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Abstract: A fuzzy multiset is a generalization of a fuzzy set. This paper aims to combine the
innovative notion of fuzzy multisets and hypergroups. In particular, we use fuzzy multisets
to introduce the concept of fuzzy multi-hypergroups as a generalization of fuzzy hypergroups.
Different operations on fuzzy multi-hypergroups are defined and discussed and some results known
for fuzzy hypergroups are generalized to fuzzy multi-hypergroups.
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1. Introduction

In 1934, Frederic Marty [1] defined the concept of a hypergroup as a natural generalization of
a group. It is well known that the composition of two elements in a group is an element, whereas
the composition of two elements in a hypergroup is a non-empty set. The law characterizing such
a structure is called the multi-valued operation, or hyperoperation and the theory of the algebraic
structures endowed with at least one multi-valued operation is known as the Hyperstructure Theory.
Marty’s motivation to introduce hypergroups is that the quotient of a group modulo of any subgroup
(not necessarily normal) is a hypergroup. Significant progress in the theory of hyperstructures
has been made since the 1970s, when its research area was enlarged and different hyperstructures
were introduced (e.g., hyperrings, hypermodules, hyperlattices, hyperfields, etc.). Many types of
hyperstructures have been used in different contexts, such as automata theory, topology, cryptography
and code theory, geometry, graphs and hypergraphs, analysis of the convex systems, finite groups’
character theory, theory of fuzzy and rough sets, probability theory, ethnology, and economy [2].
An overview of the most important works and results in the field of hyperstructures up to 1993 is given
in the book by Corsini [3], this book was followed in 1994 by the book by Vougiouklis [4]. An overview
regarding the applications of hyperstructure theory is given in the book by Corsini and Leoreanu [5].
The book by Davvaz and Leoreanu-Fotea [6] deals with the hyperring theory and applications. A more
recent book [7] gives an introduction into fuzzy algebraic hyperstructures.

A set is a well-defined collection of distinct objects, i.e., every element in a set occurs only once.
A generalization of the notion of set was introduced by Yager [8]. He introduced the bag (multiset)
structure as a set-like object in which repeated elements are significant. He discussed operations on
multisets, such as intersection and union, and he showed the usefulness of the new defined structure
in relational databases. These new structures have many applications in mathematics and computer
science [9]. For example, the prime factorization of a positive integer is a multiset in which its elements
are primes (e.g., 90 has the multiset {2, 3, 3, 5}). Moreover, the eigenvalues of a matrix (e.g., the
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5× 5 lower triangular matrix (aij) with a11 = a22 = −5, a33 = 1, a44 = a55 = 0 has the multiset
{−5,−5, 1, 0, 0}) and roots of a polynomial (e.g., the polynomial (x + 2)2(x− 1)x3 over the field of
complex numbers has the multiset {−2,−2, 1, 0, 0, 0}) can be considered as multisets.

As an extension of the classical notion of sets, Zadeh [10] introduced a concept similar to that
of a set but whose elements have degrees of membership and he called it fuzzy set. In classical sets,
the membership function can take only two values: 0 and 1. It takes 0 if the element belongs to the
set, and 1 if the element does not belong to the set. In fuzzy sets, there is a gradual assessment of
the membership of elements in a set which is assigned a number between 0 and 1 (both included).
Several applications for fuzzy sets appear in real life. We refer to the papers [11–13]. Yager, in [8],
generalized the fuzzy set by introducing the concept of fuzzy multiset (fuzzy bag) and he discussed a
calculus for them in [14]. An element of a fuzzy multiset can occur more than once with possibly the
same or different membership values. If every element of a fuzzy multiset can occur at most once, we
go back to fuzzy sets [15].

In [16], Onasanya and Hoskova-Mayerova defined multi-fuzzy groups and in [17,18], the authors
defined fuzzy multi-polygroups and fuzzy multi-Hv-ideals and studied their properties. Moreover,
Davvaz in [19] discussed various properties of fuzzy hypergroups. Our paper generalizes the work
in [16,17,19] to combine hypergroups and fuzzy multisets. More precisely, it is concerned with
fuzzy multi-hypergroups and constructed as follows: After the Introduction, Section 2 presents some
preliminary definitions and results related to fuzzy multisets and hypergroups that are used throughout
the paper. Section 3 introduces, for the first time, fuzzy multi-hypergroups as a generalization of fuzzy
hypergroups and studies its properties. Finally, Section 4 defines some operations (e.g., intersection,
selection, product, etc.) on fuzzy multi-hypergroups and discusses them.

2. Preliminaries

In this section, we present some basic definitions and results related to both fuzzy multisets and
hypergroups [20,21] that are used throughout the paper.

2.1. Fuzzy Multisets

A multiset is a collection of objects that can be repeated. Yager in his paper [8] introduced, under
the name bag, a structure similar to a set in which repeated elements are allowed. He studied some
operations on bags, such as intersection, union, and addition. Moreover, he introduced the operation
of selecting elements from a bag based upon their membership in a set. Furthermore, he suggested a
definition for fuzzy multisets (fuzzy bags). A multiset (bag) M is characterized by a count function
CM : X → N, where N is the set of natural numbers.

In a multiset, and unlike a set, the multiple occurrences for each of its elements is allowed and it
is called multiplicity. For example, the multiset {α, β} contains two elements α and β, each having
multiplicity 1, whereas the multiset {α, β, β} contains two elements α having multiplicity 1 and β

having multiplicity 2. The two multisets {α, β, β} and {α, β} are not equal although they are considered
equal as sets.

Definition 1 ([17,22]). Let X be a set. A multiset M drawn from X is represented by a function CM : X →
{0, 1, 2, . . .}. For each x ∈ X, CM(x) denotes the number of occurrences of x in M.

Assume X = {a1, . . . , ak}. For a multiset M on X with count function CM, the following two
equivalent expressions are used:

M = {a1/n1, . . . , ak/nk}

and
M = {a1, . . . , a1︸ ︷︷ ︸

n1

, . . . , ak, . . . , ak︸ ︷︷ ︸
nk

}.
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Here, xi has multiplicity ni for all i = 1, . . . , k, or equivalently, CM(xi) = ni for all i = 1, . . . , k.
One potential useful application for the theory of multisets lies in the field of relational

databases [8].

Example 1. Consider a class of eight students and a relation of students over the scheme (student name, grade)
given as follows:
R ={(Sam, 90), (Nader, 85), (Mady, 90), (Tala, 60), (Joe, 70), (Ziad, 95), (Lune, 85), (Bella, 60)}. Assume we are
interested in finding the grades of students in this class. We can take the projection of R on grades and get:

Projgrade = {60, 70, 85, 90, 95}.

The set Projgrade does not give the set of grades of all students in the class but it gives the set of different grades
of the students. If we need the set of grades of all students in the class then we need to consider the following
multiset M:

M = {60, 60, 70, 85, 85, 90, 90, 95} = {60/2, 70/1, 85/2, 90/2, 95/1}.

Or equivalently, we can say that M is a multiset with count function CM defined as follows: CM(60) =

CM(85) = CM(90) = 2 and CM(70) = CM(95) = 1. The notation used here for the multiset M is the same as
that used by Yager in his pioneering paper [8] about multisets.

Definition 2 ([23]). Let X be a non-empty set. A fuzzy multiset A drawn from X is represented by a function
CMA : X → Q, where Q is the set of all multisets drawn from the unit interval [0, 1].

In the above definition, the value CMA(x) is a multiset drawn from [0, 1]. For each x ∈ X, the
membership sequence is defined as the decreasingly ordered sequence of elements in CMA(x) and it
is denoted by:

{µ1
A(x), µ2

A(x), . . . , µ
p
A(x)} : µ1

A(x) ≥ µ2
A(x) ≥ . . . ≥ µ

p
A(x).

Fuzzy sets introduced by Zadeh [10] can be considered as a special case of fuzzy multisets by setting
p = 1 so that CMA(x) = µ1

A(x).

Example 2. Let X = {0, 1, 2, 3}. Then A = {(0.5, 0.5, 0.3, 0.1, 0.1)/1, (0.65, 0.2, 0.2, 0.2)/3} is a fuzzy
multiset of X with fuzzy count function CMA. Or equivalently, we can write it as:

CMA(0) = CMA(2) = 0, CMA(1) = (0.5, 0.5, 0.3, 0.1, 0.1), CMA(3) = (0.65, 0.2, 0.2, 0.2).

Let A, B be fuzzy multisets of X with fuzzy count functions CMA, CMB respectively.
Then L(x; A) = max{j : µ

j
A(x) 6= 0} and L(x) = L(x; A, B) = max{L(x; A), L(x; B)}. When we

define an operation between two fuzzy multisets, the length of their membership sequences should be
set as equal. In case two membership sequences have different lengths then the shorter sequence is
extended with zeros. As an illustration, we consider the following example.

Example 3. Let X = {0, 1, 2, 3} and define the fuzzy multisets A, B of X as follows:

A = {(0.4, 0.2)/0, (0.5, 0.3, 0.1)/1, (0.65, 0.2, 0.2, 0.2)/3},

B = {(0.5, 0.3, 0.1, 0.1)/1, (0.5, 0.1)/2, (0.65, 0.2, 0.2)/3}.

In order to define any operations on A, B, we can rewrite A, B as follows:

A = {(0.4, 0.2)/0, (0.5, 0.3, 0.1, 0)/1, (0, 0)/2, (0.65, 0.2, 0.2, 0.2)/3},

B = {(0, 0)/0, (0.5, 0.3, 0.1, 0.1)/1, (0.5, 0.1)/2, (0.65, 0.2, 0.2, 0)/3}.
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Definition 3 ([24]). Let X be a set and A, B be fuzzy multisets of X. Then

1. A ⊆ B if and only if CMA(x) ≤ CMB(x) for all x ∈ X. i.e., µ
j
A(x) ≤ µ

j
B(x), j = 1, . . . , L(x) for all

x ∈ X,
2. A = B if and only if CMA(x) = CMB(x) for all x ∈ X. i.e., µ

j
A(x) = µ

j
B(x), j = 1, . . . , L(x) for all

x ∈ X,
3. A ∩ B is defined by µ

j
A∩B(x) = µ

j
A(x) ∧ µ

j
B(x), j = 1, . . . , L(x) for all x ∈ X,

4. A ∪ B is defined by µ
j
A∩B(x) = µ

j
A(x) ∨ µ

j
B(x), j = 1, . . . , L(x) for all x ∈ X.

Example 4. Let X = {0, 1, 2, 3} and define the fuzzy multisets A, B, C of X as follows:

A = {(0.5, 0.3, 0.1, 0.1)/1, (0.65, 0.2, 0.2, 0.2)/3},

B = {(0.5, 0.3, 0.1, 0.1)/1, (0.5, 0.1)/2, (0.65, 0.2, 0.2, 0.2)/3},

C = {(0.5, 0.3)/0, (0.5, 0.1)/2, (0.35, 0.3, 0.1)/3}.

Then it is clear that:

1. A ⊆ B and A 6= B,
2. A ∩ C = {(0.35, 0.2, 0.1)/3}, and
3. A ∪ C = {(0.5, 0.3)/0, (0.5, 0.3, 0.1, 0.1)/1, (0.5, 0.1)/2, (0.65, 0.3, 0.2, 0.2)/3}.

Definition 4 ([25]). Let X, Y be non-empty sets, f : X → Y be a mapping, and A, B be fuzzy multisets of X, Y
respectively. Then

1. The image of A under f is denoted by f (A) with fuzzy count function CM f (A) defined as follows: For all
y ∈ Y,

CM f (A)(y) =

{∨
f (x)=y CMA(x) if f−1(y) 6= ∅

0 otherwise.

2. The inverse image of B under f is denoted by f−1(B) with fuzzy count function CM f−1(B) defined as:
CM f−1(B)(x) = CMB( f (x)) for all x ∈ X.

2.2. Hypergroups

Let H be a non-empty set and P∗(H) be the family of all non-empty subsets of H. Then, a
mapping ◦ : H× H → P∗(H) is called a binary hyperoperation on H and (H, ◦) is called a hypergroupoid.

In the above definition, if A and B are two non-empty subsets of H and x ∈ H, then we define:

A ◦ B =
⋃

a∈A
b∈B

a ◦ b, x ◦ A = {x} ◦ A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if “◦" is associative, i.e., if x ◦ (y ◦ z) = (x ◦ y) ◦ z
for all x, y, z ∈ H and is called a quasihypergroup if the reproduction axiom is satisfied, i.e., if x ◦ H =

H = H ◦ x for all x ∈ H. The couple (H, ◦) is called a hypergroup if it is a semihypergroup and a
quasihypergroup. A hypergroup (H, ◦) is called commutative if x ◦ y = y ◦ x for all x, y ∈ H. A subset
S of a hypergroup (H, ◦) is called a subhypergroup of H if (S, ◦) is a hypergroup. To prove that S is a
subhypergroup of H, it suffices to show that the reproduction axiom is satisfied for S.

Example 5. In the finite hypergroup, we can represent the hyperoperation by the Cayley square table in the
same way as for the finite group. The only difference is that various places in the table may contain several
elements instead of a single element, i.e.,

∗ e a b
e {e} {a, b} {a, b}
a {a} {e, b} {e, b}
b {b} {e, a} {e, a}
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is a hypergroup.

Definition 5 ([17,26]). Let (H1, ◦1) and (H2, ◦2) be hypergroups and f : H1 → H2 be a mapping. Then f is:

1. a homomorphism if f (x ◦1 y) ⊆ f (x) ◦2 f (y) for all x, y ∈ H1;
2. a strong homomorphism if f (x ◦1 y) = f (x) ◦2 f (y) for all x, y ∈ H1;
3. an isomorphism if f is a bijective strong homomorphism.

Example 6. Let H be any non-empty set and define ◦ on H as follows:

x ◦ y = H for all x, y ∈ H.

Then (H, ◦) is a hypergroup known as total hypergroup.

Example 7. Let H be any non-empty set and define ◦ on H as follows:

x ◦ y = {x, y} for all x, y ∈ H.

Then (H, ◦) is a hypergroup known as biset hypergroup.

Example 8. Let Z be the set of integers and define ? on Z as follows: For all x, y ∈ Z,

x ? y =

{
2Z if x, y have same parity;

2Z+ 1 otherwise.

Then (Z, ?) is a commutative hypergroup.

For more examples and details about hypergroups, we refer to the books [3–6,26,27] and to the
papers [20,21,28–32].

3. Construction of Fuzzy Multi-Hypergroups

Inspired by the definition of the multi-fuzzy group [25] and the fuzzy multi-polygroup [17], we
introduce the concept of the fuzzy multi-hypergroup. Further, we investigate their properties. It is
well known that groups and polygroups [26] are considered as special cases of hypergroups. Hence,
the results in this section can be considered as more general than that in [17,25].

Definition 6 ([7]). Let (H, ◦) be a hypergroup and µ be a fuzzy subset of H. Then µ is called a fuzzy
subhypergroup of H if for all x, y ∈ H, the following conditions hold.

1. µ(x) ∧ µ(y) ≤ infz∈x◦y µ(z);
2. for every x, a ∈ H there exists y ∈ H such that x ∈ a ◦ y and µ(x) ∧ µ(a) ≤ µ(y);
3. for every x, a ∈ H there exists z ∈ H such that x ∈ z ◦ a and µ(x) ∧ µ(a) ≤ µ(z).

Definition 7. Let (H, ◦) be a hypergroup. A fuzzy multiset A over H is a fuzzy multi-hypergroup of H if for
all x, y ∈ H, the following conditions hold.

1. CMA(x) ∧ CMA(y) ≤ infz∈x◦y CMA(z) (or equivalently, CMA(x) ∧ CMA(y) ≤ CMA(z) for all
z ∈ x ◦ y);

2. for every x, a ∈ H there exists y ∈ H such that x ∈ a ◦ y and CMA(x) ∧ CMA(a) ≤ CMA(y);
3. for every x, a ∈ H there exists z ∈ H such that x ∈ z ◦ a and CMA(x) ∧ CMA(a) ≤ CMA(z).

Remark 1. It is clear, using Definitions 6 and 7, that if (H, ◦) is a hypergroup and µ is a fuzzy subhypergroup
of H then µ is a fuzzy multi-hypergroup of H. Hence, the results of fuzzy subhypergroups are considered a
special case of our work.
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Remark 2. Let A be a fuzzy multiset over a commutative hypergroup (H, ◦). Then conditions 2. and 3. of
Definition 7 are equivalent. Hence, to show that A is a fuzzy multi-hypergroup of H, it suffices to show that
either conditions 1. and 2. of Definition 7 are valid or conditions 1. and 3. of Definition 7 are valid.

We present different examples on fuzzy multi-hypergroups.

Example 9. Let (H, ◦) be the hypergroup defined by the following table:

◦ a b

a H a

b a b

It is clear that A = {(0.2, 0.1)/a, (0.5, 0.4, 0.4)/b} is a fuzzy multi-hypergroup of H.

Example 10. Let (H1, ◦1) be the hypergroup defined by the following table:

◦1 0 1 2

0 {0, 1} {0, 1} H1

1 {0, 1} {0, 1} H1

2 H1 H1 2

It is clear that A = {(0.2, 0.1)/0, (0.2, 0.1)/1, (0.5, 0.4, 0.4)/2} is a fuzzy multi-hypergroup of H1.

Example 11. Let (Z, ?) be the hypergroup defined in Example 8. It is clear that A, with the fuzzy count
function CMA, is a fuzzy multi-hypergroup of Z. Where

CMA(x) =

{
(0.7, 0.5, 0.5) if x is an even integer;

(0.7, 0.3, 0.2) otherwise.

Proposition 1. Let (H, ◦) be a hypergroup and A be a fuzzy multi-hypergroup of H. Then the following
assertions are true.

1. CMA(z) ≥ CMA(x1) ∧ . . . ∧ CMA(xn) for all z ∈ x1 ◦ . . . ◦ xn and n ≥ 2;
2. CMA(z) ≥ CMA(x) for all z ∈ xn.

Proof.

• Proof of 1. By mathematical induction on the value of n, CMA(z) ≥ CMA(x1) ∧ . . . ∧ CMA(xn)

for all z ∈ x1 ◦ . . . ◦ xn is true for n = 2. Assume that CMA(z) ≥ CMA(x1) ∧ . . . ∧ CMA(xn) for
all z ∈ x1 ◦ . . . ◦ xn and let z′ ∈ x1 ◦ . . . ◦ xn ◦ xn+1. Then there exists x ∈ x1 ◦ . . . ◦ xn such that z′ ∈
x ◦ xn+1. Having A a fuzzy multi-hypergroup implies that CMA(z′) ≥ CMA(x) ∧ CMA(xn+1).
And using our assumption that CMA(x) ≥ CMA(x1)∧ . . .∧CMA(xn) implies that our statement
is true for n + 1.

• Proof of 2. The proof follows from 1. by setting xi = x for all i = 1, . . . , n.

Example 12. Let (H, ◦) be any hypergroup and a ∈ H be a fixed element. We define a fuzzy multiset A of H
with fuzzy count function CMA as CMA(x) = CMA(a) for all x ∈ H. Then A is a fuzzy multi-hypergroup of
H (the constant fuzzy multi-hypergroup).

Remark 3. Let (H, ◦) be a hypergroup. Then we can define at least one fuzzy multi-hypergroup of H, which is
mainly the one that is described in Example 12.
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Proposition 2. Let (H, ◦) be the biset hypergroup and A be a fuzzy multiset of H. Then A is a fuzzy
multi-hypergroup of H.

Proof. Let A be a fuzzy multiset of H. Since (H, ◦) is a commutative hypergroup, it suffices to show
that conditions 1. and 2. of Definition 7 are satisfied. (See Remark 2). For condition 1., let x, y ∈ H and
z ∈ x ◦ y = {x, y}. It is clear that CMA(z) ≥ CMA(x) ∧ CMA(y). For condition 2., let a, x ∈ H. Then
there exists y = x ∈ H such that x ∈ a ◦ y and CMA(y) = CMA(x) ≥ CMA(a) ∧ CMA(x). Therefore,
A is a fuzzy multi-hypergroup of H.

Proposition 3. Let (H, ◦) be the total hypergroup and A be a fuzzy multiset of H. Then A is a fuzzy
multi-hypergroup of H if and only if A is the fuzzy multiset described in Example 12.

Proof. If A is the fuzzy multiset described in Example 12 then it is clear that A is a fuzzy
multi-hypergroup of H. Let A be a fuzzy multi-hypergroup of H and a ∈ H. For all x ∈ H, we
have x ∈ a ◦ a = H and a ∈ x ◦ x. The latter and having A a fuzzy multi-hypergroup of H implies that
CMA(x) ≥ CMA(a) and CMA(a) ≥ CMA(x). Thus, CMA(x) = CMA(a) for all x ∈ H.

Notation 1. Let (H, ◦) be a hypergroup, A be a fuzzy multiset of H and CMA(x) =

(µ1
A(x), µ2

A(x), . . . , µ
p
A(x)). We say that CMA(x) > 0 if µ1

A(x) > 0.

Definition 8. Let (H, ◦) be a hypergroup and A be a fuzzy multiset of H. Then A? = {x ∈ X : CMA(x) > 0}.

Proposition 4. Let (H, ◦) be a hypergroup and A be a fuzzy multi-hypergroup of H. Then A? is either the
empty set or a subhypergroup of H.

Proof. Let a ∈ A? 6= ∅. We need to show that the reproduction axiom is satisfied for A?. We
show that a ◦ A? = A? and A? ◦ a = A? is done similarly. For all x ∈ A? and z ∈ a ◦ x, we have
CMA(z) ≥ CMA(a) ∧ CMA(x) > 0. The latter implies that z ∈ A? and hence, A? ◦ a ⊆ A?. Moreover,
for all x ∈ A?, Condition 2. of Definition 7 implies that there exist y ∈ H such that x ∈ a ◦ y
and CMA(y) ≥ CMA(x) ∧ CMA(a) > 0. The latter implies that y ∈ A? and x ∈ a ◦ A?. Thus,
A? ⊆ a ◦ A?.

Definition 9. Let (H, ◦) be a hypergroup and A, B be fuzzy multisets of H. Then A ◦ B is defined by the
following fuzzy count function.

CMA◦B(x) = ∨{CMA(y) ∧ CMB(z) : x ∈ y ◦ z}.

Theorem 1. Let (H, ◦) be a hypergroup and A be a fuzzy multiset of H. If A is a fuzzy multi-hypergroup of H
then A ◦ A = A.

Proof. Let z ∈ H. Then CMA(z) ≥ CMA(x) ∧ CMA(y) for all z ∈ x ◦ y. The latter implies that
CMA(z) ≥ ∨{CMA(x) ∧ CMB(y) : z ∈ x ◦ y} ≥ CMA◦A(z). Thus, A ◦ A ⊆ A. Having (H, ◦) a
hypergroup and A a fuzzy multi-hypergroup of H implies that for every x ∈ H there exist y ∈ H such
that x ∈ x ◦ y and CMA(y) ≥ CMA(x). Moreover, we have CMA◦A(x) = ∨{CMA(y) ∧ CMB(z) : x ∈
y ◦ z} ≥ CMA(x) ∧ CMA(y) = CMA(x). Thus, A ⊆ A ◦ A.

Notation 2. Let (H, ◦) be a hypergroup, A be a fuzzy multiset of H and CMA(x) =

(µ1
A(x), µ2

A(x), . . . , µ
p
A(x)). We say that CMA(x) ≥ (t1, . . . , tk) if p ≥ k and µi

A(x) ≥ ti for all i = 1, . . . , k.
If CMA(x) � (t1, . . . , tk) and (t1, . . . , tk) � CMA(x) then we say that CMA(x) and (t1, . . . , tk) are
not comparable.
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In [19], Davvaz studied fuzzy hypergroups and proved some important results about them related
to level subhypergroups of fuzzy hypergroups. In what follows, we do suitable changes to extend the
results of [19] to fuzzy multi-hypergroups.

Theorem 2. Let (H, ◦) be a hypergroup, A a fuzzy multiset of H with fuzzy count function CM and t =

(t1, . . . , tk) where ti ∈ [0, 1] for i = 1, . . . , k and t1 ≥ t2 ≥ . . . ≥ tk. Then A is a fuzzy multi-hypergroup of H
if and only if CMt is either the empty set or a subhypergroup of H.

Proof. Let CMt be a subhypergroup of H and x, y ∈ H. By setting t0 = CM(x) ∧ CM(y), we get
that x, y ∈ CMt0 . Having CMt0 a subhypergroup of H implies that for all z ∈ x ◦ y, CM(z) ≥
t0 = CM(x) ∧ CM(y). We prove condition 2. of Definition 7 and condition 3. is done similarly.
Let a, x ∈ H and t0 = CM(x) ∧ CM(a). Then a, x ∈ CMt0 . Having CMt0 a subhypergroup of H
implies that a ◦ CMt0 = CMt0 . The latter implies that there exist y ∈ CMt0 such that x ∈ a ◦ y. Thus,
CM(y) ≥ t0 = CM(x) ∧ CM(y).

Conversely, let A be a fuzzy multi-hypergroup of H and CMt 6= ∅. We need to show that
CMt = a ◦ CMt = CMt ◦ a for all a ∈ CMt. We prove that CMt = a ◦ CMt and CMt = CMt ◦ a is done
similarly. Let x ∈ CMt. Then CM(z) ≥ CM(x) ∧ CM(a) ≥ t for all z ∈ a ◦ x. The latter implies that
z ∈ CMt. Thus, a ◦ CMt ⊆ CMt. Let x ∈ CMt. Since A is a fuzzy multi-hypergroup of H, it follows
that there exist y ∈ H such that x ∈ a ◦ y and CM(y) ≥ CM(x) ∧ CM(a) ≥ t. The latter implies that
y ∈ CMt and hence, CMt ⊆ a ◦ CMt.

Proposition 5. Let (H, ◦) be a hypergroup, A a fuzzy multiset of H with fuzzy count function CM and
t = (t1, . . . , tk), s = (s1, . . . , sn) where ti, si ∈ [0, 1] for i = 1, . . . , max(k, n) and t1 ≥ t2 ≥ . . . ≥ tk,
s1 ≥ s2 ≥ . . . ≥ sn. If t < s and CMt = CMs then there exist no x ∈ H such that t ≤ CM(x) < s.

Proof. Let CMt = CMs and suppose that there exist x ∈ H such that t ≤ CM(x) < s. Then x ∈ CMt

and x /∈ CMs which contradicts the given.

Proposition 6. Let (H, ◦) be a hypergroup and S be a subhypergroup of H. Then S = CMt for some
t = (t1, . . . , tk) where ti ∈ [0, 1] for i = 1, . . . , k, t1 6= 0, and t1 ≥ t2 ≥ . . . ≥ tk.

Proof. Let t = (t1, . . . , tk) where ti ∈ [0, 1] for i = 1, . . . , k and define the fuzzy multiset A of H
as follows:

CM(x) =

{
t if x ∈ S

0 otherwise.

It is clear that S = CMt. We still need to prove that CM is a fuzzy multi-hypergroup of H. Using
Theorem 2, it suffices to show that CMα 6= ∅ is a subhypergroup of H for all α = (a1, . . . , as) with
ai ∈ [0, 1] for i = 1, . . . , s. One can easily see that

CMα =


H if α = 0

S if 0 < α ≤ t

∅ if (α > t) or (α and t are not comparable).

Thus, CMα is either the empty set or a subhypergroup of H.

4. Operations on Fuzzy Multi-Hypergroups

In this section, we define some operations on fuzzy multi-hypergroups, study them, and present
some examples.
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Proposition 7. Let (H, ◦) be a hypergroup and A, B be fuzzy multisets of H. If A and B are fuzzy
multi-hypergroups of H and one of them is the constant fuzzy multi-hypergroup then A ∩ B is a fuzzy
multi-hypergroup of H.

Proof. We prove conditions of Definition 7 are satisfied for A ∩ B. (1) Let x, y ∈ H and z ∈
x ◦ y. Then CMA∩B(z) = CMA(z) ∧ CMB(z). Having A, B fuzzy multi-hypergroups of H implies
that CMA(z) ≥ CMA(x) ∧ CMA(y) and CMB(z) ≥ CMB(x) ∧ CMB(y). The latter implies that
CMA∩B(z) ≥ CMA(x) ∧ CMA(y) ∧ CMB(x) ∧ CMB(y) = CMA∩B(x) ∧ CMA∩B(y). (2) Without
loss of generality, let B be the constant fuzzy multiset of H with CMB(x) = α for all x ∈ H. Let
a, x ∈ H. Then there exist y ∈ H such that x ∈ a ◦ y and CMA(y) ≥ CMA(x) ∧ CMA(a). The latter
implies that CMA∩B(y) = CMA(y)∧ α ≥ CMA(x)∧CMA(a)∧ α = (CMA(x)∧ α)∧ (CMA(a)∧ α) =

CMA∩B(x) ∧ CMA∩B(a). (3) is done in a similar way to (2).

Example 13. Let (H, ◦) be the hypergroup defined in Example 9 and A, B be fuzzy multisets of H defined as:

A = {(0.2, 0.1)/a, (0.5, 0.4, 0.4)/b}, B = {(0.7, 0.05, 0.05)/a, (0.7, 0.05, 0.05)/b}.

Since A is a fuzzy multi-hypergroup of H and B is a constant fuzzy multi-hypergroup of H, it follows that
A ∩ B = {(0.2, 0.05)/a, (0.5, 0.05, 0.05)/b} is a fuzzy multi-hypergroup of H.

Definition 10. Let H be any set and A, B be fuzzy multisets of H with fuzzy count functions CMA, CMB
respectively. Then the fuzzy multiset A

⊎
B is given as follows: For all x ∈ H,

CM(x) =
CMA(x) + CMB(x)

2
.

Example 14. Let H = {a, b}, A, B be fuzzy multisets of H given as :

A = {(0.8, 0.4, 0.4)/a, (0.1, 0.1)/b}, B = {(0.6, 0.4, 0.4, 0.4)/a, (0.3, 0.1, 0.1)/b}.

Then A
⊎

B = {(0.7, 0.4, 0.4, 0.2)/a, (0.2, 0.1, 0.05)/b}.

Proposition 8. Let (H, ◦) be a hypergroup and A, B be fuzzy multisets of H. If A and B are fuzzy
multi-hypergroups of H and A or B is constant then A

⊎
B is a fuzzy multi-hypergroup of H.

Proof. Without loss of generality, let B be the constant fuzzy multiset of H with CMB(x) = α for
all x ∈ H. We prove that the conditions of Definition 7 are satisfied for A

⊎
B. (1) Let x, y ∈ H and

z ∈ x ◦ y. Having CMA(z) ≥ CMA(x) ∧ CMA(y) implies that CMA(z)+α
2 ≥ (CMA(x)∧CMA(y))+α

2 . We

get that CM(z) = CMA(x)+α
2 ≥ CMA(x)+α

2 ∧ CMA(y))+α
2 = CM(x) ∧ CM(y). (2) Let a, x ∈ H. Then

there exist y ∈ H such that x ∈ a ◦ y and CMA(y) ≥ CMA(x) ∧ CMA(a). The latter implies that
CM(y) = CMA(y)+α

2 ≥ (CMA(x)∧CMA(a))+α
2 = CMA(x)+α

2 ∧ CMA(a))+α
2 = CM(x) ∧ CM(a). (3) is done in

a similar way to (2).

Example 15. In Example 13, A
⊎

B = {(0.45, 0.075, 0.025)/a, (0.6, 0.225, 0.225)/b is a fuzzy
multi-hypergroup of H.

Definition 11. Let H be a non-empty set and A be a fuzzy multiset of H. We define A′, the complement of A,
to be the fuzzy multiset defined as: For all x ∈ H,

CMA′(x) = (1− µ
p
A(x), . . . , 1− µ1

A(x)) when CMA(x) = (µ1
A(x), µ2

A(x), . . . , µ
p
A(x)).
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Remark 4. Let (H, ◦) be a hypergroup and A be the constant fuzzy multi-hypergroup of H defiend in
Example 12. Then, A′ is also a fuzzy multi-hypergroup of H.

We present an example of a (non-constant) fuzzy multiset A of H where A and A′ are both fuzzy
multi-hypergroups of H.

Example 16. Let H = {a, b}, (H, ◦) be the biset hypergroup on H and A be a fuzzy multiset of H defined as:
A = {(0.4, 0.3, 0.3)/a, (0.2, 0.1)/b}. Proposition 2 asserts that A and A′ = {(0.7, 0.7, 0.6)/a, (0.9, 0.8)/b}
are fuzzy multi-hypergroups of H.

Remark 5. Let (H, ◦) be a hypergroup and A be a fuzzy multi-hypergroup of H. Then, A′ is not necessary a
fuzzy multi-hypergroup of H.

The following example is an illustration for Remark 5.

Example 17. Let (H, ◦) be the hypergroup defined in Example 9 and A be the fuzzy multi-hypergroup of H
defined as: A = {(0.2, 0.1)/a, (0.5, 0.4, 0.4)/b}. Then A′ = {(0.9, 0.8)/a, (0.6, 0.6, 0.5)/b} is not a fuzzy
multi-hypergroup of H as b ∈ a ◦ a and CMA′(b) � CMA′(a).

Definition 12. Let X be any set, S ⊆ X and A a fuzzy multiset of X with fuzzy count function CMA. Then
the selection operation ⊗ is defined by the fuzzy multiset A⊗ S with the fuzzy count function CM as follows:

CM(x) =

{
CMA(x) if x ∈ S

0 otherwise.

Proposition 9. Let (H, ◦) be a hypergroup and S be a subhypergroup of H. If A is a fuzzy multi-hypergroup
of S then A⊗ S is a fuzzy multi-hypergroup of H.

Proof. Let z ∈ x ◦ y. If x /∈ S or y /∈ S then CM(z) ≥ 0 = CM(x) ∧ CM(y). If x, y ∈ S then z ∈ x ◦ y.
Having A a fuzzy multi-hypergroup of S implies that CMA(z) ≥ CMA(x) ∧ CMA(y). The latter
implies that CM(z) = CMA(z) ≥ CMA(x) ∧ CMA(y) = CM(x) ∧ CM(y). We prove condition 2. of
Definition 7 and condition 3 is done similarly. Let a, x ∈ H. If a /∈ S or x /∈ S then for all y ∈ H with
x ∈ a ◦ y, CM(y) ≥ 0 = CM(x) ∧ CM(a). If a, x ∈ S then there exist y ∈ S such that x ∈ a ◦ y and
CMA(y) ≥ CMA(x) ∧ CMA(a). The latter implies that CM(y) ≥ CM(x) ∧ CM(a).

Definition 13. Let X be any set, S ⊆ X and A a fuzzy multiset of X with fuzzy count function CMA. Then,
the selection operation � is defined by the fuzzy multiset A⊗ S with the fuzzy count function CM.

CM(x) =

{
CMA(x) if x /∈ S

0 otherwise.

Proposition 10. Let (H, ◦) be a hypergroup and S ⊂ H with H − S a subhypergroup of H. If A is a fuzzy
multi-hypergroup of H − S then A� S is a fuzzy multi-hypergroup of H.

Proof. A� S is given by the fuzzy count function CM where

CM(x) =

{
0 if x ∈ S

CMA(x) otherwise.
=

{
0 if x /∈ H − S

CMA(x) otherwise.

One can easily see that A� S = A⊗ (H − S). Proposition 9 completes the proof.
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Proposition 11. (H1, ◦1), (H2, ◦2) be hypergroups with fuzzy multisets A, B respectively. If A and B are
fuzzy multi-hypergroups of H1 and H2 respectively then A× B is a fuzzy multi-hypergroup of the productional
hypergrpup (H1 × H2, ◦), where for all (x, y) ∈ H1 × H2, CMA×B(x, y) = CMA(x) ∧ CMB(y).

Proof. Let (x3, y3) ∈ (x1, y1) ◦ (x2, y2). Then x3 ∈ x1 ◦ x2 and y3 ∈ y1 ◦ y2. Having A, B
fuzzy multi-hypergroups of H1, H2 respectively implies that CMA(x3) ≥ CMA(x1) ∧ CMA(x2) and
CMB(y3) ≥ CMB(y1) ∧ CMB(y2). We get now

CMA×B(x3, y3) = CMA(x3) ∧ CMB(y3) ≥ CMA(x1) ∧ CMA(x2) ∧ CMB(y1) ∧ CMB(y2).

The latter implies that CMA×B(x3, y3) ≥ CMA×B(x1, y1) ∧ CMA×B(x2, y2). We now prove condition
2. of Definition 7 and condition 3. is done similarly. Let (x, y), (a, b) ∈ H1 × H2. Having
x, a ∈ H1, y, b ∈ H2 implies that there exist z ∈ H1, w ∈ H2 such that x ∈ a ◦ z, y ∈ b ◦ w
and CMA(z) ≥ CMA(x) ∧ CMA(a), CMB(w) ≥ CMB(y) ∧ CMB(b). We get that CMA×B(z, w) =

CMA(z) ∧ CMB(w) ≥ CMA(x) ∧ CMA(a) ∧ CMB(w) ≥ CMB(y) ∧ CMB(b) = CMA×B(x, y) ∧
CMA×B(a, b). The latter implies that there exist (z, w) ∈ H1, H2 such that (x, y) ∈ (a, b) ◦ (z, w)

and CMA×B(z, w) ≥ CMA×B(x, y) ∧ CMA×B(a, b).

Corollary 1. (Hi, ◦i) be a hypergroup with fuzzy multiset Ai for i = 1, . . . , n. If Ai is a fuzzy multi-hypergroup
of Hi then A1 × . . .× An is a fuzzy multi-hypergroup of the productional hypergroup (H1 × . . .× Hn, ◦),
where for all (x1, . . . , xn) ∈ H1 × . . .× Hn, CMA1×...×An(x1, . . . , xn) = CMA1(x1) ∧ . . . ∧ CMAn(xn).

Proof. The proof follows by using mathematical induction and Proposition 11.

Example 18. Let (H, ◦) be the hypergroup defined in Example 9 and (J, ?) be the biset hypergroup on the set
{c, d}. Then, the productional hypergroup (H × J, •) is given by the following table:

• (a, c) (a, d) (b, c) (b, d)

(a, c) (a, c) {(a, c), (a, d)} {(a, c), (b, c)} H × J

(a, d) {(a, c), (a, d)} (a, d) H × J {(a, d), (b, d)}

(b, c) {(a, c), (b, c) H × J (b, c) {(b, c), (b, d)}

(b, d) H × J {(a, d), (b, d)} {(b, c), (b, d)} (b, d)

Since A = {(0.2, 0.1)/a, (0.5, 0.4, 0.4)/b} is a fuzzy multi-hypergroup of H and B =

{(0.3, 0.05)/c, (0.2, 0.2, 0.1)/d} is a fuzzy multi-hypergroup of J. Then

A× B = {(0.2, 0.05)/(a, c), (0.2, 0.1)/(a, d), (0.3, 0.05)/(b, c), (0.2, 0.2, 0.1)/(b, d)}

is a fuzzy multi-hypergroup of H × J.

The following propositions (Propositions 12 and 13) deal with the strong homomorphic image
and pre-image of a fuzzy multi-hypergroup.

Proposition 12. Let (H1, ◦1), (H2, ◦2) be hypergroups, A, B be fuzzy multisets of H1, H2 respectively and
f : H1 → H2 be a strong homomorphism. If A is a fuzzy multi-hypergroup of H1 then f (A) is a fuzzy
multi-hypergroup of H2,

Proof. Let y1, y2 ∈ H2 and y3 ∈ y1 ◦2 y2. If f−1(y1) = ∅ or f−1(y2) = ∅ then CM f (A)(y1) = 0 or
CM f (A)(y2) = 0. We get that CM f (A)(y3) ≥ 0 = CM f (A)(y1) ∧ CM f (A)(y2). If f−1(y1) 6= ∅ and
f−1(y2) 6= ∅ then there exist x1, x2 ∈ H1 such that CMA(x1) =

∨
f (x)=y1

CMA(x) and CMA(x2) =
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∨
f (x)=y2

CMA(x). Having f a homomorphism implies that y3 ∈ f (x1) ◦2 f (x2) = f (x1 ◦1 x2). The
latter implies that there exists x3 ∈ x1 ◦ x2 such that y3 = f (x3). Since A is a fuzzy multi-hypergroup of
H1, it follows that CM f (A)(y3) ≥ CMA(x3) ≥ CMA(x1)∧CMA(x2) = CM f (A)(y1)∧CM f (A)(y2). We
prove now condition 2. of Definition 7 and condition 3. is done similarly. Let y, b ∈ H2. If f−1(y) = ∅
or f−1(b) = ∅ then for all z ∈ H2 such that y ∈ b ◦2 z, CM f (A)(z) ≥ 0 = CM f (A)(y) ∧ CM f (A)(b).
If f−1(y) 6= ∅ and f−1(b) 6= ∅ then there exist x1, a ∈ H1 such that CMA(x1) =

∨
f (x)=y CMA(x)

and CMA(a) =
∨

f (x)=b CMA(x). Having A a fuzzy multi-hypergroup of H1 implies that there exist
x2 ∈ H with x1 ∈ x2 ◦1 a and CMA(x2) ≥ CMA(x1) ∧ CMA(a). Since f is a strong homomorphism,
it follows that y = f (x1) ∈ f (x2) ◦2 b and CM f (A)( f (x2)) ≥ CMA(x2) ≥ CMA(x1) ∧ CMA(a) =

CM f (A)(y) ∧ CM f (A)(b).

We can use Proposition 12 to prove Proposition 9.

Corollary 2. Let (H, ◦) be a hypergroup and S be a subhypergroup of H. If A is a fuzzy multi-hypergroup of S
then A⊗ S is a fuzzy multi-hypergroup of H.

Proof. Let f : S→ H be the inclusion map defined by f (x) = x for all x ∈ S. One can easily see that
CM f (A) is the fuzzy count function of A⊗ S.

Proposition 13. Let (H1, ◦1), (H2, ◦2) be hypergroups, A, B be fuzzy multisets of H1, H2 respectively and
f : H1 → H2 be a surjective strong homomorphism. If B is a fuzzy multi-hypergroup of H2 then f−1(B) is a
fuzzy multi-hypergroup of H1.

Proof. Let x1, x2 ∈ H1 and x3 ∈ x1 ◦1 x2. Then CM f−1(B)(x3) = CMB( f (x3)). Having f (x3) ∈ f (x1 ◦1

x2) = f (x1) ◦ f (x2) implies that CM f−1(B)(x3) = CMB( f (x3)) ≥ CMB( f (x1)) ∧ CMB( f (x2)) =

CM f−1(B)(x1) ∧ CM f−1(B)(x2). We prove now condition 2. of Definition 7 and condition 3. is done
similarly. Let x, a ∈ H1. Having y = f (x), b = f (a) ∈ H2 and B a fuzzy multi-hypergroup of H2

implies that there exist z ∈ H2 such that y ∈ b ◦2 z and CMB(z) ≥ CMB(y) ∧ CMB(b). Since f is a
surjective strong homomorphism, it follows that there exist w ∈ H1 such that f (w) = z and x ∈ z ◦1 w.
We get now that CM f−1(B)(z) = CMB(z) ≥ CMB(y) ∧ CMB(b) = CM f−1(B)(x) ∧ CM f−1(B)(w).

5. Conclusions

In this paper, a new link between algebraic hyperstructures and fuzzy multisets was initiated and
as a result fuzzy multi-hypergroups were defined and studied. In particular, different operations on
fuzzy multi-hypergroups were defined and studied and several results and examples were obtained.
The foundations that we made through this paper can be used to get an insight into other types of
hyperstructures. As a result, different real life problems involving the concept of the fuzzy multiset
can be dealt with from a different perspective.
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