions on [a, b] via generalized proportional fractional integrals can
be found in the work of Rahman et al. [56]. The generalized Hadamard proportional fractional
integrals and certain inequalities for convex functions by employing were recently proposed by
Rahman et al. [57]. The bounds of proportional integrals in the sense of another function can be found
in the work of Rahman et al. [58].

3. Main Results

In this section, we establish proportional fractional integral inequalities for convex functions by
employing proportional fractional integral operators.

Theorem 3. Suppose that the functions f and g are positive and continuous on the interval [a, b], (a < b) and
f ≤ g on [a, b]. If the function f

g , (g 6= 0) is decreasing and the function f is increasing on [a, b], then, for any
convex function Φ with Φ(0) = 0, the following inequality satisfies the proportional fractional integral operator
given by Equation (4)

aJ ξ,δ [ f (τ)]
aJ ξ,δ [g(τ)]

≥ aJ ξ,δ [Φ( f (τ))]
aJ ξ,δ [Φ(g(τ))]

, (6)

where δ ∈ (0, 1], ξ ∈ C with Re(ξ) > 0.
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Proof. Since Φ is convex function with Φ(0) = 0, the function f (τ)
τ is increasing. As f is increasing,

the function Φ( f (τ))
f (τ) is also increasing. Obviously, f (τ)

g(τ) is decreasing function. Thus, for all ρ, θ ∈ [a, b],
we have (

Φ( f (ρ))
f (ρ)

− Φ( f (θ))
f (θ)

)(
f (θ)
g(θ)

− f (ρ)
g(ρ)

)
≥ 0.

It follows that

Φ( f (ρ))
f (ρ)

f (θ)
g(θ)

+
Φ( f (θ))

f (θ)
f (ρ)
g(ρ)

− Φ( f (θ))
f (θ)

f (θ)
g(θ)

− Φ( f (ρ))
f (ρ)

f (ρ)
g(ρ)

≥ 0. (7)

Multiplying Equation (7) by g(ρ)g(θ), we have

Φ( f (ρ))
f (ρ)

f (θ)g(ρ) +
Φ( f (θ))

f (θ)
f (ρ)g(θ)− Φ( f (θ))

f (θ)
f (θ)g(ρ)− Φ( f (ρ))

f (ρ)
f (ρ)g(θ) ≥ 0. (8)

Multiplying Equation (8) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1, and integrating with respect to

ρ over [a, τ], a < τ ≤ b, we have

1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (ρ))
f (ρ)

f (θ)g(ρ)dρ

+
1

δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (θ))
f (θ)

f (ρ)g(θ)dρ

− 1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (θ))
f (θ)

f (θ)g(ρ)dρ

− 1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (ρ))
f (ρ)

f (ρ)g(θ)dρ ≥ 0.

Then, it follows that

f (θ) aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)
)
+

(
Φ( f (θ))

f (θ)
g(θ)

)
aJ ξ,δ( f (τ))

−
(

Φ( f (θ))
f (θ)

f (θ)
)

aJ ξ,δ(g(τ))− g(θ) aJ ξ,δ
(

Φ( f (τ))
f (τ)

f (τ)
)
≥ 0. (9)

Again, multiplying both sides of Equation (9) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − θ)](τ − θ)ξ−1,

and integrating the resultant inequality with respect to θ over [a, τ], a < τ ≤ b, we get

aJ ξ,δ( f (τ)) aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)
)
+ aJ ξ,δ

(
Φ( f (τ))

f (τ)
g(τ)

)
aJ ξ,δ ( f (τ))

≥ aJ ξ,δ (g(τ)) aJ ξ,δ (Φ( f (τ))) + aJ ξ,δ (Φ( f (τ))) aJ ξ,δ (g(τ)) .

It follows that

aJ ξ,δ ( f (τ))
aJ ξ,δ (g(τ))

≥ aJ ξ,δ (Φ( f (τ)))

aJ ξ,δ
(

Φ( f (τ))
f (τ) g(τ)

) . (10)

Now, since f ≤ g on [a, b] and Φ(τ)
τ is an increasing function, for ρ ∈ [a, τ], a < τ ≤ b, we have

Φ( f (ρ))
f (ρ)

≤ Φ(g(ρ))
g(ρ)

. (11)
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Multiplying both sides of Equation (11) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1g(ρ) and

integrating the resultant inequality with respect to ρ over [a, τ], a < τ ≤ b, we get

1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (ρ))
f (ρ)

g(ρ)dρ

≤ 1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ(g(ρ))
g(ρ)

g(ρ)dρ,

which, in view of Equation (4), can be written as

aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)
)
≤ aJ ξ,δ (Φ(g(τ))) . (12)

Hence, from Equations (10) and (12), we get Equation (6).

Remark 2. Applying Theorem 3 for δ = 1, we get Theorem 3.1 proved by [59].

Remark 3. Applying Theorem 3 for ξ = δ = 1 and x = b, we get Theorem 1.

Theorem 4. Suppose that the functions f and g are positive and continuous on [a, b], (a < b) and f ≤ g on
[a, b]. If the function f

g , (g 6= 0) is decreasing and the function f is increasing on [a, b], then, for any convex
function Φ with Φ(0) = 0, the following inequality satisfies the proportional fractional integral operator given
by Equation (4)

aJ ξ,δ [ f (τ)] aJ λ,δ [Φ(g(τ))] + aJ λ,δ [ f (τ)] aJ ξ,δ [Φ(g(τ))]
aJ ξ,δ [g(τ)] aJ λ,δ [Φ( f (τ))] + aJ λ,δ [g(τ)] aJ ξ,δ [Φ( f (τ))]

≥ 1,

where δ ∈ (0, 1], ξ, λ ∈ C with Re(ξ) > 0 and Re(λ) > 0.

Proof. Since Φ is convex function with Φ(0) = 0, the function f (τ)
τ is increasing. As f is increasing,

the function Φ( f (τ))
f (τ) is also increasing. Clearly, the function f (τ)

g(τ) is decreasing for all ρ, θ ∈ [a, τ], a <

τ ≤ b. Multiplying Equation (9) by
1

δλΓ(λ)
exp[

δ− 1
δ

(τ − θ)](τ − θ)λ−1 and integrating the resultant

inequality with respect to θ over [a, τ], a < τ ≤ b, we get

aJ λ,δ( f (τ)) aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)
)
+ aJ λ,δ

(
Φ( f (τ))

f (τ)
g(τ)

)
aJ ξ,δ ( f (τ))

≥ aJ ξ,δ (g(τ)) aJ λ,δ
(

Φ( f (τ)
f (τ)

f (τ)
)
+ aJ ξ,δ

(
Φ( f (τ)

f (τ)
f (τ)

)
aJ λ,δ (g(τ)) . (13)

Now, since f ≤ g on [a, b] and Φ(τ)
τ is an increasing function, for ρ ∈ [a, τ], a < τ ≤ b, we have

Φ( f (ρ))
f (ρ)

≤ Φ(g(ρ))
g(ρ)

. (14)

Multiplying both sides of Equation (14) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1g(ρ) and

integrating the resultant inequality with respect to ρ over [a, τ], a < τ ≤ b, we get

1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (ρ))
f (ρ)

g(ρ)dρ

≤ 1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ(g(ρ))
g(ρ)

g(ρ)dρ,
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which, in view of Equation (4), can be written as

aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)
)
≤ aJ ξ,δ (Φ(g(τ))) . (15)

Similarly, one can obtain

aJ λ,δ
(

Φ( f (τ))
f (τ)

g(τ)
)
≤ aJ λ,δ (Φ(g(τ))) . (16)

Hence, from Equations (12), (13), (15), and (16), we get the desired result.

Remark 4. Setting ξ = λ, Theorem 4 leads to Theorem 3.

Remark 5. Applying Theorem 4 for δ = 1, we get Theorem 3.3 proved by Dahmani [59].

Theorem 5. Suppose that the functions f , h, and g are positive and continuous on [a, b], (a < b) and f ≤ h
on [a, b]. If the function f

g is decreasing and the functions f and h are increasing on [a, b], then, for any convex
function Φ with Φ(0) = 0, the following inequality satisfies the proportional fractional integral operator given
by Equation (4)

aJ ξ,δ [ f (τ)]
aJ ξ,δ [g(τ)]

≥ aJ ξ,δ [Φ( f (τ))h(τ)]
aJ ξ,δ [Φ(g(τ))h(τ)]

,

where δ ∈ (0, 1], ξ ∈ C with Re(ξ) > 0.

Proof. Since Φ is convex function such that Φ(0) = 0, the function Φ(τ)
τ is increasing. As the function

f is increasing, Φ( f (τ))
f (τ) is also increasing. Clearly, the function f (τ)

g(τ) is decreasing for all ρ, θ ∈ [a, τ], a <

τ ≤ b. (
Φ( f (ρ))

f (ρ)
h(ρ)− Φ( f (θ))

f (θ)
h(θ)

)
( f (θ)g(ρ)− f (ρ)g(θ)) ≥ 0.

It follows that

Φ( f (ρ))h(ρ)
f (ρ)

f (θ)g(ρ) +
Φ( f (θ))h(θ)

f (θ)
f (ρ)g(θ)− Φ( f (θ))h(θ)

f (θ)
f (θ)g(ρ)− Φ( f (ρ))h(ρ)

f (ρ)
f (ρ)g(θ) ≥ 0. (17)

Multiplying Equation (17) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 and integrating the resultant

inequality with respect to ρ over [a, τ], a < τ ≤ b, we have

1
δξΓ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (ρ))
f (ρ)

f (θ)g(ρ)h(ρ)dρ

+
1

δξΓ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (θ))
f (θ)

f (ρ)g(θ)h(θ)dρ

− 1
δξΓ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (θ))
f (θ)

f (θ)h(θ)g(ρ)dρ

− 1
δξΓ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − ρ)](τ − ρ)ξ−1 Φ( f (ρ))
f (ρ)

f (ρ)h(ρ)g(θ)dρ ≥ 0.
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It follows that

f (θ) aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)h(τ)
)
+

(
Φ( f (θ))

f (θ)
g(θ)h(θ)

)
aJ ξ,δ( f (τ))

−
(

Φ( f (θ))
f (θ)

f (θ)h(θ)
)

aJ ξ,δ(g(τ))− g(θ) aJ ξ,δ
(

Φ( f (τ))
f (τ)

f (τ)h(τ)
)
≥ 0. (18)

Again, multiplying both sides of Equation (18) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − θ)](τ − θ)ξ−1 and

integrating the resultant inequality with respect to θ over [a, τ], a < τ ≤ b, we get

aJ ξ,δ( f (τ)) aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)h(τ)
)
+ aJ ξ,δ

(
Φ( f (τ))

f (τ)
g(τ)h(τ)

)
aJ ξ,δ ( f (τ))

≥ aJ ξ,δ (g(τ)) aJ ξ,δ (Φ( f (τ))h(τ)) + aJ ξ,δ (Φ( f (τ))h(τ)) aJ ξ,δ (g(τ)) .

It follows that

aJ ξ,δ( f (τ))
aJ ξ,δ (g(τ))

≥ aJ ξ,δ (Φ( f (τ))h(τ))

aJ ξ,δ
(

Φ( f (τ))
f (τ) g(τ)h(τ)

) . (19)

In addition, since f ≤ g on [a, b] and Φ(τ)
τ is an increasing function, for η, θ ∈ [a, b], we have

Φ( f (η))
f (η)

≤ Φ(g(η))
g(η)

. (20)

Multiplying both sides of Equation (20) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − η)](τ − η)ξ−1g(η)h(η) and

integrating the resultant inequality with respect to η over [a, τ], a < τ ≤ b, we get

1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − η)](τ − η)ξ−1 Φ( f (η))
f (η)

g(η)h(η)dη

≤ 1
δξ Γ(ξ)

∫ τ

a
exp[

δ− 1
δ

(τ − η)](τ − η)ξ−1 Φ(g(η))
g(η)

g(η)h(η)dη,

which, in view of Equation (4), can be written as

aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)h(τ)
)
≤ aJ ξ,δ (Φ(g(τ))h(τ)) . (21)

Hence, from Equations (21) and (19), we obtain the required result.

Remark 6. Applying Theorem 5 for δ = 1, we get Theorem 3.5 proved by Dahmani [59].

Remark 7. Applying Theorem 5 for δ = ξ = 1 and x = b, we get Theorem 2.

Theorem 6. Suppose that the functions f , h, and g are positive and continuous on [a, b], (a < b) and f ≤ g
on [a, b]. If the function f

g is decreasing and the functions f and h are increasing on [a, b], then, for any convex
function Φ with Φ(0) = 0, the following inequality satisfies the proportional fractional integral operator given
by Equation (4)

aJ ξ,δ [ f (τ)] aJ λ,δ [Φ(g(τ))h(τ)] + aJ λ,δ [ f (τ)] aJ ξ,δ [Φ(g(τ))h(τ)]
aJ ξ,δ [g(τ)] aJ λ,δ [Φ( f (τ))h(τ)] + aJ λ,δ [g(τ)] aJ ξ,δ [Φ( f (τ))h(τ)]

≥ 1, (22)

where δ ∈ (0, 1], ξ, λ ∈ C with Re(ξ) > 0 and Re(λ) > 0.
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Proof. Multiplying both sides of Equation (18) by
1

δλΓ(λ)
exp[

δ− 1
δ

(τ− θ)](τ− θ)λ−1 and integrating

the resultant inequality with respect to θ over [a, τ], a < τ ≤ b, we get

aJ λ,δ( f (τ)) aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)h(τ)
)
+ aJ λ,δ

(
Φ( f (τ))

f (τ)
g(τ)h(τ)

)
aJ ξ,δ ( f (τ))

≥ aJ ξ,δ (g(τ)) aJ λ,δ
(

Φ( f (τ))
f (τ)

f (τ)h(τ)
)
+ aJ ξ,δ

(
Φ( f (τ))

f (τ)
f (τ)h(τ)

)
aJ λ,δ (g(τ)) . (23)

Since f ≤ g on [a, b] and Φ(τ)
τ is an increasing function, for η, θ ∈ [1, x], a < τ ≤ b, we have

Φ( f (η))
f (η)

≤ Φ(g(η))
g(η)

. (24)

Multiplying both sides of Equation (24) by
1

δξ Γ(ξ)
exp[

δ− 1
δ

(τ − η)](τ − η)ξ−1g(η)h(η), η ∈

[a, x], a < τ ≤ b and integrating the resultant inequality with respect to η over [a, τ], a < τ ≤ b, we get

aJ ξ,δ
(

Φ( f (τ))
f (τ)

g(τ)h(τ)
)
≤ aJ ξ,δ (Φ(g(τ))h(τ))) . (25)

Similarly, one can obtain

aJ η,δ
(

Φ( f (τ))
f (τ)

g(τ)h(τ)
)
≤ aJ η,δ (Φ(g(τ))h(τ))) . (26)

Hence, from Equations (23), (25), and (26), we obtain the required inequality in Equation (22).

Remark 8. If we consider ξ = λ, then Theorem 6 leads to Theorem 5.

Remark 9. Applying Theorem 6 for δ = 1, we get Theorem 3.7 of Dahmani [59].

4. Concluding Remarks

Some interesting integral inequalities for convex functions were presented by Liu et al. ([7]
Theorems 9 and 10). Later, Dahmani [59] improved these integral inequalities by utilizing the R-L
fractional integral operator. Here, we present some new fractional proportional integral inequalities
for convex functions by utilizing the proportional fractional integrals. In fact, we established the
inequalities presented in Theorem 1 and Theorem 2 using the fractional proportional integrals, which
are nonlocal and their orders depend on two indices: δ, which is the proportional index, and ξ, which
is the iterated index.
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