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Abstract: Communities are often associated with important structural characteristics of a complex
network system, therefore detecting communities is considered to be a fundamental problem in
network analysis. With the development of data collection technology and platform, more and
more sources of network data are acquired, which makes the form of network as well as the related
data more complex. To achieve integrative community detection of a multi-layer attributed network
that involves multiple network layers together with their attribute data, effectively utilizing the
information from the multiple networks and the attributes may greatly enhance the accuracy of
community detection. To this end, in this article, we study the integrative community detection
problem of a multi-layer attributed network from the perspective of matrix factorization, and propose
a penalized alternative factorization (PAF) algorithm to resolve the corresponding optimization
problem, followed by the convergence analysis of the PAF algorithm. Results of the numerical study,
as well as an empirical analysis, demonstrate the advantages of the PAF algorithm in community
discovery accuracy and compatibility with multiple types of network-related data.

Keywords: community detection; matrix factorization; multi-layer attributed network; penalized
alternating factorization

1. Introduction

Network science is one of the most active research fields in recent years [1], which has been
successfully applied in many fields, including the social science to study social relationships among
individuals [2], biology to study interactions among genes and proteins [3], neuroscience to study the
structure and function of the brain [4], and so on. Networks can represent and analyze the relational
structure among interacting units of a complex system, and in many cases, the units of a network can
be divided into groups with the property that there are many edges between units in the same group,
but relatively few edges between units in different groups. Such groups are known as communities,
which are often associated with important structural characteristics of a complex system. [5,6].

For example, in social networks, communities can correspond to groups with common
interests [7,8]. In World Wide Web networks, communities can correspond to webpages with related
topics [9]; in brain networks, they can correspond to specialized functional components [10]; and in
protein—protein interaction networks, they can correspond to groups of proteins that contribute
to the same cellular function [11]. Communities are often useful for understanding the essential
functionality and organizational principles of networks. Therefore, community detection is considered
a fundamental problem in understanding and analyzing networks [6].

Community detection has been widely studied in many application fields since the 1980s.
Various models and algorithms have been developed in different fields, such as machine learning,
network science, social science, and statistical physics. Community detection is a computationally
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challenging problem because the number of possible partitions of nodes into nonoverlapping groups
is non-polynomial in the size of a network, especially in large networks. To deal with this challenging
problem, a large number of algorithmic approaches have been proposed [12-16], including various
greedy algorithms, such as hierarchical clustering [17], graph partitioning [18], and the methods
based on optimizing a global criterion over all possible partitions, such as normalized cuts [19]
and modularity [20]. Other algorithmic approaches include spectral methods [21-24], semi-definite
programming [25,26], low-rank approximation [27], and non-negative matrix factorization [28].

Recently the quantities and types of network-related data are rising very fast, as data collection
technologies or platforms rapidly evolve. Consequently, a large number of studies on community
detection for various types of network-related data have been conducted, which will be introduced as
follows according to the type of networks they are targeting.

First, for a single network, a number of approaches to community detection have been proposed
based on probabilistic models for networks with communities, such as the stochastic block model [29],
the degree-corrected stochastic block model [30], and the latent factor model [31]. Other approaches
by optimizing a criterion measuring the strength of community structure in some sense also have
appeared, often through non-negative matrix factorization [28] and spectral approximations, such as
normalized cuts [19], modularity [20,32], and many variants of spectral clustering [33,34].

For attributed network, i.e., a network together with its attribute data, several generative models
for jointly modeling the edges and the attributes have been proposed, including the network random
effects model [35], the embedding feature model [36], the latent variable model [37], the discriminative
approach [38], the latent multi-group membership graph model [39], the social circles model for ego
networks [40], the communities from edge structure and node attributes model [41], the Bayesian
graph clustering model [42], the topical communities and personal interest model [43], the modified
stochastic block model [44], and a criterion-based method [45].

Multi-layer network involves networks from interdependent but distinct sources [46,47],
which can be simultaneously collected for a certain group of units [48]. Community detection
of this type of network has been applied to a variety of problems [49,50], including clustering of
temporal networks through a dynamic stochastic block model [51], modeling and analysis of air
transportation routes [52], studying individuals with multiple sociometric relations [53,54], and
analyzing relationships between social interactions and economic exchange [55].

In addition, in many real network data analysis, there will be a more complex or general type of
network, named multi-layer attributed network, which involves multiple network layers together with
their attribute data. If the multiple networks share a common community structure and the distribution
of unit attributes is also correlated with this community structure, then an integrative community
detection approach that can integrate information from the multiple networks as well as the attributes
may make better use of all these network-related data, therefore increase the accuracy of community
detection as much as possible. Unfortunately, the research on multi-layer attributed network is still in
its infancy, which leads us to further explore the problem description and corresponding solution of its
community detection.

To this end, in this article, we employ the framework of integrative matrix factorization to
formulate and achieve community detection of a multi-layer attributed network, which can be
compatible with all the special cases of a multi-layer attributed network: the single network, attributed
network, and the multi-layer network. In pursuit of community discovery accuracy and compatibility
with multiple types of network-related data, we propose to use the penalized alternative factorization,
named the PAF algorithm, to resolve the corresponding optimization problem.

The rest of this article is organized as follows. We elaborate the community detection problem
of multi-layer attributed network in Section 2, and present the PAF algorithm to learn communities
in Section 3, followed by the theoretical analysis of PAF in Section 4. The numerical performance of
PAF is demonstrated in Section 5, and an empirical analysis is demonstrated in Section 6. Finally,
we conclude this article in Section 7 and relegate the technical proofs to Appendies A and B.
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2. Problem Formulation

In this section, we will describe in detail the problems of community detection based on matrix
factorization from the single network to the multi-layer attributed networks.

2.1. Single Network

Let G = (N, E) denote a single network, where N = {1,...,n} is the node set that represents
the units of the modeled system, and E C N x N is the edge set containing all pairs of nodes (u,v)
such that nodes u and v share a social, physical, or functional relationship, where N x N denotes
the Cartesian product of N and N. A network G can be characterized by an n x n adjacency matrix
A = (Aj;) with each A;; € {0,1}, where A;; = 1 means that there exists an edge from nodes i to
j in network G; otherwise, is not. The purpose of community detection is to identify a partition of
N with community structure via the observed adjacency matrix A. Due to numerous definitions of
communities, there are numerous approaches to implementing community detection. In view of the
simplicity and effectiveness of a matrix factorization approach, in this article we consider the problem
of community detection based on the framework of matrix factorization.

In the framework of matrix factorization, the problem of community detection, given a
predetermined number of communities k*, can be formulated as the following optimization problem,

min ||A — CSCT|3, 1
CefRnXk*

where C is the unknown n x k* matrix used to find k* communities, S is the unknown k* x k* weight
matrix, and || - || denotes the Frobenius norm. This optimization problem is the same as that studied
in [28], except that in our optimization problem the non-negative constraints on matrix elements of C
and S are removed to improve computational efficiency. The matrix C can be viewed as the community
label matrix of A. By treating each row of C as a point in R¥", we divide these points into k* clusters
via k-means or any other clustering algorithm. Then, we assign the network node i € N to community
ke {1,...,k*}if and only if row i of matrix C is assigned to cluster k.

From a statistical point of view, we find that the above optimization problem (1) is closely related
to the well-known stochastic block model (SBM) [29]. Specifically, under the k*-community SBM with
the nn x k* ground truth label matrix C(©) and the k* x k* connectivity probability matrix $(°), once the
diagonal elements of the adjacency matrix A are also considered as random terms, not fixed to be zero,
then the conditional expectation of A given C(*) is

E(A|C©) = c©sOcOT, @)

Similar to the least-squares method, the ground truth labels C(%) can be predicted by minimizing
the sum of squares of the observations A;;’s and their conditional expectation E(A;;|C)’s:

min |[A-E(A|C)|2= min ||A—CSCT|?3, (3)
Ccef{o,1}<K Ce{0,1}m<k*
Se[0, 1] xk* Sef0, 1] xk*

subject to Z;-‘;l Cij = 1foreachi € {1,...,n}. This minimization problem is very hard to achieve,
as the range of C, {C € {0,1}"*K" . Z;‘(; Cij = 1}, includes k*" values. Consequently, to make the
corresponding calculation feasible, (3) may be relaxed into (1), if the accuracy of community recovery
can be guaranteed. Note that in (1), the ranges of C and S are relaxed into the Euclidean spaces Rk
and RF *F" respectively, whereas in other methods, such as the non-negative matrix factorization
methods [28], the ranges can be relaxed into R*" K and RHK Here, we remove the non-negative
constraints to improve computational efficiency and compatibility of the proposed method, which will
be explained in the following section.
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2.2. Multi-Layer Attributed Network

Once the structural information from multiple sources and the attribution information of the
network nodes can be collected together, we will consider the so-called multi-layer attributed network,
which is written as G%lt‘l = (N, MW ... Em) X) and characterized by m* n x n adjacent matrices
{AM, ..., A")} as well as an 1 x p attribution matrix X. This is a unified framework, which can
include the single network, multi-layer network, and attributed network. To achieve community
detection of G%’t‘l, we study the following integrative matrix factorization problem,

m*
min Y. wnllA™ — CSMCT|IE + wol| X — VT3, 4)
CeRmxk* m=1
sM),...,s(M) cRK" xk*
VeRpxK*

where {wm}ﬁ:O with Y wy, = 1 are the weight parameters specified beforehand and Vis a p x k*
matrix as the right part of the matrix factorization of X. Similarly, to solve (4), we consider the following
approximate minimization problem,

. o Wy &
min Y wu A - COSOICRE 4 G0y jx - cCOVTIR o) - cO)?
CeR"k m=1 t=1
S(l),mrs(m*)eRk*xk*
VeRPK

FAIICVF+ICPIF+IVIE+ X IS™F ©)

m=1

Note that throughout this section, the weights {w;, }ﬂ;o need to be given beforehand by the users
according to background knowledge. To determine these weights, one user may have to take into
account the importance and scale of data from each source. If no additional information is available,
for simplicity, the weights can be equally distributed.

3. Learning Algorithm

We present a penalized alternating factorization (PAF) scheme to minimize (5). In particular,
the objective function is minimized step by step by fixing any m* + 2 matrices in
{C (1), C (2), S(l), e, S(’”*), V'} and then optimizing the objective function with respect to the remaining
one. The algorithm is described in details as follows.

Algorithm 1 Penalized Alternating Factorization (PAF) Algorithm.

Input: m* n x n adjacent matrices {A(l), ..., A(m*)}, an n X p attribution matrix X, the number of

communities k*.
Output: a length-n community label vector L = (Ly,...,Ly).

1: Initialization:

2: (a)t=0; C(L=1 and €1 are both n x k* zero matrix. o

3. (b) apply SCP, the spectral clustering with perturbations [33], to A* = Y. w, A and find k*

m=1

initial communities, transform the resulting length-n community label vector into the n x k*
community label matrix, then make C(10) and C(>9) equal to this initial community label matrix,

where C10), C(20) ¢ R"™*K" are initial chooses of C(1), C?) respectively.
4: (c) let

v = xT[c1O 4 c@0][ctOTcwo) 4 col e,
g(mo)  _ [C(l,O)Tc(l,O)]71C(1,O)TA(m)C(2,O)[C(Z,O)TC(ZO)]fl.
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5. while C(M=1) c@t-1) c(Lt) (21 are not equal do

6:

10:
11:
12:

(a) glVen (C(Z,t)/ {S(m,t)}%*:ll V(t))’ update C(1/t+1) by

5 o, AMCEOGmAT 4 €0y 10
| ¥ wnamcismnT 1 Z0xy® 4 3]
m=1 2
[ 3 wn[c@smT]T[censm )+ DyTye 1 ] (6)
m=1
(b) given (C(l't+1), {stmbym” V(t)), update C2#+1) by
m*
(m) T 1) glmt) 4 90 xy/(1)
[m;wmA cltngind) 4 S0 xv) 4]
i L+1) o(mt) 1 T [~ (Lt+1) o(mt)] 4 Qo0 T (1) -1
| ¥ wn[cH DTt smn) L Dy O v 4 Av)he] )
m=1
(c) given (C(Lt*l), Cc2t+1) V(t)), update S +1) for each m € {1,...,m*} as follows,
vec(SMA1)) = (me(Z'kH)T ® k1) 4 (zx—i—v)lk*)7lvec(U(m'k+l)), (8)
where BIK1)  — C(l,t+l)TC(1,t+1)’ BRk+1) C(Z,t+1)TC(2,t+1)’ mk+1)  —
W COADT A @A) _ 50m) and vec(-) denotes the vectorization of a matrix by stacking its

columns and ¢ is the Kronecker product of two matrices;
(d) given (C(l,t-‘rl)’ C(Z,H—l)’ {S(m’k+1)}%*:l>, update y(t+1) by

[XT(C(l,Hl) i C(z,t+1)) +2/3/w0V(’)] [C(l,t+1)Tc(1,t+1) i cetnT-@+1) +2(/3+v)/w0]_1; ©)

(e)t=t+1.
end while
return the community label vector L by applying k-means to cluster the rows of C(11),

Here, «, B, and v are set to be three small positive numbers, used to ensure convergence of the

algorithm. Note that in the update step of the above algorithm, all the update formulas have explicit

expressions. Specifically, given (C @8, {gtmt)ym” V(t)) , we update C(

1,641) by

CUH) —  argmin { T wnll A — COgmHCEN |2

cernxk* \m=1

w T
40X = VT[4 AIC0 - R 4vICVR

which has the explicit expression in in (6)

\ (m) @) g(mnT | 90 (1)
[Z_;wmA chg + 32XV +A]
m=1

- -1
[ Y wn [CCHsmOT T [c@DgmnT) | %V(t)TV(t) + ()L—i—v)lk*} .

m=1
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Similarly, we update C(Lt+1) in (7). Then, in (8), given (C(Lt*l), c@t+1), V(t)), we update glmt+1) by

S — argmin w,,||A™ — CAFDSIM @) 12 1y 50m) — glmh) )2 4y 50m))|2,
G(m) cRk* xk*

Finally, given (C(Lt“), C@tH+1) [ glmtt1)ym” 1), we update V(1) by

2

. wo

VD = argmin S0 Y ||1X - CHHDVTIR 4 pllv — VO 24|V,
VeRp*K* =1

which has the explicit expression in (9)

[XT (C(l,t-'rl) + C(Z,t+1)) + Zﬁ/wOV(t)]
[C(l,t+l)Tc(1,t+1) + C(Z,t+1)Tc(2,t+l) + 2(‘B+V)/CUQ] 71.

4. Theoretical Analysis

Next, we consider the convergence theory of the PAF algorithm. We will present that the iteration
sequence {®) = (C(11),C) {gtmt)ym™  yt)re  oenerated by the PAF algorithm converges to a
critical point of (5).

Proposition 1. There exist a constant § > 0 such that for each t € {1,2,...}, ||@W|[f < 4.
Proof. Please see Appendix A.1. O
Proposition 2. Foreacht € {1,2,...},
@ -0 |E < [1(O) — (@), (10)

where p; = min{2(A+v)?,a, B}.
Proof. Please see Appendix A.2. [
Proposition 3. Foreacht € {1,2,...},

v € aH@HY), [k < paf|@FY — 01, (11)
where py = max{46(25% + T) + 2a,2(6* + TOM + A),2(26% + || X||r + B) }.
Proof. Please see Appendix A.3. O
Theorem 1. {®()} converges to a critical point of H(®).
Proof. Please see Appendix A.4. [

5. Numerical Study

We now present the results of some numerical study to demonstrate the performance of the
PAF algorithm, and the comparison with some existing methods, abbreviated as SCP, ANMF, and
NMF, respectively. SCP is the spectral clustering with perturbations [33]. ANMF and NMF are the
non-negative matrix factorization methods proposed in [28] for directed and undirected networks
respectively. All the network data are generated from SBM or multi-layer SBM, and the attribution
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data are generated from multivariate normal distributions, where the distribution parameters will be
specified in each following setting. We will use the normalized mutual information (NMI) to measure
the consistency between the predicted labels and the true community labels.

First, we consider the following two simulation settings for single networks and
attributed networks:

I Then x n adjacency matrix A is generated from the undirected SBM with the parameters

0.20 0.12 0.50
P= = . 12
( 012 020 ) " ( 050 ) 12)
Each row of the n x 2 attribution matrix is independently generated from the multivariate
normal distribution Ny (i, 021,), where the kth element of . is 1 and the remaining element is 0,

and 0% = 0.15.
I The same as Setting I, except that the undirected SBM is replaced by directed SBM.

The simulation results for Settings I and II are summarized in Figure 1, where SCP(A), NMF(A),
ANMEF(A), and PAF(A) denote applying SCP, NMF, ANME, and PAF to A, respectively, k-means(X)
denotes applying k-means to X and PAF(A, X) denotes applying PAF to (A, X). The results of SCP(A),
NMEF(A), ANMF(A), and PAF(A) in Figure 1 suggest that (1) PAF is a very good alternative to NMF
and ANMEF in terms of accuracy of community detection, and (2) NMF, ANMF, and PAF outperform
SCP in situation where directed networks are studied.

1.0
1.0

O O—— g ——8
P =

&
23
0—0"
o

4 2

&

0.8

0.6
0.8
\ Q
AN
D,
\D

0.6
AN

.
~

Algorithm
SCP(A)
NMF(A)
PAF(A)
PAF(A,X)
K-means(X)

Algorithm
—A— SCP(A)
——  ANMF(A)
-
——

Normalized Mutual Information
Normalized Mutual Information

0.2
0.2

PAF(A)
PAF(A,X)
K-means(X)

Pttt

0.0
I
0.0

T T T T T T T T T T
200 400 600 800 1000 200 400 600 800 1000

n n

(a) NMI, Setting T (b) NMI, Setting II

Figure 1. The two panels present the NMI results for Setting I (undirected SBM) and Setting II (directed
SBM), respectively.

On the other hand, the comparison between PAF(A, X) and the other methods in Figure 1 suggests
that applying k-means to the attribution data alone fails to achieve community detection; however,
once the attribution data and the network data are combined, much better results can be obtained than
using the network and attribution data separately.

Next, we consider the following two simulation settings for multi-layer networks and multi-layer
attributed networks:
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I

v

The m* = 3 n x n adjacent matrices { A1), A2), AG)} are generated independently from the
undirected multi-layer SBM with common community labels, where the parameters are set
as follows,

02 02 013 02 013 0.13

P = 02 02 013 |,P=| 013 02 02 |, (13)
0.13 0.13 0.2 013 02 02
02 013 02 0.33

p; = 013 02 013 |, 7=| 033 |. (14)
02 0.13 02 0.33

Each row of the n x 3 attribution matrix is independently generated from the multivariate normal
distribution N3(pg, 0213), where the kth element of i is 1 and the remaining elements are 0,
and 0% = 0.15.

The same as Setting III, except that the undirected multi-layer SBM model is replaced by directed
multi-layer SBM.

The simulation results for Settings III and IV are summarized in Figure 2,

where PAF(A(), A®), AG), X) denotes applying PAF to (A1), A?), ABG), X) and A* = L Y A,
The comparison between PAF(A(), A?), A®), X) and NMF(A*), ANMF(A*), SCP(A*), SCP(A(),
SCP(A(Z)), and SCP(A(3)) suggests that (1) integrating community information from the multiple
adjacent matrices of the network layers may perform better than using each network layer separately,

and (2) using the PAF algorithm to achieve integrative community detection for the multi-layer

attributed network can make appropriate use of the network-related data from multiple sources.

3 /u——i‘a‘— e
=
/E

© & &
s © / o Algorithm
E /"3I o - scp(A®)
g o — scp(a®)
= / —— scp(aA®)
=] B -
= o —— scpP(A)
= / NMF(A")
% ° g . 8- pAF(AW A AB))
E / */4;9—*”‘*__ K-means(X)
2 . O yzk= PAF(A® A® ABx)

S 7 k%

-} (4
/, 4’5/3
g7
o | ©
o

200 400 600 800 1000

n
(a) NMI, Setting ITI

Figure 2. Cont.
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1.0

\
\0
\

- Algorithm

scp(a®)

scp(a®)

scp(a®)

scP(A)

ANMFgA

PAF(AW A A®)
— K-means(X)

/"‘/"‘/"i PAF(A® A® AR x)

0.6
\

0.4
N

Normalized Mutual Information

]
<

02
®
)
at-\
\
»
\

0.0

200 400 600 800 1000
n

(b) NMI, Setting IV

Figure 2. The two panels present the NMI results for Setting III (undirected multi-layer SBM) and
Setting IV (directed multi-layer SBM), respectively.

6. Empirical Analysis

In this section, we apply the proposed PAF method to a dataset that comes from a network study of a
corporate law partnership, which was carried out in a Northeastern US corporate law firm, referred to as
SG&R, 1988-1991 in New England and previously studied in [45,56,57]. The dataset includes 71 attorneys
of this firm and three network layers, co-work layer, advice layer, friendship layer, as well as some
attributes of the attorneys, such as status (1 = partner; = associate), gender (1 = man; 2 = woman), office
(1 = Boston; 2 = Hartford; 3 = Providence), years with the firm, age, practice (1 = litigation; 2 = corporate),
and law school (1: Harvard, Yale; 2: UCON; 3: other). We treat the attribute “status” as the ground
truth community label as in [45]. In fact, after eliminating six isolated nodes, the heatmap plots of the
adjacency matrices with nodes sorted by each attribute variable indicate that the partition by “status”
can present a strong assortative structure. Then, the data of the remaining six attributes together with the
three network layers form a multi-layer attributed network to be studied, with m* = 3 network layers
and p = 6 attribute variables, which falls right into the scope of application of the proposed method.

Intuitively, all these three network layers and six attributes can contribute to the community
detection task with the ground truth label “status”. Specifically, the descriptive analysis results in
Figure 3 present that all these six attributes can provide useful information to distinguish the two
values of “status”; the top three panels of Figure 4, i.e., the heatmap plots of the three adjacent matrices
partitioned by the ground truth labels, partly present block structure according to the two values
of “status”.

The authors of [45] offered a comparison of seven methods for community detection of this
dataset, we recall the NMI results of these methods in [45] by Table 1, together with the NMI result
obtained by applying the proposed PAF method to the multi-layer attributed network with m* =3
network layers and p = 6 attribute variables. Table 1 indicates that the NMI performance of the PAF
method is almost the same as the best existing one. Intuitively, the heatmap plots of the three adjacent
matrices partitioned by the predicted labels of the PAF method are given in the bottom three panels of
Figure 4, which are quite similar to those partitioned by the ground truth labels. Viewed from another
perspective, we present the plots of the three network layers, colored by the ground truth labels and the
predicted labels by PAF, respectively, in Figure 5, which indicate that the partition by both the ground
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truth labels and the predicted labels by the proposed PAF method can present a strong assortative
structure for the three network layers, especially for the friendship layer. These results demonstrate
the practicability of the PAF method in community detection of multi-layer attributed networks.

31 a2
.assuclate . associate §
M partner 22 W partner
17 1 z
I 14 | l%
6
I II -
o o [N
an woman Boion Harttord Provdence associate e
(a) Gender (b) Office (c) Seniority
17
. associate M associate ol
W partner .. Mpartner
I II | |
iigation associate -
(d) Practice (e) Law school (f) Age

Figure 3. The left four panels are the grouped bar charts of status versus the four categorical features:
“gender”, “office”, “practice”, and “law school”. The right two panels are the box-plots of “status”
versus the two count variables “seniority” and “age”.

7]

(a) Advice network, partitioned by the (b) Cowork network, partitioned by (c) Friendship network, partitioned by
ground truth labels the ground truth labels the ground truth labels

Figure 4. Cont.
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(d) Advice network, partitioned by the (€) Cowork network, partitioned by (f) Friendship network, partitioned by
predicted labels by PAF

the predicted labels by PAF the predicted labels by PAF

Figure 4. Heatmap plots of the adjacent matrices of the three network layers, ordered by the ground
truth labels and the predicted labels by PAF, respectively.
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Table 1. The NMI results of eight community detection methods for the multi-layer attributed network
with m* = 3 network layers and p = 6 attribute variables.

Method NMI

JCDC,wy =5 0.54
JCDC, wy =15 0.50

SCP 0.44
k-means 0.44
CASC 0.49
CESNA 0.07
BAGC 0.20
PAF 0.58

7. Conclusions

We have proposed PAF—a unified framework and algorithm that is applicable to community
detection of multi-layer attributed networks—as well as its special cases, such as single networks,
attributed networks, and multi-layer networks. The main idea of PAF is replacing the community
label matrix at two different positions in the original objective function with two different substitution
matrices, penalizing the gap between the two substitution matrices, and then alternately optimizing
each of the substitution matrices as well as some other variable matrices. The results of the simulation
study and empirical analysis demonstrate the advantages of the PAF algorithm in community discovery
accuracy and compatibility with multiple types of network-related data.

In our future work, we will study community detection of multi-layer attributed networks in
statistical ways, where likelihood functions under some statistical models of multi-layer attributed
networks will be considered.
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The following abbreviations are used in this manuscript:

ANMF  asymmetric non-negative matrix factorization

KL Kurdyka-Lojasiewicz

NMF non-negative matrix factorization
NMI normalized mutual information

PAF penalized alternative factorization
SBM stochastic block model

SCP spectral clustering with perturbations

Appendix A. Proof of Some Theoretical Results

Appendix A.1. Proof of Proposition 1

Proof. As H(®) > 0 and {H(®"))}*, is a monotone decreasing sequence, there exists a constant
8 > Osuch that |@®) | < éforeacht € {1,2,...}. O
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Appendix A.2. Proof of Proposition 2
Proof. Let x(*) = vec(C(14) — C(11+1)). According to Step 2(a) in the PAF algorithm, we obtain
H(C(l't),C(z't),{S(m't)}’f:l,v(t)) _ H(C(l,t-H) (2,t) {S (m,t) } V(t))
— <ac(l) H(c(l,t+1), C(Z,t)/ Sk, V(t) ), C(l,t) _ C(l,t+1)>
@

2 ||x®7 (Z wn (8l 2t)T) SMACCOT @ [ + ()\+V)1nk*xnk*> x®)

>2(A )|} = 2(A4v)?| D) — cOHD |3,

F

Similarly, let y*) = vec(C(>#+1) — C(21)), then according Step 2(b) in the PAF algorithm, we have

H(c(l,H—l) (2,t) {S (m,t) m 1/ V(t)) —H(C(l A1) C(Z t+1) {S (m,t)
:<ac(2>7_[<c(1,t+l)/ C(Z,f+l , {S m,t }nm1*:]/ V(t))lc(Z,t) _ C(Z,t+1)>

v®)

ml/

2
(A2)
y(t ( Z Wm 1 A1) S(m t))TC(LH_l)S(m't) ® Igr xor + ()“H/)Ink*xnk*) y(t)
F
>2(A+v)? [y [} = 2(A4v)?|CPD — cBHD R,
From Steps 2(c,d) in the PAF algorithm, we obtain
H(c(l A1) C(Z t+1) {S (m,t) m 1, V(t)) _ H(C(l A+1) C(Z t+1) {S m,t+1)ym m 1, V(t))
>a ) s — st R, (A3)
m=1
H(C(l't+l), C(Z t+1 {S m H—l) m 1, V(t)) o H(c(l,H—l)’ C(Z t+1 {S m t+1) m*l V(t-‘rl))
>p v — v, (A4)
Combining the inequalities (A1)—-(A4), we have
H(OW) — (@)
>2(A4v)? (T — D |f 4 [|CBHD — cBD )
Fa Y S0 S| 1 gy _ o),
m=1
which implies that
pr|@Y -0 V|E < H(©W) - H(O!), (A5)

where p; = min{2(A+v)?,a,}. O

Appendix A.3. Proof of Proposition 3

Proof. We will first analyze the boundness of 9, H (C1H1), C24+1) {gmt+1)ym™ | (1)) Ttis easy
to check that

deyH(CHHD, CHFY) fglmtt)ym” |y (D))

m*

—9 Z wm(C(l,t-‘rl)S(m,t+1)c(2,t+l)T . A(m))(S(m,t+1)c(2,t+1)T)T (A6)
m=1

T

+ 2A(c(1,t+l) _ C(Z,tJrl)) 4 wQ(c(l,t+1)v(t+l) _ X)V(t+l)+2l/c(l't+1).
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According to Step 2(a) in the PAF algorithm, we know

ac(l)/H(C(l,t—l—l)’ C(Z’t), {S(m,t) }%*:1, V(t))

m*

-9 Z wm(c(l,t—l—l)s(m,t)c(z,t)T _ A(m))(s(m,t)C(Z,t)T)T (A7)

m=1

4 2A(CHD D) 4 o (DY OT X))y 42yl — o,
Together with (A6) and (A7), we have

Hac(l) H(c(l,t+1>’ C(Z,t+1)’ {S(m,t+1) m* V(f+1)) HF

m=1s

<2 i wm||C(l,t+1)S(M/t+1)c(2/f+1)7)(S(W,Hl)c(Z,t)T)T _ C(l,t+1)S(m,t)c(z,t)T(s(m,t)C(z,t)T)THF
m=1
+2 mz wm”A(?fl) ((S(m,t+1>c<2,t+1>T)T _ (S(m,t)C(Z,t)T)T) ”F + ZAHC(Z,tJrl) _ C(Z,t) HF
m=1
I wO”C(l,t-H)(V(H-l)TV(H—l) _ V(t)TV(t))HF 20| X (VD — v Oy

m*

< 2||C(1,t+1) HF 2 Wi (”(S(m,tJrl) o S(m,t))C(Z,t+1)T(S(m,t+1)c(2,t+1)T)THF

m=1

IS (CRAHY _ cROYT (gmt+D) cRHDTYT| 4 1g(mh) c@OT @) (gmtt1) _ gmp)T| . (AB)
+ ||S(m,t)c(2,t)T(C(2,t+1) _ C(Z,t))s(m,t)THF) 42 g W MA(m) ||FH(C(2,t+1) _ C(Z,t))s(m,tJrl)THF
m=1
A O (St — ST | 4 24 CBAD - OOl
+ w0||c(1,t+1)(V(t+1)TV(t+1) _ V(t)TV(t))HF + wOHX(V(tJrl) _ V(t))HF
<26(26% + 1) Y || SmAFD — stmt) | 4 (26% 4 276m* +21) | CAHD — D |
m=1
+ 22+ |IX[|p) VI — VO,
where T = max{[|[AD|f, [[A@|E, ..., | AU}
Next, we see that
9C<2)H(C(1’t+l), C(z,t+1), {S(m,t+1) %*:1/ V(t+1))
m*
—9 Z wm<c(1,t+l)s(m,t+l))T(C(l,tJrl)S(m,tJrl)C(Z,tJrl)T —A)+ 2/\(C(2’t+1) _ C(l,t+1)) (A9)
m=1
i wo(c(z,t+1)v(t+1)T — X)) 42t
and from Step 2(b) in the PAF algorithm,
aC(Z)H(C(l,t+1), C(Z,tJrl), {S(m,t) ﬁ*:l/ V(t))
m*
-2 Z wm(C(l,t+1)s(m,t))T(C(l,t+l)S(m,t)c(Z,t+l)T _ A) 4 2)\(C(2't+l) _ C(l,tJrl)) (AlO)
m=1

T

+ wo(CEHHIYOT _ x)y ) 42yc@H1) = g,
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As a result,
Hac(z)/}_[(c(l,t-‘rl)’ C(2’t+1), {S(m,t+1) }%*:1, V(t-‘rl))HF

< 2||C(2,t+1) ”F i Wi || (C(l,t+1)5(m,t+1) )Tc(l,t+1)5(m,t+1) _ (C(l,t+1)S(m,t))TC(l,t+l)S(m,t) ”F

m=1

+22“’H g(mt+1) 1HD_ymm@HwAWﬂ#+wﬂmmeﬂ_vmm

T

T
+ | CEHHV |||y D VDT vy BT

% HC (2,t41) H HS m t+l)C(l t+1)TC(1,t+l) HF||S(m,t+1) _ S(m,t) ||F

- (A11)

+ ||S (mt+1) _ (m,t) H ||C(2,t+1) HF||C(1,t+1)Tc(l,tJrl)S(m),kHF)

+2Zw|\ §lmt+1) — gmb)y ||| A g AU |

+ wo|[COHD | p [ VED VD — VO 4 | CEAD| | VO | VD — v |
+wol X[ VEY — VO

<25(20% +7) Y ||stmHD) — g p 4 (267 + || X||p) VD — VO |,

m=1

Similarly, we have
||85(m)H(C(1’t+1),C(Z’t+1), {S(m,t-&-l)}z*:l, V(t+l))”P < 20(||(5(m’t+1) o S(m,t))”F (A12)

and
|9y H(CHAHD, @D fgtmttym” |yt | < 2B (VED — V)|, (A13)

According to (A8) and (A11)-(A13), we finally obtain that
loH@ " )|F < 2 @Y — @], (A14)

where py = max{46(26% + ) + 2a,2(5* + Tém* + A),2(20% + || X||r + B) }-
O

Appendix A.4. Proof of Theorem 1

To establish the proof of Theorem 1, we need to recall the definition of Kurdyka-Lojasiewicz (KL)
property and prove the following two properties.

1. Sufficient decrease property:
Jp1 > 0, such that p; @+ —@1|12 < [H(OW) — H(OHD)]; (A15)
2. A subgradient lower bound for the iteration gap:
Jpp >0, Vt€{0,1,...} and V&V e aH (@D : D | < pp )@Y —@B)||p, (A16)
where 0 is the subderivative of the function H and
0 = ( {S = 1/ V),

2
m m (Y
ey = 3 wmnA( ) SR+ LY X~ VT
m=1 =1
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FAICD = CO v {ICVE +ICP R+ [VIF+ X IS™IF),  (A17)

m=1

IH(O) = (3emH(®),dpmH(©),d5m H(®), ..., dgu H(O),dyH(©)).

Definition A1. (KL property [58,59]) Let o : RY — (—o0, +-00] be a proper lower semicontinuous function.
Forx € domdo = {x € R? : 90 (x) # @} if there exists an j € (0, +00], a neighborhood T of % and a function
& € @y, such that forall x € XN {y € R? : ¢(%) < o(y) < o(%) + 1} the following inequality holds

¢ (o(u) —o(x))dist(0,90(x)) > 1,

then o is said to have the KL property at X. o is called a KL function, if o satisfies the KL property at each point
in dom do.

Here, dist(x, X') denotes the shortest distance between the point x and the point set X, i.e., dist(x, ') =
min, ¢ y dist(x, y), and @, denotes the class of all concave and continuous functions ¢ : [0,77) — R+,
n € Ry, which satisfies: a) (0) = 0; b) ¢ is continuous differentiable on (0,7); ¢) foralls € (0,7),
&'(s) > 0.

Now, we are ready to present the proof of Theorem 1, based on the fact that the function H is a
KL function.

Proof. Suppose that @ is the limit point of a sub-sequence {@)},ie., lim @) = @. It is clear that
1—+00

the function H is continuous w.r.t. ®, therefore

lim H(OH) = H(®). (A18)
=400
Note that #(®")) is monotonically non-increasing and then converges to H(®).
From Propositions 2 and 3, we obtain that 9H(®")) — 0 as t — co. Then we obtain 0 € 90H(®),
i.e., © is a critical point of ®. Let () be the set of all limit points of subsequences of {®) }52 4, we then
know that
dist(@"), Q) — 0, as t — co. (A19)

Accordingly, from (A18) and (A19), we obtain that for any v > 0, € > 0, there exists an integer
t, > 0 such that for all t > t,,

H(OW) < H(O) + v and dist(®), Q) < e. (A20)

It is known that the function # is a KL function [59], then by using the KL inequality in Definition
(A1) and (A20), there exist ¢, such that

& (H(OY)) — H(®))dist(0,0H (@) > 1. (A21)

According to Proposition 3, we have

_ 1
"(H(OW) —H(®)) > :
FHET)—HO) 2 L jem — et T,

(A22)

Besides, ¢ is concave and we have that
§(H(OY) - (@) - g(H(@") —1()) > ¢'(H(OY) - 1(®))(H(O) — H(O!TV)). (A23)
For convenience, let

A1 = EHOY) —H(®)) — E(H(O)) — H(©))
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Then according to propositions 2 and 3, we have

p1]|@HH) — @12
02]|0¢) — @[

AVEE

ie.,
4ot —eW |} < 4%2At,t+1||®(t) AR P (%At,t—i-l +[|0® — el V|F)?,
1 1

which indicates that
210D —eW | < |00 -0 V| + %Atm- (A24)
1

Summing up (A24) over t from 1 to z and then yields the following inequality,

z z z
2) @) —eW | < Y |0 -l |+ % Y Appen
t=1 tjl t=1 (A25)
<y etV —eW|r+[e® -+ %AW
t=1 1
ie.,
z
Y e —eWj < [0® - O+ %C(H((@(”) ~H(0)). (A26)
t=1
We take limits on the left side of inequality of (A26) as z — oo and get
—+o00
Y 00 -0 p < [0 ~ 00 +2e(H(O") - H(®)) < +o. (A27)
t=1 1

It is easy to know that (A27) implies that {@©(*) }92 1 is a Cauchy sequence, and thus is a convergent
sequence and this completes the proof, i.e., the sequence {®(*) }52, converges to a critical point of 7 in
(Al17). O

Appendix B. Some Additional Numerical Results

In this section, we mainly investigate the computational efficiency of the proposed algorithm
for relatively large scale multi-layer attributed networks via some additional numerical results.
We consider the following simulation setting for multi-layer networks and multi-layer attributed
networks.

V  The m* = 3 n x n adjacent matrices {A(l), A(2),A(3)} are generated independently from the
undirected and directed multi-layer SBMs, respectively, with common community labels, where
the parameters are set as follows,

02 02 013 02 013 0.3
P = 02 02 013 |,P, =08 013 02 02 |,
0.13 0.13 02 013 02 02
02 013 02 0.33
Py = 08| 013 02 013 |, 7= | 033
02 013 02 0.33

Each row of the n x 3 attribution matrix is independently generated from the multivariate normal

distribution N3(py, 0?13), where the kth element of j is 1 and the remaining elements are 0, and
2

o~ = 0.08.
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As suggested in Figure Al, the proposed algorithm framework is compatible with a variety

of network related data, has relatively good accuracy of community discovery and acceptable
computational efficiency. Compared with the algorithm SCP, which provides initial value for the
proposed algorithm, the proposed algorithm does not excessively reduce the computational efficiency.
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Figure A1. The left two panels present the NMI results for Setting V and the right two panels present
the RT (running time in log-second) results for Setting V.
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