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Abstract: This paper is largely a review. It considers two main methods used to study stability and to
obtain appropriate quantitative estimates of perturbations of (inhomogeneous) Markov chains with
continuous time and a finite or countable state space. An approach is described to the construction
of perturbation estimates for the main five classes of such chains associated with queuing models.
Several specific models are considered for which the limit characteristics and perturbation bounds
for admissible “perturbed” processes are calculated.
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1. Introduction

In this paper, some topics are considered that are related to the stability of both homogeneous and
non-homogeneous continuous-time Markov chains with respect to the perturbation of their intensities
(infinitesimal characteristics). It is assumed that the evolution of the system under consideration is
described by a Markov chain with the known state space, and it is the infinitesimal matrix that is
given inexactly. Different classes of admissible perturbations can be considered. The “perturbed”
infinitesimal matrix can be arbitrary, and the small deviation of its norm from that of the original
matrix is assumed or it can be assumed that the structure of the infinitesimal matrix is known and only
its elements are “perturbed” within the same structure. Below we will give a detailed description of
these cases. In some papers it is assumed that the perturbations have a special form and, for example,
are expanded in a power series of a small parameter. This assumption seems to be too restrictive
and unrealistic.

The study of stability of characteristics of stochastic models has been actively developing since
the 1970s [1–3]. At that time, Zolotarev proposed to treat limit theorems of probability theory as
special stability theorems. Zolotarev created the theoretical foundation of the key method used within
this approach, namely, the theory of probability metrics [4]. This approach assumes that statements
establishing the convergence must be accompanied by statements establishing the convergence rate.
Zolotarev called the conditions of convergence that simultaneously serve as convergence rate estimates
“natural.” This approach was developed in the works of Zolotarev, Kalashnikov, Kruglov, Senatov, Yu,
Korolev, Yu, Khokhlov, and their colleagues in the framework of international seminars on stability
problems for stochastic models. This seminar was founded by Zolotarev in the early 1970s and still
continues to hold its regular (as a rule, annual) international sessions (see the series of the proceedings

Mathematics 2020, 8, 253; doi:10.3390/math8020253 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-7855-3364
http://dx.doi.org/10.3390/math8020253
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/2/253?type=check_update&version=2


Mathematics 2020, 8, 253 2 of 25

of the seminar published as Springer Lecture Notes starting from [5] or as issues of the Journal of
Mathematical Sciences). In particular, this approach proved to be very productive for the study of
random sums in queueing theory, renewal theory, and the theory of branching processes [6].

Since the 1980s, the problems related to the estimation of stability of Markov chains with respect
to perturbations of their characteristics have been thoroughly studied by Kartashov for homogeneous
discrete-time chains with general state space and, in parallel, by Zeifman for inhomogeneous
continuous-time chains within the seminar mentioned above (see [7–9]). In particular, a general
approach for inhomogeneous continuous-time chains was developed in [9]. That paper was published
in the proceedings of the seminar “Stability Problems for Stochastic Models” and dealt with both
uniform and strong cases.

Later birth-death processes were considered in [10], and general properties and estimates for
inhomogeneous finite chains were considered in [11]. The paper [12] was specially devoted to estimates
for general birth-death processes, with the queueing system Mt|Mt|N considered as an example. It
should be mentioned that these papers were not noticed by Western authors. For example, in [13],
it was stated that there were no papers on the stability of the (simplest stationary!!) system M|M|1.
For the first time, we used the term “perturbation bounds” instead of “stability” in the paper [14] on
the referee’s prompt. The same situation takes place with Kartashov’s papers cited above. The methods
proposed in those papers seem to be used by most authors of subsequent studies in estimations of
perturbations of discrete-time chains. Possibly, poor acquaintance with the early papers of Kartashov
and Zeifman can be explained by the differences in terminology mentioned above: in the original
(and foundational) papers, the term “stability” was used (in the proceedings of the seminar with the
consonant appellation “Stability Problems for Stochastic Models”).

The present paper deals only with continuous-time chains, so the subsequent remarks mainly
regard such a case.

Note that, to obtain explicit and exact estimates of the perturbation bounds of a chain, it is
required to have estimates of the rate of convergence of the chain to its limit characteristics in the form
of explicit inequalities. Moreover, the sharper the convergence rate estimates are, the more accurate the
perturbation bounds are. These bounds can be more easily obtained for finite homogeneous Markov
chains. Therefore, most publications concern this situation only (see, e.g., [15–20]). Thus, two main
approaches can be highlighted.

The first of them can be used for the case of weak ergodicity of a chain in the uniform operator
topology. The first bounds in this direction were obtained in [9]. The principal progress related to
the replacement of the constant S with log S in the bound was implemented in [17] and continued
in Mitrophanov’s papers [18–20] for the case of homogeneous chains and then in [14,21] and in the
subsequent papers of these authors for the inhomogeneous chains. The contemporary state of affairs
in this field and new applied problems related to the link between convergence rate and perturbation
bounds in the “uniform” case were described in [22]. In some recent papers, uniform perturbation
bounds of homogeneous Markov chains were studied by the techniques of stochastic differential
equations (see, for instance, [23] and the references therein).

The second approach is used in the case where the uniform ergodicity is not assured, which
is typical for the processes most interesting from a practical viewpoint. For example, birth-death
processes used for modeling queueing systems, and real processes in biology, chemistry, and physics,
as a rule, are not uniformly ergodic.

Following the ideas of Kartashov (see a detailed description in [24]), most authors use the
probability methods to study ergodicity and perturbation bounds of stationary chains (with a finite,
countable, or general state space) in various norms [13,25,26]. For a wide class of (mainly) stationary
discrete-time chains, a close approach was considered in [27] and more recent papers [28–38].

In the works of the authors of the present paper, perturbation bounds for non-stationary finite or
infinite continuous-time chains were studied by other methods.
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The first papers dealing with non-stationary queueing models appeared in the 1970s (see [39,40],
and the more recent paper [41]). Moreover, as far back as the year in which [42] was published,
it was noted that it is principally possible to use the logarithmic matrix norm for the study of the
convergence rate of continuous-time Markov chains. The corresponding general approach employing
the theory of differential equations in Banach spaces was developed in a series of papers by the authors
of the present paper(see a detailed description in [43,44]). In [9] (see also [10,11]), a method for the
study of perturbation bounds for the vector of state probabilities of a continuous-time Markov chain
with respect to the perturbations of infinitesimal characteristics of the chain in the total variation
norm (l1-norm) was proposed. The paper [12] contained a detailed study of the stability of essentially
non-stationary birth-death processes with respect to conditionally small perturbations. Convergence
rate estimates in terms of weight norms, and hence the corresponding bounds for new classes of
Markov chains, were considered in [45–48].

In the present paper, both approaches are considered along with the classes of inhomogeneous
Markov chains, for which at least one of these approaches yields reasonable perturbation bounds for
basic probability characteristics.

The paper is organized as follows. In Section 2, basic notions and preliminary results are
introduced. In Section 3, general theorems on perturbation bounds are considered. Section 4 contains
convergence rate estimates and perturbation bounds for basic classes of the chains under consideration.
Finally, in Section 5, some special queueing models are studied.

2. Basic Notions and Preliminaries

Let X = X(t), t ≥ 0, be, in general, an inhomogeneous continuous-time Markov chain with a
finite or countable state space ES = 0, 1, . . . , S, S ≤ ∞. The transition probabilities for X = X(t) will
be denoted pij(s, t) = Pr {X(t) = j |X(s) = i}, i, j ≥ 0, 0 ≤ s ≤ t. Let pi(t) = Pr {X(t) = i} be the
state probabilities of the chain and p(t) = (p0(t), p1(t), . . . )T be the corresponding vector of state
probabilities. In what follows, it is assumed that

Pr {X (t + h) = j|X (t) = i} =

=


qij (t) h + αij (t, h) , if j 6= i

1−∑
k 6=i

qik (t) h + αi (t, h), if j = i (1)

where all αi(t, h) are o(h) uniformly in i, that is, supi |αi(t, h)| = o(h).
As usual, we assume that, if a chain is inhomogeneous, then all the infinitesimal characteristics

(intensity functions) qij (t) are integrable in t on any interval [a, b], 0 ≤ a ≤ b.
Let aij(t) = qji(t) for j 6= i and aii(t) = −∑j 6=i aji(t) = −∑j 6=i qij(t).
Further, to provide the possibility to obtain more evident estimates, we will assume that

|aii(t)| ≤ L < ∞ (2)

for almost all t ≥ 0.
The state probabilities then satisfy the forward Kolmogorov system

dp
dt

= A(t)p(t) (3)

where A(t) = QT(t), and Q(t) is the infinitesimal matrix of the process.
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Let ‖ · ‖ be the usual l1-norm, i.e. ‖x‖ = ∑ |xi|, and ‖B‖ = supj ∑i |bij| for B = (bij)
∞
i,j=0. Denote

Ω =
{

x : x ∈ l+1 & ‖x‖ = 1
}

. Therefore,

‖A(t)‖ = 2 sup
k
|akk(t)| ≤ 2L

for almost all t ≥ 0, and we can apply the results of [49] to Equation (3) in the space l1. Namely, in [49]
it was shown that the Cauchy problem for Equation (3) has a unique solution for an arbitrary initial
condition. Moreover, if p(s) ∈ Ω, then p(t) ∈ Ω, for any 0 ≤ s ≤ t and any initial condition p(s).

Let p0(t) = 1−∑i≥1 pi(t).
Put z = (p1, p2, . . . )T .
Therefore, from Equation (3), we obtain the equation

dz
dt

= B(t)z(t) + f(t), (4)

where f = (a10, a20, · · · )T ,

B =



a11 − a10 a12 − a10 · · · a1r − a10 · · ·
a21 − a20 a22 − a20 · · · a2r − a20 · · ·
a31 − a30 a32 − a30 · · · a3r − a30 · · ·
· · ·

ar1 − ar0 ar2 − ar0 · · · arr − ar0 · · ·
· · · · · · · · ·


, (5)

where all expressions depend on t.
By X̄ = X̄(t), we will denote the “perturbed” Markov chain with the same state space,

state probabilities p̄i(t), transposed infinitesimal matrix Ā(t) =
(
āij(t)

)∞
i,j=0, and so on, and the

“perturbations” themselves, that is, the differences between the corresponding “perturbed” and original
characteristics will be denoted by âij(t), Â(t).

Let E(t, k) = E {X(t) |X(0) = k}. Recall that a Markov chain X(t) is weakly ergodic if ‖p∗(t)−
p∗∗(t)‖ → 0 as t→ ∞ for any initial condition, and it has the limiting mean φ(t) if |E(t, k)− φ(t)| → 0
as t→ ∞ for any k.

Now we briefly describe the main classes of the chains under consideration. The details concerning
the first four classes can be found in [47,50].

Case 1. Let aij(t) = 0 for all t ≥ 0 if |i − j| > 1, and ai,i+1(t) = µi+1(t), ai+1,i(t) = λi(t). This
is an inhomogeneous birth-death process (BDP) with the intensities λi(t) (of birth) and µi+1(t) (of death)
correspondingly.

Case 2. Now let aij(t) = 0 for i < j− 1, ai+k,i(t) = ak(t) for k ≥ 1, and ai,i+1(t) = µi+1(t). This chain
describes, for instance, the number of customers in a queueing system in which the customers arrive in groups,
but are served one by one (in this case, ak(t) is the arrival intensity of a group of k customers, and µi(t) is the
service intensity of the ith customer). The simplest models of this type were considered in [51] (see also [47,50]).

Case 3. Let aij(t) = 0 for i > j + 1, ai,i+k(t) = bk(t), k ≥ 1, and ai+1,i(t) = λi(t). This situation occurs in
modeling queueing systems with the arrivals of single customers and group service.

Case 4. Let ai+k,i(t) = ak(t), ai,i+k(t) = bk(t) for k ≥ 1. This process appears in the description of a system
with group arrival and group service, for earlier studies see [46,52,53].



Mathematics 2020, 8, 253 5 of 25

Case 5. Consider a Markov chain with “catastrophes” used for modeling of some queueing systems (see,
e.g., [14,54–58]). Here the intensities have a general form, whereas a single (although substantial) restriction
consists in that the zero state is attainable from any other state, and the corresponding intensities qk,0(t) = a0,k(t)
for k ≥ 1 are called the intensities of catastrophes.

Now consider the following example illustrating some specific features of the problem
under consideration.

Example 1 ([14]). Consider a homogeneous BDP (Class I) with the intensities λk(t) = 1, µk(t) = 4 for all t
and k and denote by A the corresponding transposed intensity matrix. Therefore, as is known (see, e.g., [59]),
the BDP is strongly ergodic and stable in the corresponding norm. On the other hand, take a perturbed process
with the transposed infinitesimal matrix Ā = A + Â, where â00 = −ε, âk0 = ε

k(k+1) for k ≥ 1, and âij = 0
for the other i, j. The perturbed Markov chain X̄(t) (describing the “M|M|c queue with mass arrivals when
empty” (see [54,58,60])) is then not ergodic, since, from the condition Āp̄ = 0, it follows that the coordinates
of the stationary distribution (if it exists) must satisfy the condition 4p̄k+1 = p̄k + p̄0

ε
k+1 ≥ p̄0

ε
k+1 , which

is impossible.

As has already been noted, the (upper) bounds of perturbations are closely connected with the
(correspondingly, upper) estimates for the convergence rate (see also the two next sections). On the
other side, it is also possible to construct important lower estimates of the rate of convergence provided
that the influence of the initial conditions cannot fade too rapidly (see [61]). It turns out that it is
principally impossible to construct lower bounds for perturbations. Indeed, if we consider the same
BDP and, as a perturbed BDP, choose a BDP with the intensities λ̄k(t) = 1 + ε, µ̄k(t) = 4(1 + ε), then
the stationary distribution for the perturbed process will be the same as that for the original BDP for
any positive ε.

3. General Theorems Concerning Perturbation Bounds

First consider uniform bounds that provide the first approach to perturbation estimation. This
approach is applied to uniformly ergodic Markov chains and the study of stability of the state
probability vector. The most important class of such processes is that of Markov chains on finite
state space, both homogeneous and inhomogeneous.

Theorem 1. Let the Markov chain X(t) be exponentially weakly ergodic; that is, for any initial conditions
p∗(s) ∈ Ω, p∗∗(s) ∈ Ω and any s ≥ 0, t ≥ s, there holds the inequality

‖p∗(t)− p∗∗(t)‖ ≤ 2ce−b(t−s). (6)

Therefore, for the perturbations small enough (Â(t) ≤ ε for almost all t ≥ 0), the perturbed chain X̄(t) is
also exponentially weakly ergodic, and the following perturbation bound takes place:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ (1 + log(c/2)) ε

b
. (7)

For the proof, we will use the approach proposed in [17] and modified in [21] for the
inhomogeneous case, see also [14]. Let

β(t, s) = sup
‖v‖=1,∑ vi=0

‖U(t)v‖ = 1
2 sup

i,j
∑
k
|pik(t, s)− pjk(t, s)|. (8)

Therefore,

‖p(t)− p̄(t)‖ ≤ β(t, s)‖p(s)− p̄(s)‖+
∫ t

s
‖Â(u)‖β(u, s)du. (9)
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Moreover,
β(t, s) ≤ 1, β(t, s) ≤ c

2 e−b(t−s), 0 ≤ s ≤ t. (10)

Hence,
‖p(t)− p̄(t)‖ ≤‖p(s)− p̄(s)‖+ (t− s)ε, i f 0 < t−s < 1

b ln c
2 ,

c
2 e−b(t−s)‖p(s)− p̄(s)‖+ 1

b (ln
c
2+ 1−ce−b(t−s))ε, i f t−s ≥ 1

b ln c
2

(11)

whence, as t→ ∞, we obtain Equation (7).

Corollary 1. If under the conditions of Theorem 1 the Markov chain X(t) has a finite state space, then both
Markov chains X(t) and X̄(t) have limit expectations and

|φ(t)− φ̄(t)| ≤ 1
b S (1 + log(c/2)) ε. (12)

Now consider the second approach. Namely, we turn to weighted bounds. Such estimates can be
applied to a wide class of Markov chains which are exponentially ergodic in some weighted norms.
Moreover, as a rule, these estimates also allow one to study stability characteristics of the mathematical
expectation for countable Markov chains, both homogeneous and inhomogeneous. Here we use the
approach proposed in [9] (see also the detailed description in [43,44]).

Let 1 ≤ d1 ≤ d2 ≤ . . . ,

D =


d1 d1 d1 · · ·
0 d2 d2 · · ·
0 0 d3 · · ·

. . . . . . . . .

 . (13)

Let l1D =
{

z = (p1, p2, · · · )T : ‖z‖1D ≡ ‖Dz‖ < ∞
}

. Therefore, ‖B‖1D = ‖DBD−1‖.
In addition, let ‖p‖1D = ‖z‖1D.

Below we will assume that the following conditions hold:

‖B(t)‖1D ≤ B < ∞, ‖f(t)‖1D ≤ f < ∞ (14)

for almost all t ≥ 0.

Recall that X(t) is a 1D-exponentially weakly ergodic Markov chain if

‖p∗(t)− p∗∗(t)‖1D ≤ Me−a(t−s)‖p∗(s)− p∗∗(s)‖1D. (15)

for some M > 0, a > 0 and any s, t: t ≥ s ≥ 0, any initial conditions p∗(s) ∈ l1D, p∗∗(s) ∈ l1D.

If one can choose p∗∗(t) = ß, then the chain is 1D-exponentially strongly ergodic.
Let

‖B(t)− B̄(t)‖1D ≤ |B− B̄| , ‖f(t)− f̄(t)‖1D ≤ |f− f̄| . (16)

for almost all t ≥ 0.

Theorem 2. If a Markov chain X(t) is 1D-exponentially weakly ergodic, then X̄(t) is also 1D-exponentially
weakly ergodic and the following perturbation estimate in the 1D-norm holds:

lim sup
t→∞

‖p(t)− p̄(t)‖1D ≤
M (M |B− B̄| f+ a |f− f̄|)

a (a−M |B− B̄|)
. (17)
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If W = infi≥1
di
i > 0, then both chains X(t) and X̄(t) have limiting means and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤ M (M |B− B̄| f+ a |f− f̄|)
Wa (a−M |B− B̄|)

. (18)

Proof. The detailed consideration can be found in [44]. Here we only outline the scheme of reasoning.
Let V(t, s) and V̄(t, s) be the Cauchy operators for Equation (4) and for the corresponding “perturbed”
equation, respectively. Therefore,

‖V(t, s)‖1D ≤ Me−a(t−s), ‖V̄(t, s)‖1D ≤ Me−(a−M|B−B̄|)(t−s) (19)

for all t ≥ s ≥ 0. Therefore, rewriting Equation (4) as

dz
dt

= B̄(t)z(t) + f(t) + (B(t)− B̄(t)) z(t), (20)

after some algebra, we obtain the following inequality in the 1D-norm:

‖z(t)− z̄(t)‖ ≤
∫ t

0
‖V̄(t, τ)‖

(
‖B(τ)− B̄(τ)‖‖z(τ)‖+ ‖f(τ)− f̄(τ)‖

)
dτ ≤

≤
∫ t

0
Me−(a−M|B−B̄|)(t−τ) (|B− B̄| ‖z(τ)‖+ |f− f̄|) dτ. (21)

On the other hand, ‖z(t)‖1D ≤ Me−at‖z(0)‖1D + M
a f, for any 0 ≤ s ≤ t. Hence, under any initial

condition z(0) ∈ l1D, we obtain the following inequalities for the 1D-norm:

‖z(t)− z̄(t)‖ ≤ M
(
|B− B̄| M

a
f+ |f− f̄|

) ∫ t

0
e−(a−M|B−B̄|)(t−τ) dτ+

+M
∫ t

0
e−(a−M|B−B̄|)(t−τ) |B− B̄|Me−aτ‖z(0)‖ dτ ≤

≤ M (M |B− B̄| f+ a |f− f̄|)
a (a−M |B− B̄|)

+ o (1) . (22)

Therefore, the first assertion of the theorem is proved.
Therefore, the second assertion follows from the inequality ‖z‖1E ≤W−1‖z‖1D (see, e.g., [62]) and

the estimate expressed by Equation (22), where l1E =
{

z = (p1, p2, . . .)T : ‖z‖1E ≡ ∑ n|pn| < ∞
}

.

Remark 1. A number of consequences of this statement can be formulated, for example,

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 4M (M |B− B̄| f+ a |f− f̄|)
ad (a−M |B− B̄|)

, (23)

which follows from

‖p∗ − p∗∗‖ ≤ 2‖z∗ − z∗∗‖ ≤ 4
d
‖z∗ − z∗∗‖1D. (24)

The respective perturbation bounds can be formulated for strongly ergodic (for instance, homogeneous)
Markov chains (see [44]).

Remark 2. As shown in [44], the bounds presented in Theorem 2 and its corollaries are sufficiently sharp.
Namely, in [44], we considered the queue-length process for the simplest ordinary M/M/1 queue and proved
that the bounds established in Theorem 2 have the proper order.
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4. Convergence Rate Estimates and Perturbation Bounds for Main Classes

For Markov chains of Classes 1–4, an important role is played by the matrix B∗∗(t) = DB(t)D−1.
To begin with, write out this matrix for each of these classes.

For Class 1, this matrix has the form
B∗∗(t) =

=



− (λ0+µ1)
d1
d2

µ1 0 · · · 0 · · · · · ·
d2
d1

λ1 −(λ1+µ2)
d2
d3

µ2 · · · 0 · · · · · ·

. . .
. . .

. . .
. . .

. . . · · ·

0 · · · · · · dr
dr−1

λr−1 −(λr−1+µr)
dr

dr+1
µr · · ·

· · · · · · · · · · · · · · · · · · · · ·


(25)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=



− (λ0+µ1)
d1
d2

µ1 0 · · · 0

d2
d1

λ1 −(λ1+µ2)
d2
d3

µ2 · · · 0

. . . . . . . . . . . . . . .

0 · · · · · · dS
dS−1

λS−1 −(λS−1+µS)


(26)

in the case of a finite state space (S < ∞).
For Class 2, this matrix has the form

B∗∗(t) =



a11
d1
d2

µ1 0 · · · 0

d2
d1

a1 a22
d2
d3

µ2 · · · 0

d3
d1

a2
d3
d2

a1 a33
d3
d4

µ3 · · ·

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .


(27)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=



a11 − aS
d1
d2

µ1 0 · · · 0

d2
d1
(a1 − aS) a22 − aS−1

d2
d3

µ2 · · · 0

. . . . . . . . . . . . . . .

dS
d1

(aS−1 − aS) · · · · · · dS
dS−1 (a1 − a2) aSS − a1


(28)

in the case of a finite state space (S < ∞).
For Class 3, this matrix has the form
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B∗∗(t) =

=



− (λ0+b1)
d1
d2

(b1−b2)
d1
d3

(b2−b3) · · · · · ·
d2
d1

λ1 −
(
λ1+ ∑

i≤2
bi
) d2

d3
(b1−b3) · · · · · ·

. . .
. . .

. . .
. . .

. . .

0 · · · · · · dr
dr−1

λr−1 −
(
λr−1+ ∑

i≤r
bi
)
· · ·

. . .
. . .

. . .
. . .

. . .


(29)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=



−(λ0+b1)
d1
d2

(b1−b2)
d1
d3

(b2−b3) · · · d1
dS

(bS−1−bS)

d2
d1

λ1 −
(
λ1+ ∑

i≤2
bi
) d2

d3
(b1−b3) · · · d2

dS
(bS−2−bS)

. . .
. . .

. . .
. . .

. . .

0 · · · · · · dS
dS−1

λS−1 −
(
λS−1+ ∑

i≤S
bi
)


(30)

in the case of a finite state space (S < ∞).
Finally, for Class 4, this matrix has the form

B∗∗ =



a11
d1
d2
(b1 − b2)

d1
d3
(b2 − b3) · · · · · ·

d2
d1

a1 a22
d2
d3
(b1 − b3) · · · · · ·

. . . . . . . . . . . . . . .

dr
d1

ar−1 · · · · · · dr
dr−1

a1 arr · · ·

· · · · · · · · · · · · · · · · · ·


(31)

in the case of a countable state space (S = ∞);

B∗∗(t) =

=


a11−aS

d1
d2

(b1−b2)
d1
d3

(b2−b3) · · · d1
dS

(bS−1−bS)

d2
d1

(a1−aS) a22−aS−1
d2
d3

(b1−b3) · · · d2
dS

(bS−2−bS)

. . .
. . .

. . .
. . .

. . .

dS
d1

(aS−1−aS) · · · · · · dS
dS−1

(a1−a2) aSS−a1

 (32)

in the case of a finite state space (S < ∞).
In the proofs of the following theorems, we use the notion of the logarithmic norm of a linear

operator function and the related estimates of the norm of the Cauchy operator of a linear differential
equation. The corresponding results are described in detail in our preceding works (see [47,62,63]).
Here we restrict ourselves only to the necessary minimum.

Recall that the logarithmic norm of an operator function B∗∗(t) is defined as the number

γ(B∗∗(t)) = lim
h→+0

h−1 (‖I + hB∗∗(t)‖ − 1) .
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Let V(t, s) = V(t)V−1(s) be the Cauchy operator of the differential equation

dw
dt

= B∗∗(t)w.

Therefore, the estimate
‖V(t, s)‖ ≤ e

∫ t
s γ(B∗∗(u)) du

holds. Moreover, if for each t ≥ 0 B∗∗(t) maps l1 into itself, then the logarithmic norm can be calculated
by the formula

γ(B∗∗(t)) = sup
1≤j≤S

(
b∗∗jj (t) + ∑

i 6=j
|b∗∗ij (t)|

)
. (33)

Now let

αi (t) = −
(

b∗∗jj (t) + ∑
i 6=j
|b∗∗ij (t)|

)
, α (t) = inf

i≥1
αi (t) . (34)

Also note that, if in Classes 2–4 the intensities ak(t) and bk(t) do not increase in k for each t, then
in all the cases the matrix B∗∗(t) is essentially nonnegative (that is, its non-diagonal elements are
nonnegative); therefore, in Equations (33) and (34), the signs of the absolute value can be omitted.

The following statement ([47]) Theorem 1 is given here for convenience.

Theorem 3. Let, for some sequence {di, i ≥ 1} of positive numbers, the conditions d1 = 1, d = infi≥1 di >

0 and ∫ ∞

0
α(t) dt = +∞ (35)

hold. Therefore, the Markov chain X(t) is weakly ergodic and for any initial condition s ≥ 0, w(s), and for all
t ≥ s the following estimate holds:

‖w (t) ‖ ≤ e−
∫ t

s α(u)du‖w(s)‖. (36)

Now let, instead of Equation (35), for all 0 ≤ s ≤ t, a stronger condition

e−
∫ t

s α(τ) dτ ≤ M∗e−a∗(t−s) (37)

hold.

Theorem 4. Let, under the conditions of Theorem 3, Inequality (37) hold. Therefore, the Markov chain X(t) is
1D-exponentially weakly ergodic, and for all t ≥ s ≥ 0 and p∗(s) ∈ l1D, p∗∗(s) ∈ l1D, Inequality (15) holds
with M = M∗ and a = a∗.

Remark 3. In the case of a homogeneous Markov chain, or if all intensities are periodic with one and the same
period, conditions expressed by Equations (35) and (37) are equivalent.

Theorem 5. Let the conditions of Theorem 4 hold. Therefore, the Markov chain X(t) is 1D-exponentially
weakly ergodic. Under perturbations small enough (see Equation (16)), the perturbed chain X̄(t) is also
1D-exponentially weakly ergodic, and the perturbation bound expressed by Equation (38) in the 1D-norm holds.
If, moreover, W = infi≥1

di
i > 0, then both chains X(t) and X̄(t) have limit expectations and the estimate

expressed by Equation (18) holds for the perturbation of the mathematical expectation.

To obtain perturbation bounds in the natural norm, it suffices to use Inequality (24)
mentioned above.
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Corollary 2. Under the conditions of Theorem 5, the following perturbation bound in the natural l1- (total
variation) norm holds:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ 4M (M |B− B̄| f+ a |f− f̄|)
ad (a−M |B− B̄|)

. (38)

Note that it is convenient to use the results formulated above for the construction of perturbation
bounds for Markov chains of the first four classes (see, e.g., [12,44,46,47]).

For chains of the fifth class, as a rule, it is convenient to use the approach based on uniform
bounds as shown below. These models were considered, e.g., in [14,64,65].

Let
β∗ (t) = inf

k
a0k(t). (39)

Theorem 6. Let the intensities of catastrophes be essential, that is∫ ∞

0
β∗ (t) dt = +∞. (40)

Therefore, the chain X (t) is weakly ergodic in the uniform operator topology and for any initial conditions
p∗ (0) , p∗∗ (0), and any 0 ≤ s ≤ t, the following convergence rate estimate holds:

‖p∗ (t)− p∗∗ (t)‖ ≤ 2e
−

t∫
s

β∗(τ) dτ
. (41)

To prove this theorem, we will use the same technique as in [14]. Rewrite the forward Kolmogorov
system expressed by Equation (3) in the form

dp
dt

= A∗ (t) p + g (t) , t ≥ 0. (42)

Here g (t) = (β∗ (t) , 0, 0, . . . )T , A∗ (t) =
(

a∗ij (t)
)∞

i,j=0
, and

a∗ij (t) =

a0j (t)− β∗ (t) , if i = 0,

aij (t) , otherwise .
(43)

The solution to this equation can be written as

p (t) = U∗ (t, 0) p (0) +
∫ t

0
U∗ (t, τ) g (τ) dτ (44)

where U∗ (t, s) is the Cauchy operator of the differential equation

dz
dt

= A∗ (t) z. (45)

Note that the matrix A∗ (t) is essentially nonnegative for all t ≥ 0. Its logarithmic norm is equal to

γ(A∗(t)) = sup
i

(
a∗ii (t) + ∑

j 6=i
a∗ji (t)

)
= −β∗ (t) . (46)

Hence,

‖p∗ (t)− p∗∗ (t)‖ ≤ e
−

t∫
s

β∗(τ) dτ
‖p∗ (s)− p∗∗ (s)‖ ≤ 2e

−
t∫

s
β∗(τ) dτ

. (47)
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Theorem 7. Let, instead of Equation (40), the stronger condition

e−
∫ t

s β∗(τ) dτ ≤ c∗e−b∗(t−s) (48)

hold. Therefore, the chain X (t) is weakly exponentially ergodic in the uniform operator topology, and if the
perturbations are small enough, that is, ‖Â(t)‖ ≤ ε for almost all t ≥ 0, then the perturbed chain X̄(t) is also
exponentially weakly ergodic, and the perturbation bound expressed by Equation (7) holds with c = c∗ and
b = b∗.

5. Examples

First note that many examples of perturbation bounds for queueing systems have been considered
in [11,12,14,44,46,66,67].

Here, to compare both approaches, we will mostly deal with the queueing system Mt|Mt|N|N
with losses and 1-periodic intensities. In the preceding papers on this model, other problems were
considered. For example, in [68], the asymptotics of the rate of convergence to the stationary mode as
N → ∞, was studied, whereas the paper [69] dealt with the asymptotics of the convergence parameter
under various limit relations between the intensities and the dimensionality of the model. In [66,67],
perturbation bounds were considered under additional assumptions.

Let N ≥ 1 be the number of servers in the system. Assume that the customers arrival intensity
λ(t) and the service intensity of a server µ(t) are 1-periodic nonnegative functions integrable on the
interval [0, 1]. Therefore, the number of customers in the system (queue length) X(t) is a finite Markov
chain of Class 1, that is, a BDP with the intensities λk−1(t) = λ(t), µk(t) = kµ(t) for k = 1, . . . , N.

It should be especially noted that the process X(t) is weakly ergodic (obviously exponentially
and uniformly ergodic, since the intensities are periodic and the state space is finite) if and only if

∫ 1

0
(λ(t) + µ(t)) dt > 0 (49)

(see, e.g., [70]).
For definiteness, assume that

∫ 1
0 µ(t) dt > 0.

Apply the approach described in Theorems 3 and 4.
Let all dk = 1. Therefore,

B∗∗(t) =


− (λ + µ) µ 0 · · · 0

λ − (λ + 2µ) 2µ · · · 0
. . . . . . . . . . . . . . .

0 · · · · · · λ − (λ + Nµ)

 , (50)

and in Equation (34) we have αi (t) = µ(t) for all i; hence, α (t) = µ(t).
Therefore, Theorem 3 yields the estimate

‖p∗(t)− p∗∗(t)‖1D ≤ e−
∫ t

s µ(τ) dτ‖p∗(s)− p∗∗(s)‖1D. (51)

To find the constants in the estimates, let µ∗ =
∫ 1

0 µ(τ) dτ and consider

∫ t

0
µ(τ) dτ = µ∗t +

∫ {t}
0

(µ(τ)− µ∗) dτ. (52)
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Find the bound for the second summand in Equation (52). Assuming u = {t}, we obtain∣∣∣∣∫ u

0
(µ(τ)− µ∗) dτ

∣∣∣∣ ≤ K∗ = sup
u∈[0,1]

∫ u

0
(µ(τ)− µ∗) dτ. (53)

Therefore,
e−
∫ t

s µ(τ) dτ ≤ eK∗ e−µ∗(t−s). (54)

Therefore, for the queueing system Mt|Mt|N|N, the conditions of Theorem 5 and Corollary 2

d = 1, M = M∗ = eK∗ , a = a∗ = µ∗, W =
1
N

. (55)

These statements imply the following perturbation bounds:

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
4eK∗

(
eK∗ |B− B̄| f+ µ∗ |f− f̄|

)
µ∗ (µ∗ − eK∗ |B− B̄|)

(56)

for the vector od=f state probabilities, and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤
NeK∗

(
eK∗ |B− B̄| f+ µ∗ |f− f̄|

)
µ∗ (µ∗ − eK∗ |B− B̄|)

, (57)

for limit expectations.
Moreover, for these bounds to be consistent, additional information is required concerning the

form of the perturbed intensity matrix. The simplest bounds can be obtained, if it is assumed that the
perturbed Markov chain is also a BDP with the same state space and the birth and death intensities
λk−1(t) and µk(t), respectively. Therefore, if the birth and death intensities themselves do not exceed ε

for almost all t ≥ 0, then |f− f̄| ≤ ε and |B− B̄| ≤ 5ε, so that the bounds expressed by Equations (56)
and (57) have the form

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
4eK∗

(
5LeK∗ + µ∗

)
ε

µ∗ (µ∗ − 5εeK∗)
(58)

for the vectors of state probabilities, and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤
4NeK∗

(
5LeK∗ + µ∗

)
ε

µ∗ (µ∗ − 5εeK∗)
(59)

for the limit expectations.
On the other hand, Theorem 7 can be applied as well. To construct the bounds for the

corresponding parameters, Equation (24) and the fact that ‖D‖1 = N is exploited. Therefore, Theorem
7 is valid for the queueing system Mt|Mt|N|N with the following values of the parameters:

c = c∗ = 4NeK∗ , b = b∗ = µ∗. (60)

According to this theorem, we obtain the estimate

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤ (1 + K∗ + log(2N)) ε

µ∗
. (61)
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Moreover, the Markov chains X(t) and X̄(t) have limit expectations and

|φ(t)− φ̄(t)| ≤ N (1 + K∗ + log(2N)) ε

µ∗
. (62)

It is worth noting that, for the estimates expressed by Equations (61) and (62) to hold, only the
condition of the smallness of perturbations is required, and no additional information concerning the
structure of the intensity matrix is required.

Thus, in the example with the finite state space under consideration, uniform bounds turn out to
be more exact.

Now consider a more special example. Let N = 299, λ(t) = 200(1 + sin 2πωt), µ(t) = 1.
In Figures 1–5, there are plots of the expected number of customers in the system for some of most

probable states with ω = 1; in Figures 6 and 7, there are plots of the expected number of customers
with ω = 0.5.
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Figure 1. Example 1. The mean E(t, 0) and E(t, N) for the original process t ∈ [0, 19], ω = 1.
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Figure 2. Example 1. The perturbation bounds for the limit expectation E(t, 0), t ∈ [19, 20], ω = 1.
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Figure 3. Example 1. The perturbation bounds for the “limit” probability Pr(X(t) = 190), t ∈ [19, 20],
ω = 1.
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Figure 4. Example 1. The perturbation bounds for the “limit” probability Pr(X(t) = 200), t ∈ [19, 20],
ω = 1.
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Figure 5. Example 1. The perturbation bounds for the “limit” probability Pr(X(t) = 210), t ∈ [19, 20],
ω = 1.
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Figure 6. Example 1. The expectations E(t, 0) and E(t, N) for the original process t ∈ [0, 18], ω = 0.5.
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Figure 7. Example 1. The perturbation bounds for the limit expectation E(t, 0), t ∈ [18, 20], ω = 0.5.
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On the other hand, as has already been noted, for the Markov chains of Classes 1–4 with countable
state space, no uniform bounds could be constructed.

Consider the construction of bounds on the example of a rather simple model, which, however,
does not belong to the most well-studied Class 1 (that is, which is not a BDP).

Let a queueing system be given in which the customers can appear separately or in pairs with
the corresponding intensities a1(t) = λ(t) and a2(t) = 0.5λ(t), but are served one by one on one of
two servers with constant intensities µk(t) = min(k, 2)µ, where λ(t) is a 1-periodic function integrable
on the interval [0, 1]. Therefore, the number of customers in this system belongs to Class 2, and the
corresponding matrix B∗∗(t) has the form

B∗∗(t) =



a11
d1
d2

µ 0 · · · 0

d2
d1

λ a22
d2
d3

2µ · · · 0

d3
d1

0.5λ d3
d2

λ a33
d3
d4

2µ · · ·

0
. . . . . . . . . . . .

. . . . . . . . . . . . . . .


(63)

where a11(t) = − (1.5λ(t) + µ), akk(t) = − (1.5λ(t) + 2µ), if k ≥ 2. This matrix is essentially
nonnegative, such that, in the expression for the logarithmic norm, the signs of the absolute value
can be omitted. Let d1 = 1, dk+1 = δdk, and δ > 1. For this purpose, consider the expressions from
Equation (34). We have

α1(t) = µ− λ(t)
(

0.5δ2 + δ− 1.5
)

,

α2(t) = µ
(

2− δ−1
)
− λ(t)

(
0.5δ2 + δ− 1.5

)
,

αk(t) = 2µ
(

1− δ−1
)
− λ(t)

(
0.5δ2 + δ− 1.5

)
, k ≥ 3.

Therefore, for δ ≤ 2, we obtain

α (t) = inf
i≥1

αi (t) = 2µ
(

1− δ−1
)
− λ(t)

(
0.5δ2 + δ− 1.5

)
=

= (δ− 1)
(

2µ

δ
− 0.5λ(t) (δ + 3)

)
, (64)

and the condition

α∗ =
∫ 1

0
(δ− 1)

(
2µ

δ
− 0.5λ(t) (δ + 3)

)
dt =

δ− 1
2

(
4µ

δ
− λ∗ (δ + 3)

)
> 0 (65)

will a fortiori hold if µ > λ∗ with a corresponding choice of δ ∈ (1, 2].
The further reasoning is almost the same as in the preceding example: instead of Equation (54),

we obtain
e−
∫ t

s α(τ) dτ ≤ eK∗ e−α∗(t−s) (66)

where now
K∗ = sup

u∈[0,1]

∫ u

0
(α(τ)− α∗) dτ. (67)

Hence, the conditions of Theorem 5 and Corollary 2 for the number of customers in the system
under consideration hold for

d = 1, M = M∗ = eK∗ , a = a∗ = α∗, W = inf
k≥1

δk−1

k
. (68)
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To construct meaningful perturbation bounds, it is necessarily required to have additional
information concerning the form of the perturbed intensity matrix. Therefore, Example 1 in Section 2
shows that, if a possibility of the arrival of an arbitrary number of customers (“mass arrival” in the
terminology of [58]) to an empty queue is assumed, then an arbitrarily small (in the uniform norm)
perturbation of the intensity matrix can “spoil” all the characteristics of the process. For example,
satisfactory bounds can be constructed if we know that the intensity matrix of the perturbed system
has the same form; that is, the customers can appear either separately or in pairs and are served one by
one. Therefore, if the perturbations of the intensities themselves do not exceed ε for almost all t ≥ 0,
then |f− f̄| ≤ 5ε and |B− B̄| ≤ 5ε, such that, instead of Equations (56) and (57), we obtain

lim sup
t→∞

‖p(t)− p̄(t)‖ ≤
20eK∗ ε

(
LeK∗ + α∗

)
α∗ (α∗ − 20εeK∗)

(69)

for the vectors of state probabilities and

lim sup
t→∞

|φ(t)− φ̄(t)| ≤
20eK∗ ε

(
LeK∗ + α∗

)
α∗W (α∗ − 20εeK∗)

(70)

for the limit expectations.
For example, let λ(t) = 1 + sin 2πt, µ(t) = 3, and δ = 2. Therefore, we have

α(t) = µ− 2.5λ(t), α∗ = 0.5, W = 1. (71)

Furthermore, we follow the method described in [71,72] in detail. Namely, we choose the
dimensionality of the truncated process (300 in our case), the interval on which the desired accuracy is
achieved ([0, 100]) in the example under consideration) and the limit interval itself (here it is [100, 101]).

Figures 8–13 expose the plots of the expected number of customers in the system and some of the
most probable states.
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Figure 8. Example 2. The expectations E(t, 0) and E(t, 299) for the original process t ∈ [0, 100].
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Figure 9. Example 2. The perturbation bounds for the limit expectation E(t, 0), t ∈ [100, 101].
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Figure 10. Example 2. The probabilities of the empty queue for X(0) = 0 and X(0) = 299 for the
original process t ∈ [0, 100].
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Figure 11. Example 2. The perturbation bounds for the “limit” probability Pr(X(t) = 0), t ∈ [100, 101].
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Figure 12. Example 2. The perturbation bounds for the “limit” probability Pr(X(t) = 1), t ∈ [100, 101].
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Figure 13. Example 2. The perturbation bounds for the “limit” probability Pr(X(t) = 2), t ∈ [100, 101].
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