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Abstract: We prove that, if the coefficients of a Fourier–Legendre expansion satisfy a suitable
Hausdorff-type condition, then the series converges to a function which admits a holomorphic extension
to a cut-plane. Next, we introduce a Laplace-type transform (the so-called Spherical Laplace Transform) of
the jump function across the cut. The main result of this paper is to establish the connection between the
Spherical Laplace Transform and the Non-Euclidean Fourier Transform in the sense of Helgason. In this way,
we find a connection between the unitary representation of SO(3) and the principal series of the unitary
representation of SU(1, 1).
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1. Introduction

It is well known that the classical Fourier transform refers to the decomposition of a function belonging
to an appropriate space into exponentials, which can be viewed as the irreducible unitary representations
of the additive group of the real numbers. However, in the current most popular interpretation,
particularly in connection with non-commutative groups, the phrase harmonic analysis has lost its original
function-theoretic meaning and now it generally refers not to functions but to representations. It thus
becomes natural to regard irreducible representations as the basic building blocks of the theory in place
of exponential functions [1]. There are however examples in the theory of the semi-simple non-compact
Lie groups where the classical setup prevails, in the sense that one can find a class of functions which
play a role similar to that played by the exponentials on the real line. A typical example thereof is the
group SU(1, 1): hereafter, we shall work at the level of homogeneous spaces associated with this group
and, accordingly, we shall study the spherical functions that can be constructed in these spaces.

Within this framework, a fundamental role is played by the Helgason construction of the so-called
non-Euclidean Fourier analysis [2]. The working ambient is the symmetric space SU(1, 1)/ SO(2),
i.e., the non-Euclidean disk. By the use of the Poisson kernel, the analog of the plane waves are
constructed in the case of the hyperbolic disk and, successively, an integral representation of the conical
functions P− 1

2+iµ(cosh r) (i.e., the Legendre functions of the first kind with index (− 1
2 + iµ), µ ∈ R) is

derived in terms of these hyperbolic waves. It can thus be proved for these functions a product formula,
which corresponds to the classical product formula of the exponentials. Finally, a Fourier transform
on the non-Euclidean disk can be set up, which is exactly the tool analogous to the classical Fourier
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transform. In this connection, it is worth recalling that the conical functions can be associated with the
principal series of the irreducible unitary representation of the group SU(1, 1), which acts transitively on
the hyperbolic disk.

Consider now an isotropic cone in R3. We focus on the two-sheeted hyperboloid interior to the cone.
By stereographic projection, the upper sheet of the two-sheeted hyperboloid can be mapped into the interior
of the unit disk. Since the connected component of the two-sheeted hyperboloid is the homogeneous
space SO0(1, 2)/ SO(2), the non-Euclidean Fourier analysis coincides with the harmonic analysis on
SO0(1, 2)/ SO(2). We can thus define and study the Fourier transform on the two-sheeted hyperboloid.

Harmonic analysis can be studied also on the one-sheeted hyperboloid, which is
a pseudo-Riemannian symmetric space SO0(1, 2)/ SO0(1, 1). It is then possible to construct on
this symmetric space spherical functions, which turn out to be the Legendre functions of the second kind.
A peculiar feature of this space is that it can be equipped with the partial ordering associated with the light
cone in R3: namely, x > y⇔ (x− y) belongs to the closed future cone of R3. The one-sheeted hyperboloid
equipped with this ordering relation is a causal symmetric space [3]. Accordingly, we can introduce a Volterra
algebra of kernels, i.e., kernels K(x, y) whose support is contained in the set Γ .

= {(x, y) ∈ X2×X2 : x > y},
where X2 is the one-sheteed hyperboloid. A kernel K is said to be invariant under G ≡ SO0(1, 2) if for any
g ∈ G: K(gx, gy) = K(x, y), (x, y) ∈ Γ. An invariant Volterra kernel K can be identified with a function
f on G through the equality: K(ge2, e2) = f (g), where g ∈ G and e2 = (0, 0, 1) (see next Figure 1) is the
point which features he2 = e2, with h ∈ SO0(1, 1) [4–7]. Successively, the spherical Laplace transform for this
class of functions can be defined. This transform, as the ordinary Laplace transform, is holomorphic in
a half-plane and, in the specific case of the spherical Laplace transform, this analyticity property follows
from the analyticity property of the Legendre functions of the second kind Qλ(·), which are holomorphic
in the half-plane C(+)

(−1)
.
= {λ ∈ C : Re λ > −1}. These latter functions are indeed the spherical functions

on ordered symmetric spaces in the sense of Faraut et al. [7].

Figure 1. Horocyclic fibration of the one-sheteed hyperboloid X+
2 .
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Another question closely related to this type of problems is the holomorphic extension associated
with Fourier–Legendre expansions of the type: 1

4π ∑∞
n=0(2n + 1)anPn(cos θ), where Pn(·) denotes the

Legendre polynomials. In this paper, we prove that, if the sequence {(n + 1)2an}∞
n=0 satisfies a suitable

Hausdorff-type condition [8], then the function f (cos θ), to which the Fourier–Legendre series converges
in the interval (−1, 1), admits a holomorphic extension to the complex cos θ-plane cut along the semi-axis
[1,+∞). The first result we prove is a basic feature of the holomorphic extension associated with
Fourier–Legendre series: the dual analyticity property. To classes of functions which are holomorphic
in the cos θ-plane cut along [1,+∞), there correspond classes of functions, denoted ã(λ) (λ ∈ C), which are
expressed as a spherical Laplace transform, holomorphic in the half-plane Re λ > − 1

2 , of Carlsonian-type
(i.e., of suitable exponential growth; see next Theorem 1) and, therefore, unique interpolants of the
coefficients an of the Fourier-Legendre series, i.e., ã(λ)|λ=n = an (n = 0, 1, 2, . . .).

At this point, two strictly related problems emerge. On the one hand, the possibility of connecting,
via analytic continuation, the completeness of the spherical functions for SO(3) to the completeness of
the corresponding expansion of SL(2,R), which is the group acting transitively on the upper half-plane,
where the model of the non-Euclidean geometry can be realized, while, on the other hand, continuing the
unitary representations of SO(3) to give the unitary representations of SL(2,R). The first problem has been
initially tackled by Stein and Wainger [9], while, for what concerns the second one, the reader is referred
to the work of R. Hermann [10]. However, both of these problems require linking the spherical Laplace
transform to the non-Euclidean Fourier analysis. When we consider the ordinary Laplace transform of
a function f ∈ L1(0,+∞) ∩ L2(0,+∞),

f̃ (λ) =
∫ +∞

0
e−λv f (v)dv (λ ∈ C, Re λ > 0),

we obtain for λ = iµ (µ ∈ R):

f̃ (iµ) =
∫ +∞

−∞
e−iµv f (v)dv (µ ∈ R),

which is precisely the Fourier transform of f (v), it being well-defined in view of the assumption f ∈
L1(0,+∞). Since f ∈ L1(0,+∞) ∩ L2(0,+∞), the Fourier transform can be inverted to recover f (v) in
terms of f̃ (iµ) through the inverse Fourier transform, which converges to f (v) as a limit in the mean order
two. Correspondingly, we pass from the non-unitary representation e−λv (λ ∈ C, Re λ > 0, µ ≡ Im λ ∈ R)
to the unitary irreducible representation e−iµv (µ, v ∈ R) that we mentioned at the beginning of the
Introduction. This connection can be extended. One of our results consists indeed of proving that the
spherical Laplace transform reduces to the non-Euclidean Fourier transform at Re λ = − 1

2 , which is
precisely the value corresponding to the principal series of the unitary representations of the group
SU(1, 1), which acts transitively on the hyperbolic disk. This result has been obtained by establishing
a bridge between the harmonic analysis on the one-sheeted hyperboloid and the harmonic analysis on the
two-sheeted hyperboloid.

The harmonic analysis in causal symmetric spaces has been a subject of growing interest in the last
three decades, and the research on these topics has flowed in various directions. Some papers have been
devoted to the proof of the Paley–Wiener theorem for spherical Laplace transform [11,12] and others
have treated the inversion problem extended up to the so-called Θ-transform [13]. In [14], Bertram has
studied the compact symmetric space and its non-compact dual, both realized as real forms of their
common complexification; this analysis has been performed by exploring the Ramanujan garden and by
the use of the so-called Master Theorem. Working in a different direction, Gindinkin and Krötz [15] have
studied the complex crown of Riemannian symmetric spaces and non-compactly causal symmetric spaces.
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This allowed them to prove the conjecture that every non-compactly causal symmetric space occurs as
a component of a distinguished boundary of some complex crown [15]. Finally, it is worth recalling that
the question of relating the harmonic analysis of different real forms of a complex symmetric space has
been studied also in the context of scattering theory and resonances [16–20].

The paper is organized as follows. In Section 2, we study the holomorphic extension associated with
the Fourier–Legendre expansion by means of the spherical Laplace transform. We are thus led to develop
the harmonic analysis on the complex one-sheeted hyperboloid X(c)

2 , which contains as submanifolds

either the Euclidean sphere (iR×R2) ∩ X(c)
2 on which the Fourier–Legendre expansion can be developed,

and the real one-sheeted hyperboloid, which contains the support of the cut. In Section 3, we analyze the
relationship between the spherical Laplace transform and the non-Euclidean Fourier transform. For this
purpose, we consider a real two-sheeted hyperboloid, and, in this geometrical setting, we can recover the
non-Euclidean Fourier transform in the sense of Helgason. Finally, in Section 4, some conclusions will
be drawn.

2. Holomorphic Extension Associated with the Fourier–Legendre Expansion and the Spherical
Laplace Transform

2.1. The Complex One-Sheeted Hyperboloid

In the space C3 of the variable z = (z0, z1, z2), we consider the complex quadric X(c)
2 with equation

− z2
0 + z2

1 + z2
2 = 1,

which is a one-sheeted complex hyperboloid. Next, we introduce two systems of coordinates: polar and
horocyclic coordinates.

Polar Coordinates:

z0 = −i sin θ cosh ϕ, (1a)

z1 = −i sin θ sinh ϕ, (θ, ϕ ∈ C), (1b)

z2 = cos θ. (1c)

If θ = u (u ∈ R) and ϕ = iψ (ψ ∈ R), (1) reads

x0 = −i sin u cos ψ, (2a)

x1 = sin u sin ψ, (u, ψ ∈ R), (2b)

x2 = cos u. (2c)

It can be easily verified that: −x2
0 + x2

1 + x2
2 = sin2 u + cos2 u = 1 that is, one obtains as a real

submanifold of the complex one-sheeted hyperboloid X(c)
2 the Euclidean sphere S2 = (iR×R2) ∩ X(c)

2 (iR
referring to the coordinate z0 of z).

Similarly, if θ = iv (v ∈ R) and ϕ = ψ (ψ ∈ R), (1) becomes

x0 = sinh v cosh ψ, (3a)

x1 = sinh v sinh ψ, (v, ψ ∈ R), (3b)

x2 = cosh v. (3c)
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In this case, it is easily verified that: −x2
0 + x2

1 + x2
2 = cosh2 v− sinh2 v = 1. Equation (3) describes

only the subset X+
2

.
= {x ∈ X2 : x2 > 1} of the real one-sheeted hyperboloid X2, which is precisely what

we need for the current analysis. Finally, let X̂+ denote the (real) meridian lying in the plane x1 = 0 with
equation: x2

0 − x2
2 = −1.

Horocyclic Coordinates:

We now introduce another system of coordinates (τ, ζ) as follows:

z0 = −i sin τ +
1
2

ζ2 e−iτ , (4a)

z1 = ζ e−iu, (τ, ζ ∈ C), (4b)

z2 = cos τ − 1
2

ζ2 e−iτ . (4c)

For τ = iw (w ∈ R) and ζ ∈ R, Equation (4) reads

x0 = sinh w +
1
2

ζ2 ew, (5a)

x1 = ζ ew, (w, ζ ∈ R), (5b)

x2 = cosh w− 1
2

ζ2 ew. (5c)

Then, we consider the intersection points xw of X̂+ with the family of planes Pw : x0 + x2 = ew

(w ∈ R) (see Equation (5)), i.e., the points xw = (sinh w, 0, cosh w). The sections of X2 by these planes
are the (real) parabolae Π+

w (except in the case x0 + x2 = 0). When ζ = 0 in (5), we obtain the point xw,
which is the apex of the corresponding parabola Π+

w (see Figure 1).
This geometrical construction can now be extended to the complex one-sheeted hyperboloid X(c)

2 .
We consider the (complex) hyperbola X̂(c) lying in the plane z1 = 0, whose equation is: z2

0 − z2
2 =

−1 (see Equation (4)), and its intersections with the family of planes Pτ with equation z0 + z2 = e−iτ

(τ ∈ Ċ .
= C/2πZ). Each plane Pτ intersects the hyperbola X̂(c) at the (unique) point zτ = (z0 =

−i sin τ, z1 = 0, z2 = cos τ), thus defining a bijection from the set of planes P .
= {Pτ : τ ∈ Ċ} onto

X̂(c) = {zτ : τ ∈ Ċ}. For each τ ∈ Ċ, the manifold Pτ ∩ X(c)
2 is a complex parabola Πτ , which we call

a complex horocycle. The set of horocycles {Πτ : τ ∈ Ċ} defines a fibration with basis X̂(c) on the dense
domain X′2

(c) .
= {z ∈ X(c)

2 : z0 + z2 6= 0} of X(c)
2 . We can therefore associate with this fibration the

parametric representation of X′2
(c) given by Equation (4), (τ, ζ) being the horocyclic coordinates of the

point z ∈ X′2
(c).

2.2. The Radon Transform

We now define a Radon-type transformation in X2, where the horocycles defined above play the same
role as the planes do in the ordinary Radon transformation. We introduce the following integral:

∫
hw

F
(

cosh w− 1
2

ζ2 ew
)

dζ = F̂(w), (6)

where hw is the oriented segment of horocycle, which is represented by the arc of parabola whose apex
is obtained by setting ζ = 0 in (5) (i.e., its coordinates are: x0 = sinh w, x1 = 0, x2 = cosh w; w ∈ R),
and whose endpoints lie on the plane x2 = 1. The function F is assumed to satisfy the regularity conditions
that make integral (6) convergent.
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Remark 1. Legendre expansions, which will be our concern later, involve functions depending only on cos u = x2

(see (2c)). This is why, in the integral (6), we limit ourselves to consider functions only of the form F = F(cosh w−
1
2 ζ2ew) (see (5c)).

Since the integrand in (6) is an even function of ζ, the integration domain can be restricted to the part
h+w of hw with x1 > 0, which can be parametrized as follows (see (5)):

h+w = {x ∈ Π+
w ; x = x(ζ, w); ζ(δ) =

[
2e−w(1− δ)(cosh w− 1)

] 1
2 ; 0 6 δ 6 1} (w ∈ R), (7)

positively oriented from the apex to the endpoint lying on x2 = 1. For δ = 1, we have ζ = 0, which yields
the apex of the parabola representing the horocycle; for δ = 0, we have ζ = [2e−w(cosh w − 1)]1/2,
which gives the intersection of the horocycle with the plane x2 = 1.

We may now introduce another parametrization of the segment of horocycle h+w , which is obtained by
setting x2 = cosh v (see (3c)):

h+w = {x ∈ Π+
w ; x = x(ζ, w); ζ(v) =

[
2e−w(cosh w− cosh v)

] 1
2 ; 0 6 v 6 w} (w ∈ R). (8)

Indeed, we have ζ = 0 for v = w (the apex of the parabola) and ζ = [2e−w(cosh w − 1)]1/2 for
v = 0 (endpoint of the parabola: x2 = cosh v = 1). Since dζ/dv = −e−w/2 sinh v[2(cosh w− cosh v)]−1/2,
integral (6) takes the form:

F̂(w) = 2e−w/2
∫ w

0
F(cosh v)

sinh v

[2(cosh w− cosh v)]
1
2

dv .
= e−w/2 (AF) (w) (w ∈ R), (9)

where (AF) (w) is an Abel-type integral.
The fibration realized by the horocycles Π+

w can now be extended to the complex domain by using the
complex horocycles Πτ (τ = t + iw; t, w ∈ R), whose intersection with the (complex) meridian hyperbola
X̂(c) is the point zτ = (−i sin τ, 0, cos τ). Accordingly, we introduce the following integral:

2
∫

h+τ
f
(

cos τ − 1
2

ζ2 e−iτ
)

dζ = f̂ (τ), (10)

h+τ being the (oriented) arc of the complex horocycle defined by (see (4) and (7)):

h+τ = {z ∈ Πτ ; z = z(ζ, τ); ζ(δ) = [2eiτ(1− δ)(cos τ − 1)]
1
2 ; 0 6 δ 6 1} (τ ∈ C).

For δ = 1, we have ζ = 0, i.e., the point zτ belonging to X̂(c), while for δ = 0 we have ζ =

[2eiτ(cos τ − 1)]1/2, which is the intersection of h+τ with the plane z2 = 1. Similarly to what done
before, we may now introduce the following parametrization of h+τ , obtained by setting z2 = cos θ

(θ ∈ C, θ = u + iv; see (1) and (8)):

h+τ = {z ∈ Πτ ; z = z(ζ, τ); ζ(θ) = [2eiτ(cos τ − cos θ)]
1
2 ; θ ∈ γτ} (τ ∈ C),

where γτ denotes the ray in the θ-plane oriented from 0 to τ:

γτ = {θ = θ(δ); cos θ(δ)− 1 = δ(cos τ − 1); 0 6 δ 6 1} (τ ∈ C).
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Now, since dζ/dθ = eiτ/2[2(cos τ − cos θ)]−1/2 sin θ, integral (10) can be rewritten in the form:

f̂ (τ) = −2eiτ/2
∫

γτ

f (θ)
sin θ

[2(cos τ − cos θ)]
1
2

dθ, (11)

where f (θ) ≡ f (cos θ). The relevant branch of the function [2(cos τ − cos θ)]−1/2 is specified by the
condition that, for τ = iw and θ = iv (with w > v), it takes the value [2(cosh w − cosh v)]−1/2 > 0.
Putting in (11) τ = iw, θ = iv, we re-obtain precisely the r.h.s. of formula (9), once f is identified with F.

Restricting formula (11) to the set of real values for the variables τ and θ, namely, τ = t and θ = u
(t, u ∈ R), from (11), we obtain

f̂ (t) = −2eit/2
∫ t

0
f (u)

sin u

[2(cos t− cos u)]
1
2

du. (12)

Accounting for the relevant branch of the factor [2(cos τ − cos θ)]−1/2 in (11), formula (12) can be
written in the following more precise form (involving a positive bracket):

f̂ (t) = −2i ε(t) eit/2
∫ t

0
f (u)

sin u

[2(cos u− cos t)]
1
2

du, (13)

where ε(t) denotes the sign function.

2.3. Holomorphic Extension Associated with Trigonometric Series

2.3.1. Fourier–Legendre Expansions as Trigonometric Series

Consider the following Legendre series

1
4π

∞

∑
n=0

(2n + 1) an Pn(cos u), (14)

where Pn(·) denotes the Legendre polynomials, which satisfy the following integral representation:

Pn(cos u) =
1
π

∫ π

0
(cos u + i sin u cos η)n dη.

Suppose that expansion (14) converges to a function f (cos u) absolutely integrable in the interval
u ∈ [0, π]. Then, the Legendre coefficients an can be written as

an = 2π
∫ π

0
f (cos u) Pn(cos u) sin u du.

In Ref. [21], we proved the following proposition.

Proposition 1. The Legendre coefficients {an}∞
n=0 coincide with the Fourier coefficients of the following form:

an =
∫ π

−π
f̂ (t) eint dt (n = 0, 1, 2, . . .), (15)

where

f̂ (t) = −2i ε(t) eit/2
∫ t

0
f (u)

sin u

[2(cos u− cos t)]
1
2

du, (16)
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with f (u) ≡ f (cos u), and ε(t) being the sign function.

Proof. See Proposition 3.1 of Ref. [21].

Note that (16) coincides with (13). From (16), it is easy to verify that

f̂ (t) = −eit f̂ (−t), (17)

which, through (15), yields the following symmetry relation for the Legendre coefficients:

an = −a−n−1 (n ∈ Z). (18)

Now, we can introduce the following trigonometric series, assuming (18) to hold:

1
2π

+∞

∑
n=−∞

ane−int =
1

2π

[
+∞

∑
n=0

ane−int − eit
+∞

∑
n=0

aneint

]

=
1

2π
ei(t−π)/2

+∞

∑
n=−∞

(−1)nan cos
[(

n + 1
2

)
(t− π)

]
=

1
2π

ei(t−π)/2
+∞

∑
n=−∞

an sin
[(

n + 1
2

)
t
]

,

(19)

and study the associated holomorphic extension.

2.3.2. Holomorphic Extension Associated with Trigonometric Series

Consider a sequence { fn}∞
n=0 of (real) numbers, and denote by ∆ the difference operator:

∆ fn = fn+1 − fn.

We have:

∆k fn = ∆× ∆× · · ·∆︸ ︷︷ ︸
k−times

fn =
k

∑
m=0

(−1)m
(

k
m

)
fn+k−m

(for any integer k > 0); ∆0 is the identity operator, by definition. Suppose that there exists a positive
constant M such that

(n + 1)(1+ε)
n

∑
i=0

(
n
i

)(2+ε) ∣∣∣∆i f(n−i)

∣∣∣(2+ε)
< M (n = 0, 1, 2, . . . ; ε > 0). (20)

We shall refer to (20) as the Hausdorff condition for its relevance in the solution of the Hausdorff
moment problem [8]. The tool we use to guarantee uniqueness of the interpolation of a sequence of
numbers { fn}∞

n=0 is Carlson’s theorem [22]. Essentially, it gives growth conditions under which a function
is uniquely determined by its values on non-negative integers. Let us recall that an entire function f (z) is
of exponential type τ < ∞ if

lim sup
r→∞

M f (r))
r

= τ, (21)

where M f (r) denotes the maximum modulus of f (z) for |z| = r. The rate of growth of entire functions can
be specified along different directions by the Phragmén-Lindelöf indicator function,

h f (θ) = lim sup
r→∞

log
∣∣ f (reiθ)

∣∣
r

. (22)
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Note that the preceding definitions can be extended to functions which are not entire, but regular
(that is, analytic and single-valued) in a sector with vertex at the origin [22].

Theorem 1 (Carlson’s theorem (Section 9.2, p. 153, [22])). Let f (z) be regular in the half-plane Re z > 0 and

(i) f (z) is of exponential type τ < ∞,
(ii) h f (π/2) + h f (−π/2) < 2π,

(iii) f (n) = 0 for n = 0, 1, 2, . . .,

then f (z) vanishes identically.

Among the functions of exponential type, condition (ii) requires f (z) to be of exponential type less
than π on the imaginary axis that is: f (iy) = O(1) exp(c|y|) for some c < π. We shall refer to conditions
(i) and (ii) as Carlson’s bound. Moreover, an analytic function which interpolates a sequence of numbers
{ fn}∞

n=0 and satisfy conditions (i) and (ii) above will be called a Carlsonian interpolant, in view of the fact
that the uniqueness of the interpolation is guaranteed by Carlson’s theorem.

Proposition 2. Suppose that the set of numbers { fn}∞
n=0, with fn

.
= (n + 1)2an (an being the Fourier–Legendre

coefficients of the series (14)), satisfies condition (20). Then:

(i) There exists a unique Carlsonian interpolant ã(λ) (λ ∈ C, Re λ > − 1
2 ) of the coefficients {an}∞

n=0, which is

holomorphic in the half-plane Re λ > − 1
2 . Moreover, ã(λ) belongs to the Hardy space H2(C(+)

−1/2).
(ii) λ2 ã(λ) ∈ L2(−∞,+∞) for any fixed value of Re λ > − 1

2 .
(iii) λ2 ã(λ) tends uniformly to zero as λ→ ∞ inside any fixed half-plane Re λ > δ > − 1

2 .
(iv) λã(λ) ∈ L1(−∞,+∞) for any fixed value of Re λ > − 1

2 .
(v) ã(− 1

2 + iµ) (µ ∈ R) is a continuous function which tends to zero as µ→ ±∞.
(vi) supσ>−1/2

µ∈R
|ã(σ + iµ)| =

∣∣∣ã (− 1
2 + iµ

)∣∣∣;
Proof. (i) Since the sequence { fn}∞

n=0 satisfies condition (20), the numbers fn are moments of a suitable
function, that is, the following representation holds [8]:

fn =
∫ 1

0
xn ϕ(x)dx (n = 0, 1, 2, . . .), (23)

where ϕ ∈ L(2+ε)(0, 1). Let x = e−s in formula (23):

fn =
∫ +∞

0
e−(n+

1
2 )s e−s/2 ϕ(e−s)ds (n = 0, 1, 2, . . .).

Then, the numbers { fn}∞
n=0 can be formally regarded as the restriction to the (non-negative) integers

of the following Laplace transform:

f̃ (λ) =
∫ +∞

0
e−(λ+

1
2 )s e−s/2 ϕ(e−s)ds

(
Re λ > − 1

2

)
, (24)

being f̃ (λ)|λ=n = fn. We see that e−s/2 ϕ(e−s) ∈ L2(0,+∞): in fact,
∫ +∞

0 |e−s/2 ϕ(e−s)|2 ds =∫ 1
0 |ϕ(x)|2 dx < ∞, since ϕ ∈ L(2+ε)(0, 1) and, a fortiori, ϕ(x) ∈ L2(0, 1). Then, by the Paley–Wiener

theorem [23], we have f̃ (λ) ∈ H2(C(+)
−1/2), which is the Hardy space whose norm is: ‖ f̃ ‖2

.
=

supσ>−1/2(
∫ +∞
−∞ | f̃ (σ + iµ)|2 dµ)1/2, and C(+)

−1/2
.
= {λ ∈ C, λ = σ + iµ; σ > − 1

2 , µ ∈ R}. Hence, use can
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be made of Carlson’s theorem, which guarantees that f̃ (λ) is the unique Carlsonian interpolant of
the sequence { fn}∞

n=0. Let ã(λ) .
= f̃ (λ)/(λ + 1)2. ã(λ) is a function holomorphic for Re λ > − 1

2 ,
which satisfies Carlson’s bound since f̃ (λ) does. Then, ã(λ) is the unique Carlsonian interpolant of the set

of Fourier–Legendre coefficients {an}∞
n=0 since ã(λ)|λ=n = f̃ (λ)

(λ+1)2

∣∣∣∣
λ=n

= fn
(n+1)2 = an. Finally, it is readily

shown that ã(λ) ∈ H2(C(+)
−1/2):

‖ã‖2
2 = sup

σ>− 1
2

∫ +∞

−∞

∣∣∣∣∣ f̃ (σ + iµ)
(σ + 1 + iµ)2

∣∣∣∣∣
2

dµ 6 16 sup
σ>− 1

2

∫ +∞

−∞

∣∣∣ f̃ (σ + iµ)
∣∣∣2 dµ < ∞, (25)

and statement (i) is then proved. Regarding point (ii), since f̃ (λ) ∈ H2(C(+)
−1/2), then f̃ (σ + iµ) ∈

L2(−∞,+∞) for any fixed value of σ > − 1
2 . Regarding point (iii), since f̃ (λ) ∈ H2(C(+)

−1/2), then f̃ (λ)
tends to zero as λ→ ∞ inside any fixed half-plane Re λ > δ > − 1

2 [23]. By Schwarz’s inequality, we have
for σ > − 1

2 ,

∫ +∞

−∞
|(σ + iµ) ã(σ + iµ)|dµ 6

(∫ +∞

−∞

∣∣∣∣ σ + iµ
(σ + 1 + iµ)2

∣∣∣∣2 dµ

)1
2(∫ +∞

−∞

∣∣∣ f̃ (σ + iµ)
∣∣∣2 dµ

)1
2
< ∞,

which proves statement (iv). Concerning point (v), return to the Laplace integral representation of
f̃ (λ) in (24). First, we want to prove that e−s/2 ϕ(e−s) ∈ L1(0,+∞), which amounts to showing that∫ 1
0

∣∣∣ ϕ(x)√
x

∣∣∣ dx < ∞. By Hölder’s inequality,

∫ 1

0

|ϕ(x)|√
x

dx 6
(∫ 1

0
|ϕ(x)|(2+ε) dx

) 1
2+ε

·
(∫ 1

0
x−

2+ε
2+2ε dx

) 1+ε
2+ε

< ∞,

where the rightmost integral converges since 2+ε
2+2ε < 1 for ε > 0, and ϕ ∈ L(2+ε)(0, 1).

Then, from representation (24):(
1
2 + iµ

)2
ã
(
− 1

2 + iµ
)
= f̃

(
− 1

2 + iµ
)
=
∫ +∞

0
e−iµse−s/2 ϕ(e−s)ds = F

{
h(s)e−s/2 ϕ(e−s)

}
,

where F denotes the Fourier integral operator, and h(s) is the Heaviside step function.
The Riemann–Lebesgue theorem guarantees that ã(− 1

2 + iµ) is a continuous function tending to zero
as µ → ±∞, and statement (v) is proved. Finally, in order to prove statement (vi), we note that the
Laplace transform (24) holds also for Re λ = − 1

2 since e−s/2 ϕ(e−s) ∈ L1(0,+∞) ∩ L2(0,+∞). It follows

that supσ>−1/2
µ∈R

| f̃ (σ + iµ)| = | f̃
(
− 1

2 + iµ
)
|. Therefore, recalling that ã(λ) = f̃ (λ)/(λ + 1)2:

sup
σ>−1/2

µ∈R

|ã(σ + iµ)| = sup
σ>−1/2

µ∈R

| f̃ (σ + iµ)|
|σ + 1 + iµ|2 =

| f̃ (− 1
2 + iµ)|

µ2 + 1/4
=
∣∣∣ã (− 1

2 + iµ
)∣∣∣ ,

where ã(− 1
2 + iµ) ∈ L1(−∞,+∞) (see statements (iv) and (v)).

Let ξ0 > 0. We introduce in the complex plane C of the variable τ = t + iw (t, w ∈ R) the following
domains: τI (±ξ0)

+
.
= {τ ∈ C : Im τ > ±ξ0} and τI (±ξ0)

−
.
= {τ ∈ C : Im τ < ±ξ0}. Correspondingly, we

introduce the following cut-domains: τI (ξ0)
+ \ τΞ(ξ0)

+ , where τΞ(ξ0)
+

.
= {τ ∈ C : τ = 2kπ + iw, w > ξ0, k ∈



Mathematics 2020, 8, 287 11 of 30

Z} (see Figure 2a) and τI (−ξ0)
− \ τΞ(−ξ0)

− , where τΞ(−ξ0)
−

.
= {τ ∈ C : τ = 2kπ + iw, w < −ξ0, k ∈ Z} (see

Figure 2b). Finally, we denote by Ȧ .
= A/2πZ any subset A of C, which is invariant under the translation

group 2πZ. We are now ready to state the following proposition.

����

����

�
�
�
�

�
�
�
�

Re τ

Re τ

−planeτ
Im τ

−planeτ

Im τ

ξ0

−ξ0−2π 2π0 4π−4π

2π 4π−4π −2π 0

(a) (b)

Figure 2. In the complex τ-plane, the grey regions represent: (a) the cut-domain τI (ξ0)
+ \ τΞ(ξ0)

+ , (b) the

cut-domain τI (−ξ0)
− \ τΞ(−ξ0)

− . The cuts (thick lines) are located at Re τ = 2kπ, k ∈ Z.

Proposition 3. Consider the trigonometric series

1
2π

+∞

∑
n=0

an e−inτ (τ = t + iw; t, w ∈ R), (26)

and suppose that the set of numbers { fn}∞
n=0, with fn

.
= (n + 1)2 an, satisfies condition (20). Then:

(i) The series (26) converges uniformly on any compact subdomain of τI (0)− to a function f̂ (+)(τ) holomorphic in
τI (0)− , continuous on the axis Im τ = 0.

(ii) The function f̂ (+)(τ) admits a holomorphic extension to the cut-domain τI (0)+ \ τΞ̇(0)
+ : i.e., it is analytic in

C \ {τ ∈ C : τ = 2kπ + iw; k ∈ Z, w > 0}.
(iii) The jump function F̂(+)(w), which is the discontinuity of (i f̂ (+)(τ)) across the cut τΞ̇(0)

+ , is a function of class
C1 that satisfies the bound ∣∣∣F̂(+)(w)

∣∣∣ 6 ‖ãσ‖1 eσw
(

σ > − 1
2 , w ∈ R+

)
,

where ã(σ + iµ) (µ ∈ R) is the unique Carlsonian interpolant of the coefficients an, and

‖ãσ‖1
.
=

1
2π

∫ +∞

−∞
|ã(σ + iµ)|dµ < ∞

(
σ > − 1

2

)
. (27)

(iv) F̂(+)(w) = o
(

e−w/2
)

for w→ +∞ and F̂(+)(0) = 0.

(v) ã(σ + iµ) is the Laplace transform of the jump function F̂(+)(w):

ã(σ + iµ) =
∫ +∞

0
F̂(+)(w) e−(σ+iµ)w dw

(
σ > − 1

2

)
, (28)

holomorphic in the half-plane σ > − 1
2 .

(vi) The following Plancherel equality holds:∫ +∞

−∞
|ã(σ + iµ)|2 dµ = 2π

∫ +∞

−∞

∣∣∣F̂(+)(w)e−σw
∣∣∣2 dw

(
σ > − 1

2

)
.



Mathematics 2020, 8, 287 12 of 30

Proof. Since the sequence { fn}∞
n=0 satisfies condition (20), then, given an arbitrary constant C, there exists

an integer n0 such that |an| 6 C for n > n0 and, accordingly,∣∣∣∣∣ 1
2π

∞

∑
n=0

an e−inτ

∣∣∣∣∣ 6 C
2π

∞

∑
n=n0+1

enw (w .
= Im τ, C = constant). (29)

The series on the r.h.s. of (29) converges uniformly on any compact subdomain contained in the
half-plane w < 0. Since

1
2π

∞

∑
n=0

an e−inτ =
1

2π

∞

∑
n=n0+1

an e−inτ + Tn0(τ),

where Tn0(τ) is a trigonometric polynomial, by the Weierstrass theorem on the uniformly convergent series

of analytic functions, series (26) converges uniformly on any compact subdomain of τI (0)− to a function

f̂ (+)(τ) holomorphic in τI (0)− . Furthermore, since (n + 1)2 an −−−→n→∞
0, given an arbitrary constant C′, there

exists an integer n1 such that for w = 0:∣∣∣∣∣ 1
2π

∞

∑
n=n1

an e−int

∣∣∣∣∣ 6 1
2π

∞

∑
n=n1

|an| 6
C′

2π

∞

∑
n=n1

1
n2 6 C′

π

12
.

Then, applying once again the Weierstrass theorem on the uniformly convergent series of continuous
functions, the series 1

2π ∑∞
n=0 an e−int converges to a continuous function f̂ (+)(t), and statement (i) is

proved. Regarding statement (ii), we write the following integral:

f̂ (+)
η (t) =

i
4π

∫
C

ã(λ)
e−iλ(t−ηπ)

sin πλ
dλ (η = ±), (30)

where ã(λ) (Re λ > − 1
2 ) is the unique Carlsonian interpolant of the coefficients {an}∞

n=0, which is
holomorphic in the half-plane Re λ > − 1

2 (see statement (i) of Proposition 2). The contour C is contained

in the half-plane C(+)
−1/2, which encircles the semi-axis Re λ > − 1

2 , and is chosen to cross the latter at a

point σ > − 1
2 , σ 6∈ N (see Figure 3). Consider now the term exp[−iλ(t−ηπ)]

sin πλ ; the following inequalities hold
(λ = σ + iµ):

∣∣∣e−i(σ+iµ)(t−ηπ)
∣∣∣ 6 2 cosh πµ for

{
0 6 t 6 2π if η = +,
−2π 6 t 6 0 if η = −,

(31)

|sin π(σ + iµ)| > sinh πµ, (32)

|sin π(σ + iµ)| > |sin πσ| cosh πµ. (33)

From (31) and (32):∣∣∣∣∣ e−i(σ+iµ)(t−ηπ)

sin π(σ + iµ)

∣∣∣∣∣ 6 2
∣∣∣∣cosh πµ

sinh πµ

∣∣∣∣ for

{
0 6 t 6 2π if η = +,
−2π 6 t 6 0 if η = −,

(34)

while, combining (31) and (33):∣∣∣∣∣ e−i(σ+iµ)(t−ηπ)

sin π(σ + iµ)

∣∣∣∣∣ 6 2
| sin πσ| < ∞ for

{
0 6 t 6 2π if η = +,
−2π 6 t 6 0 if η = −,

and σ 6∈ N. (35)
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Integral (30) converges since λ2 ã(λ) tends uniformly to zero as λ → ∞ in any fixed half-plane
Re λ > δ > − 1

2 (statement (iii) of Proposition 2); the term
∣∣∣ exp[−i(σ+iµ)(t−ηπ)]

sin π(σ+iµ)

∣∣∣ is bounded by a constant
for σ 6∈ N (see (35)), and is bounded by 2 as µ → ±∞ in view of inequality (34). The contour C can be
distorted and replaced by a line Lσ parallel to the imaginary axis and crossing the real axis at Re λ = σ

with σ > − 1
2 (σ 6∈ N) (see Figure 3) provided the real variable t is kept in [0, 2π] for f̂ (+)

+ (t), and in [−2π, 0]

for f̂ (+)
− (t), respectively. Note that the integral along Lσ converges since λã(λ) ∈ L1(−∞,+∞) for any

fixed value of Re λ > − 1
2 (statement (iv) of Proposition 2) and by inequality (35). We may now apply the

Watson resummation to integral (30). For t ∈ [0, 2π], we obtain:

i
4π

∫
C

ã(λ)
e−iλ(t−π)

sin πλ
dλ =

1
2π

∞

∑
n=0

an e−int (0 6 t 6 2π) ,

where the contour C encircles the semi-axis Re λ > − 1
2 and crosses it at a point − 1

2 6 σ < 0.
Then, distorting the contour C into the line Lσ (− 1

2 6 σ < 0), which is admissible as explained above,
we obtain for − 1

2 6 σ < 0:

f̂ (+)
+ (t) = − 1

4π

∫ +∞

−∞
ã(σ + iµ)

e−i(σ+iµ)(t−π)

sin π(σ + iµ)
dµ =

1
2π

∞

∑
n=0

an e−int (0 6 t 6 2π) , (36)

and, analogously, for t ∈ [−2π, 0]:

f̂ (+)
− (t) = − 1

4π

∫ +∞

−∞
ã(σ + iµ)

e−i(σ+iµ)(t+π)

sin π(σ + iµ)
dµ =

1
2π

∞

∑
n=0

an e−int (−2π 6 t 6 0) . (37)

Figure 3. Integration path of integral (30).

Now, substitute into integral (36) the real variable t with the complex variable τ = t+ iw. The resulting
integral can be proved to provide an analytic continuation of f̂ (+)

+ (t) in the strip 0 < t < 2π, w ∈ R+,
continuous in the closure of the latter. In fact, from the first equality in (36), we formally obtain:

f̂ (+)
+ (t + iw) =

1
2π

eσw
∫ +∞

−∞
Ht

σ(µ) eiµw dµ
(

0 6 t 6 2π; w ∈ R+, − 1
2 6 σ < 0

)
, (38)
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where

Ht
σ(µ)

.
= − ã(σ + iµ)e−i(σ+iµ)(t−π)

2 sin π(σ + iµ)
. (39)

By inequality (35) and statement (vi) of Proposition 2:

∣∣Ht
σ(µ)

∣∣ 6 |ã(− 1
2 + iµ)|

| sin πσ|

(
0 6 t 6 2π; σ > − 1

2 , σ 6∈ N
)

, (40)

which, along with statements (iv) and (v) of Proposition 2, guarantees that Ht
σ(µ) ∈ L1(−∞,+∞) for

0 6 t 6 2π, σ > − 1
2 , σ 6∈ N. Therefore, formulas (38), (39), and (40) define f̂ (+)

+ (τ) (τ = t + iw) as an

analytic continuation of f̂ (+)
+ (t) in the strip {τ = t + iw, 0 < t < 2π, w ∈ R+}, continuous in the closure

of the latter in view of the Riemann–Lebesgue theorem. Proceeding analogously, we can obtain an analytic
continuation of f̂ (+)

− (t) in the strip {τ = t + iw, −2π < t < 0, w ∈ R+}, continuous on the closure of
the latter. It then follows that the function f̂ (+)(τ) admits a holomorphic extension to the cut-domain
τI (0)+ \τ Ξ̇(0)

+ , and statement (ii) is proved.

The discontinuity F̂(+)(w) of (i f̂ (+)(τ)) across the cut at t = 0 equals i[ f̂ (+)
+ (iw)− f̂ (+)

− (iw)] (w ∈ R+)
(for the 2π-periodicity of f̂ (+)(τ), we may consider only the cut at t = 0). It can be computed by replacing
t by iw into integrals (36) and (37) and then subtracting Equation (37) from Equation (36):

F̂(+)(w)
.
= i
[

f̂ (+)
+ (iw)− f̂ (+)

− (iw)
]
=

1
2π

∫ +∞

−∞
ã(σ + iµ)e(σ+iµ)w dµ

(
w ∈ R+, σ > − 1

2

)
, (41)

which yields: ∣∣∣F̂(+)(w)
∣∣∣ 6 ‖ãσ‖1 eσw

(
w ∈ R+, σ > − 1

2

)
,

where ‖ãσ‖1, defined in (27), is guaranteed to be finite by statement (iv) of Proposition 2. Rewrite (41) as
follows:

F̂(+)(w)e−σw =
1

2π

∫ +∞

−∞
ã(σ + iµ) eiµw dµ

(
w ∈ R+, σ > − 1

2

)
. (42)

Since for any fixed Re λ > − 1
2 , λã(λ) and ã(λ) belong to L1(−∞,+∞), the Riemann–Lebesgue

theorem guarantees that F̂(+)(w)e−σw is a function of class C1 tending to zero as w→ +∞, and statement
(iii) is proved. Hence, F̂(+)(w) is a continuous function of w (w ∈ R+) and F̂(+)(w) = o(e−w/2) as
w → +∞. Moreover, F̂(+)(0) = 0 for the continuity of f̂ (+)(τ) on the real axis, and statement (iv) is
proved. Inverting (42), we have:

ã(σ + iµ) =
∫ +∞

0
F̂(+)(w) e−(σ+iµ)w dw

(
σ > − 1

2

)
,

where the integral on the r.h.s. converges for σ > − 1
2 . It defines the Laplace transform of F̂(+)(w),

holomorphic in the half-plane Re λ > − 1
2 , and statement (v) follows. Finally, recalling that ã(σ + iµ) (µ ∈

R) belongs to L2(−∞,+∞) for any fixed value σ > − 1
2 (statement (ii) of Proposition 2 and inequality (25)),

we obtain the Plancherel equality:

∫ +∞

−∞
|ã (σ + iµ)|2 dµ = 2π

∫ +∞

0

∣∣∣F̂(+)(w) e−σw
∣∣∣2 dw

(
σ > − 1

2

)
,

proving statement (vi).
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Proposition 4. If in the trigonometric series (see (19))

1
2π

[
∞

∑
n=0

ane−int − eit
∞

∑
n=0

aneint

]
(t ∈ R), (43)

the coefficients an satisfy the assumptions required by Propositions 2 and 3, i.e., the set of numbers fn = (n + 1)2an

satisfies condition (20), then:

(i) The series (43) converges to a continuous function f̂ (t) (t ∈ R).
(ii) The function f̂ (t) admits a holomorphic extension to the cut-domain (τI (0)+ \ τΞ̇(0)

+ ) ∪ ( τI (0)− \ τΞ̇(0)
− ), i.e.,

it is analytic in C \ {τ = 2kπ + iw; k ∈ Z, w ∈ R, w 6= 0}.
(iii) The jump function across the cuts τΞ̇(0)

± enjoys properties, mutatis mutandis, analogous to conditions (iii)–(vi)
of Proposition 3.

Proof. These statements can be proved by using obvious extensions of the arguments used in the proof of
Proposition 3.

Through the holomorphic extension associated with the trigonometric series (43), we obtain a function,
denoted by f̂ (τ) (τ = t + iw; t, w ∈ R), which is the analytic continuation of f̂ (t) (t ∈ R) from the real
axis to the domain τ İ .

= ( τI (0)+ \ τΞ̇(0)
+ ) ∪ ( τI (0)− \ τΞ̇(0)

− ). We can then prove the following corollary to
Proposition 4.

Corollary 1. The function f̂ (τ) is holomorphic in the 2π-periodic strips Στ
.
= {τ ∈ C : τ = t + iw, 2πk < t <

2π(k + 1), k ∈ Z, w ∈ R}.

Proof. We start from statement (ii) of Proposition 4. Next, by applying the Schwarz reflection principle
and taking into account that the function f̂ (t) (i.e., the restriction of f̂ (τ) to the real axis) is continuous
(statement (i) of Proposition 4), the statement of the corollary follows.

Remark 2. In Ref. [21], the Hausdorff condition (20) was assumed to hold for the set of numbers fn = npan

(p > 2). However, this condition does not guarantee obtaining a unique Carlsonian interpolation of the whole
sequence an, including the first coefficient a0. Therefore, it must be replaced by the same condition on the numbers
fn = (n + 1)pan (p > 2). However, for the purpose of the current analysis, it is sufficient to take p = 2. Let us note
that the results of Ref. [21] hold true and, in particular, the proofs of Propositions 5.1 and 6.1 of that paper, which
will be used below, are correct modulo the following change: fn = npan → fn = (n + 1)pan.

2.4. Inversion of the Radon–Abel Transformation and Holomorphic Extension Associated with the Legendre Series

The first step consists of determining the inversion of the Radon–Abel transformation (12). We can
prove the following proposition.

Proposition 5. Suppose that the sequence fn = (n+ 1)2 an (an being the coefficients of the Legendre expansion (14))
satisfies the Hausdorff condition (20). Then, the Radon–Abel transformation (see (12))

f̂ (t) = −2 eit/2
∫ t

0
f (u)

sin u

[2(cos t− cos u)]
1
2

du (44)
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admits the following inversion:

f (u) =
1

π sin u
d

du

∫ u

0
e−it/2 f̂ (t)

sin t

[2(cos u− cos t)]
1
2

dt.

Proof. See Proposition 5.1 of Ref. [21].

By following the same procedure used in the proof of Proposition 5 (i.e., introducing
Riemann–Liouville integrals and related properties), Proposition 5 can be extended to give the inversion
of the Radon–Abel transformation (11). We can state, without proof, the following proposition.

Proposition 6. Assume that the coefficients an (see (14)) satisfy the conditions of Proposition 5; then, the function
f̂ (τ), i.e., the analytic continuation of the function f̂ (t) given in (44), is holomorphic in the strips Στ and can be
represented by the following Radon–Abel transformation (see (11)):

f̂ (τ) = −2 eiτ/2
∫

γτ

f (θ)
sin θ

[2(cos τ − cos θ)]
1
2

dθ,

which admits the following inversion:

f (θ) =
1

π sin θ

d
dθ

∫
γθ

e−iτ/2 f̂ (τ)
sin τ

[2(cos θ − cos τ)]
1
2

dτ, (45)

γτ and γθ denoting the rays from zero to τ and from zero to θ, respectively.

We can now prove the following proposition.

Proposition 7. Suppose that the sequence fn = (n + 1)2an (n = 0, 1, 2, . . .) satisfies the Hausdorff condition (20),
then the function f (θ) (θ ∈ C), represented by formula (45), is even, 2π-periodic, and holomorphic in θ İ =

( θI (0)+ \ θΞ̇(0)
+ ) ∪ ( θI (0)− \ θΞ̇(0)

− ).

Proof. The assumptions on the Legendre coefficients an allow us to state that f̂ (τ) is a 2π-periodic function,
holomorphic in the domain τ İ (see Corollary 1). Moreover, it enjoys the symmetry property:

f̂ (τ) = −eiτ f̂ (−τ),

which follows from (17) and from the uniqueness of the analytic continuation. The properties mentioned
above imply that f̂ (τ) is of the form: f̂ (τ) = eiτ/2(1− cos τ)

1
2 b(cos τ), with b(cos τ) analytic in τD =

{cos τ ∈ C, τ ∈ τ İ}. Through the following parametrization of γθ : cos τ = 1 + δ(cos θ − 1), (0 6 δ 6 1),
formula (45) can be rewritten as:

f (θ) =
i√
2π

d
d(cos θ)

[
(cos θ − 1)

∫ 1

0
b(1 + δ(cos θ − 1))δ

1
2 (1− δ)−

1
2 dδ

]
,

which represents a function holomorphic in θD = {cos θ ∈ C, θ ∈ θ İ}. Accordingly, regarded as a function
of θ, it represents an even function, 2π-periodic, and holomorphic in θ İ .

From the previous proposition and Corollary 1, it derives the following corollary.
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Corollary 2. If the sequence {an}∞
n=0 of the Legendre coefficients satisfies the conditions of Proposition 7, then f (θ)

is a function analytic in the 2π-periodic strips Σθ
.
= {θ ∈ C : θ = u + iv, 2πk < u < 2π(k + 1), k ∈ Z, v ∈ R}.

Formula (45) allows us to compute the boundary values f (+)
± (iv), which are defined by f (+)

η (v) .
=

limu→0+ f (+)(η u + iv), η = ±, v > 0, on the semi-axis θ = iv, v > 0, with γiv = {τ = iw, 0 6 w 6 v}, in
terms of the corresponding boundary values f̂ (+)

± (iw), provided f̂ (+)
± (iw) satisfies a C1-type regularity

condition; the latter condition is necessary in order to perform the inversion of the Radon–Abel transform
at the boundary. The C1-continuity of the boundary values follows from the fact that the sequence
fn = (n + 1)2an is required to satisfy the Hausdorff condition (20) (see Propositions 2 and 3). We thus
obtain:

F(+)(v) .
= i[ f (+)

+ (iv)− f (+)
− (iv)] =

1
π sinh v

d
dv

∫ v

0
ew/2 F̂(+)(w)

sinh w

[2(cosh v− cosh w)]
1
2

dw, (46)

where F̂(+)(w)
.
= i[ f̂ (+)

+ (iw)− f̂ (+)
− (iw)], f̂ (+)

η (iw) = limt→0+ f̂ (+)(η t + iw), η = ±. At this point, let us
note that, for the current analysis, it is sufficient to consider the cuts in the τ- and θ-planes at τ = 2kπ + iw
(k ∈ Z, w > 0) and θ = 2kπ + iv (k ∈ Z, v > 0), respectively. Therefore, we can limit ourselves to consider
the functions: F̂(+)(w) = e−v/2(AF)(w) (w > 0) and, correspondingly, F(+)(v) ≡ F(+)(cosh v) (v > 0).
For simplicity, hereafter we shall omit the superscript (+) in these notations.

Next, we can apply the inverse Radon–Abel operator (defined by (45)) to the series on the r.h.s. of
formula (19), i.e.,

f̂ (t) =
1

2π
ei(t−π)/2

+∞

∑
n=−∞

(−1)nan cos
[(

n + 1
2

)
(t− π)

]
,

whose term by term integration is legitimate for the uniform convergence of the series, which follows from
the Hausdorff conditions satisfied by the coefficients {an}. We now introduce the functions

ψn(cos u) .
= − i

π sin u
d

du

∫ u

0
cos

[(
n + 1

2

)
(t− π)

] sin t

[2(cos u− cos t)]
1
2

dt (0 < u < 2π),

which are related to the Legendre polynomials Pn(cos u) by [21]:

ψn(cos u) =
(−1)n

4
(2n + 1) Pn(cos u).

Recalling that an = −a−n−1 (n ∈ Z) (formula (18)), we finally obtain the original Legendre expansion

f (u) = f (cos u) =
1
π

∞

∑
n=0

(−1)nanψn(cos u) =
1

4π

∞

∑
n=0

(2n + 1) an Pn(cos u).

All the results obtained for the function f (cos θ) in the cos θ-plane can be summarized in the
following theorem.

Theorem 2. If the sequence fn = (n + 1)2an (n = 0, 1, 2, . . .) satisfies the Hausdorff condition (20), then:

(i) Series (14) converges to a function f (cos u) (u ≡ Re θ), analytic in the interval −1 < cos u < 1.
(ii) The function f (cos u) admits a holomorphic extension to the complex cos θ-plane (θ = u + iv) cut along the

semi-axis [1,+∞).
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2.5. Spherical Laplace Transform and Analyticity Properties in the Complex λ-Plane

A basic feature of the holomorphic extensions associated with the series expansions is the dual
analyticity that we shall illustrate in the specific case that we have considered here, of the Legendre
series (14). To classes of functions f (cos θ) holomorphic in the cos θ-plane cut along the semi-axis
[1,+∞) (see Theorem 2), there correspond classes of analytic functions ã(λ) (λ ∈ C), which enjoy the
following properties:

(a) ã(λ) is the composition of the standard Laplace transform with the Abel transform (multiplied
by the factor e−w/2) of the jump function of [i f̂ (θ)] across the cut θΞ̇(0)

+ , that is, the spherical
Laplace transform.

(b) ã(λ) is holomorphic in the half-plane Re λ > − 1
2 .

(c) ã(λ) is the (unique) Carlsonian interpolant of the Fourier–Legendre coefficients: ã(λ)|λ=n = an.

Formulas (9) and (28) give

ã(λ) =
∫ +∞

0
e−(λ+

1
2 )w (AF)(w)dw

(
Re λ > − 1

2

)
,

which is precisely the spherical Laplace transform, holomorphic in the half-plane Re λ > − 1
2 (statement

(v) of Proposition 3). Moreover, ã(λ)|λ=n = an (statement (i) of Proposition 2). Writing explicitly the Abel
transform (AF)(w) (see (9)), we obtain

ã(λ) = 2
∫ +∞

0
e−(λ+

1
2 )w

{∫ w

0
F(cosh v)

sinh v

[2(cosh w− cosh v)]
1
2

dv

}
dw

(
Re λ > − 1

2

)
,

which, interchanging the order of integration, becomes

ã(λ) = 2
∫ +∞

0
F(cosh v) sinh v

{∫ +∞

v

e−(λ+
1
2 )w

[2(cosh w− cosh v)]
1
2

dw

}
dv

(
Re λ > − 1

2

)
. (47)

Using the integral representation of the Legendre functions of the second kind [24]

Qλ(cosh v) =
∫ +∞

v

e−(λ+
1
2 )w

[2(cosh w− cosh v)]
1
2

dw (Re λ > −1, v > 0) , (48)

formula (47) can be written as follows:

ã(λ) = 2
∫ +∞

0
F(cosh v) Qλ(cosh v) sinh v dv

(
Re λ > − 1

2

)
. (49)

Remark 3. The Legendre function of the second kind has a logarithmic singularity at v = 0, then the integral
representation (48) holds if v > 0; nevertheless, the integral in (49) converges if F(cosh v) is regular at v = 0.

We can now state the following theorem.
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Theorem 3. If the sequence fn = (n + 1)2an (n = 0, 1, 2, . . .), an being the Legendre coefficients of expansion (14),
satisfies the Hausdorff condition (20), then the jump function F(v) = F(cosh v) (defined in (46)) admits the
following integral representation:

F(v) = F(cosh v) =
1

2π

∫ +∞

−∞
ã(σ + iµ)

(
σ + 1

2 + iµ
)

Pσ+iµ(cosh v)dµ

=
1

2πi

∫ σ+i∞

σ−i∞
ã(λ)

(
λ + 1

2

)
Pλ(cosh v)dλ

(
λ = σ + iµ; σ > − 1

2

)
,

(50)

where Pλ(·) denotes the Legendre function of the first kind.

Proof. See Proposition 6.1 of Ref. [21].

3. From Spherical Laplace Transform to Non-Euclidean Fourier Transform

3.1. Formal Derivation of Mehler’s Transform from the Spherical Laplace Transform

Let us begin by considering the integral representation (48) of the Legendre function of the second
kind Qλ(cosh v). If Re λ = − 1

2 , the function Q− 1
2+iµ(cosh v) can be written as the sum of its even (in µ)

and odd parts, which are defined as follows:

Q(E)
− 1

2+iµ
(cosh v) =

∫ +∞

v

cos µw

[2(cosh w− cosh v)]
1
2

dw,

Q(O)

− 1
2+iµ

(cosh v) =− i
∫ +∞

v

sin µw

[2(cosh w− cosh v)]
1
2

dw.

Recalling the relation between the Legendre functions of first and second kind (p. 140, [24])

Pλ(z) =
tan πλ

π
[Qλ(z)−Q−λ−1(z)] ,

and exploiting the evenness (in µ) of the conical Legendre functions, i.e., P− 1
2+iµ(cosh v) = P− 1

2−iµ(cosh v)
(µ ∈ R), we obtain:

P− 1
2+iµ(cosh v) = P− 1

2−iµ(cosh v) =
2
π

tan
[
π
(
− 1

2 + iµ
)]

Q(O)

− 1
2+iµ

(cosh v). (51)

Let us now return to Theorem 3 and to formula (50) in the specific case σ = − 1
2 . By the µ-evenness of

P− 1
2+iµ(cosh v), it follows that only the odd component ã (O)(− 1

2 + iµ) of ã(− 1
2 + iµ) (µ ∈ R) contributes

to the integral in formula (50):

F(v) = F(cosh v) =
i
π

∫ +∞

0
ã (O)

(
− 1

2 + iµ
)

P− 1
2+iµ(cosh v) µ dµ. (52)

Moving back to formula (49), which for the moment we assume to hold also for Re λ = − 1
2 (this

statement will be proved later in Section 3.4.3), and accounting for relationship (51), we can formally rewrite
the odd component of ã(− 1

2 + iµ) (µ ∈ R) as follows:

ã (O)
(
− 1

2 + iµ
)
=

π

tan
[
π
(
− 1

2 + iµ
)] ∫ +∞

0
F(cosh v) P− 1

2+iµ(cosh v) sinh v dv (µ ∈ R). (53)
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Noting that (tan[π(− 1
2 + iµ)])−1 = −i tanh πµ, we may introduce the following function: F̃(µ) .

= ã(− 1
2 +

iµ)/(−iπ tanh πµ) (we omit here the superscript “(O)” in ã(O)
(
− 1

2 + iµ
)

since only the odd part of

ã(− 1
2 + iµ) plays a role in these transformations). Then, formulas (52) and (53) can be rewritten as

F(v) = F(cosh v) =
∫ +∞

0
F̃(µ) P− 1

2+iµ(cosh v) tanh(πµ) µ dµ, (54a)

F̃(µ) =
∫ +∞

0
F(cosh v) P− 1

2+iµ(cosh v) sinh v dv, (54b)

which coincide with the Mehler transform pair, indeed (see (p. 175, [24])).

Remark 4. (i) As we have already remarked above, we do not consider the whole spherical Laplace transform but
only its odd (with respect to µ) component since only this component plays a role in the transformations being
treated here.

(ii) The class of functions F(v) which we are led to consider here are of the form F = F(cosh v).
Accordingly, the connection between spherical Laplace transform and non-Euclidean Fourier transform can be
limited to this class of functions. In the non-Euclidean geometry, these functions belong to the class of radial
functions in a sense that will be clarified in what follows (see Remarks 5 and 6).

3.2. Geometry of the Two-Sheeted Hyperboloid: Polar and Horocyclic Coordinates

Let us now return to the geometrical representation of the real one-sheeted hyperboloid X2. It can be
easily noted that, by simply swapping two coordinate axes (see Figures 1 and 4), the real meridian X̂+

can be regarded as the real meridian of one of the sheets of a suitable real two-sheeted hyperboloid. It is
therefore reasonable to expect that an integral representation of F(cosh v) can be obtained also from the
geometry of the two-sheeted hyperboloid.

In the space R3 of variables x = (x0, x1, x2), we consider the two-sheeted hyperboloid with equation:

x2
0 − x2

1 − x2
2 = 1. (55)

In the present analysis, we can limit ourselves to consider the upper sheet of this two-sheeted
hyperboloid, the one with x0 > 1 that will be denoted by 2X+

2 . By analogy with what we have done is
Section 2, we consider two systems of coordinates: polar and horocyclic coordinates.

Polar Coordinates:

x0 = cosh v, (56a)

x1 = sinh v sin ψ, (v > 0, ψ ∈ [0, 2π)), (56b)

x2 = sinh v cos ψ. (56c)

It is easy to verify that x2
0 − x2

1 − x2
2 = cosh2 v− sinh2 v = 1, and x0 > 1.
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Figure 4. Upper sheet 2X+
2 of the real two-sheteed hyperboloid. Re z is directed along u1 and Im z along u2.

Horocyclic Coordinates:

x0 = cosh w +
1
2

ζ2 ew, (57a)

x1 = ζ ew, (w, ζ ∈ R), (57b)

x2 = sinh w− 1
2

ζ2 ew. (57c)

Even in this case, it is straightforward to verify that x2
0− x2

1− x2
2 = 1, and x0 > 1; accordingly, the horocyclic

coordinates (57) are appropriate for describing the upper sheet 2X+
2 of the real two-sheeted hyperboloid.

In particular, we focus our attention on the meridian section 2X̂+ of the upper sheet 2X+
2 , which lies in the

plane x1 = 0 and whose equation is x2
0 − x2

2 = 1. We consider the intersections of 2X̂+ with the family of
planes 2Pw with equation x0 + x2 = ew (w ∈ R), i.e., the points 2xw, whose coordinates are x0 = cosh w,
x1 = 0, x2 = sinh w. The sections of 2X+

2 by these planes are the (real) parabolae 2Π+
w . Setting ζ = 0 in (57),

we obtain the point 2xw (w ∈ R), which is the apex of the corresponding parabola 2Π+
w (see Figure 4).

Remark 5. As we shall see in the next section, the parabolae 2Π+
w generate (through a stereographic projection on

the non-Euclidean disk) a family of horocycles, represented by the Euclidean circles (illustrated in Figure 4) which
are tangent to the boundary of the unit disk at the point x1 = 0, x2 = −1. It is worth emphasizing that this is the
sole family of horocycles which is generated by the fibration illustrated above. On the other hand, the non-Euclidean
Fourier transform, which will be studied in the next section, demands considering in the non-Euclidean disk all the
families of horocycles which are obtained by moving the point of tangency along the entire horizon from 0 to 2π.
We shall see in Lemma 2 of Section 3.4.1 how this difficulty will be overcome (see also Remark 6).
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3.3. Stereographic Projection from the Upper Sheet of the Two-Sheeted Hyperboloid to the Non-Euclidean Unit Disk

Let u = (u1, u2) denote the Cartesian coordinate system in the open unit disk D .
= {u : u1

1 + u2
2 < 1},

which lies in the plane x0 = 0:

u1 = tanh
(v

2

)
sin ψ (v > 0, ψ ∈ [0, 2π)), (58a)

u2 = tanh
(v

2

)
cos ψ. (58b)

Then: |u|2 = u2
1 + u2

2 = tanh2(v/2). Let B .
= {u : u1

1 + u2
2 = 1} denote the boundary of D,

i.e., the horizon. Consider the Riemannian structure

ds2 =
4(du2

1 + du2
2)

[1− (u2
1 + u2

2)]
2
= dv2 + sinh2 v dψ2, (59)

where dv2 + sinh2v dψ2 can also be obtained from (56) through the equality: ds2 = −dx2
0 + dx2

1 + dx2
2.

Let us embed the non-Euclidean disk in the complex z-plane so that each point of the unit disk can be
represented either by the coordinates (u1, u2) in (58) or through the polar representation of z, which in
the present case reads: z = |z| exp[i(π

2 − ψ)], |z| = tanh( v
2 ). Note that in this latter representation we are

forced to write exp[i(π
2 − ψ)] with ψ induced by (56) (instead of the standard expression exp(iψ)) in order

to have the correct correspondence between Cartesian and polar representations. Accordingly, the points
b of the boundary B of the non-Euclidean disk will be described by b = exp[i(π

2 − φ)], φ being defined
analogously to ψ that is, measured from the positive u2-axis and increasing toward the positive u1-axis.
The Riemannian structure (59) induces the usual non-Euclidean distance on D:

d(0, z) = ln
1 + |z|
1− |z| z = |z| ei( π

2 −ψ),

where |z| = tanh(v/2) and 0 is the center of the unit disk. In D, the geodesics are circular arcs intersecting
the unit circle at right angles. In particular, all diameters of the unit circle are straight lines since these
diameters can be considered as arcs of infinite large radius. A pencil of parallel straight lines is given by
arcs of Euclidean circles orthogonal to the unit circle, lying in its interior and intersecting the boundary B
at a common point b. The lines orthogonal to this pencil of parallel geodesics are the circles tangent from
within to the horizon at the point b. Since these circles are the Euclidean images of the horocycles, we shall
refer to the point of contact b as the normal to the horocycle.

The coordinates (x0, x1, x2) that describe the point P varying on the upper sheet 2X+
2 of the two-sheeted

hyperboloid are related to the coordinates (u1, u2) in the open non-Euclidean unit disk D through the
following formulas (Lemma 1, p. 49, [25]):

x0 =
1 + |u|2
1− |u|2 , x1 =

2u1

1− |u|2 , x2 =
2u2

1− |u|2 . (60)

Each line of intersection of 2X+
2 with the plane ax0 + bx1 + cx2 = 0 (a, b, c ∈ R) is mapped by the

transformation (60) into a circular arc intersecting the horizon at right angles (Lemma 3, p. 51, [25]).
In order to find the curve into which a straight line on 2X+

2 is mapped, it is sufficient to substitute into
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the equation of the plane ax0 + bx1 + cx2 = 0 the explicit expression (60) of the variables xi (i = 0, 1, 2) in
terms of u1, u2. Then, the equation

a
1 + |u|2
1− |u|2 +

2bu1

1− |u|2 +
2cu2

1− |u|2 = 0 (61)

is reduced after simple algebra to the equation of the circle(
u1 +

b
a

)2
+
(

u2 +
c
a

)2
=

b2 + c2 − a2

a2 (a 6= 0), (62)

with radius r =
√

b2 + c2 − a2/|a| and center at the point (−b/a,−c/a) if a 6= 0, and to the line bu1 + cu2 =

0 if a = 0. Note that the image into D of a straight line on 2X+
2 is not the entire circle (62) but only its part

contained in the unit disk.
Let us now map the hyperbola 2X̂+ = 2X+

2 ∩ {x1 = 0}, namely, the meridian of the upper sheet of
the two-sheeted hyperboloid, into the non-Euclidean unit disk. By setting a = c = 0 and b = 1 in the
equation of the planes given above, from (61), we see that 2X̂+ is mapped into the diameter u1 = 0 of the
non-Euclidean disk: precisely (see (58)), we have the diameter u1 = 0, u2 = tanh(v/2), which tends to
u2 = +1 (i.e., z = +i) for v → +∞ and ψ = 0, and to u2 = −1 (i.e., z = −i) for v → +∞ and ψ = π (see
Figure 4).

Next, we map the parabola 2Π+
w , with apex 2xw = (cosh w, 0, sinh w) lying on the meridian 2X̂+,

which is represented in horocyclic coordinates by Equation (57). The apex 2xw of the parabola lies on the
right branch x2 > 0 of the meridian 2X̂+ for w > 0, and on the left branch x2 < 0 for w < 0; for w = 0,
the apex of the parabola has coordinates (1, 0, 0). These parabolae are generated by the intersection of 2X+

2
with the plane 2Pw whose equation is: x0 + x2 = ew. By substituting in this latter equation the expressions
of x0 and x2 given in (60), we obtain:

u2
1 +

(
u2 +

1
1 + ew

)2
=

e2w

(1 + ew)2 , (63)

which represents a circle. In view of (63), we can thus say that the mapping of the parabolae 2Π+
w into

the unit non-Euclidean disk are the Euclidean circles (images of horocycles) with center in (u1 = 0,
u2 = −(1 + ew)−1), radius rw = (1 + e−w)−1, and tangent from within to the horizon at the point
(u1 = 0, u2 = −1) (i.e., z = −i; see Figure 4). Moreover, these circles cut orthogonally the diameter u1 = 0
of D in the point (u1 = 0, u2 = tanh(w/2)), which lies above the center of D when w > 0 and below the
center of D when w < 0.

3.4. Connection between Spherical Laplace Transform and Non-Euclidean Fourier Transform

3.4.1. Preparatory Lemmas

Lemma 1. (i) The Poisson kernel

P(z, b) =
1− |z|2

1 + |z|2 − 2|z| cos(ψ− φ)

(
z = |z|eiψ′ , ψ′ =

π

2
− ψ; b = eiφ′ , φ′ =

π

2
− φ

)
,

is constant on each horocycle Hb(z) with normal b and passing through z ∈ D.
(ii) The function

[P(z, b)]λ =

[
1− |z|2

1 + |z|2 − 2|z| cos(ψ− φ)

]λ

(λ ∈ C), (64)
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is an eigenfunction of the Laplace–Beltrami operator on the hyperbolic disk D, corresponding to the eigenvalue
λ(λ− 1).

(iii) The hyperbolic waves (horocyclic waves) are represented by the following expression:

eλ〈z,b〉 =

[
1− |z|2

1 + |z|2 − 2|z| cos(ψ− φ)

]λ

(λ ∈ C), (65)

where 〈z, b〉 is the signed non-Euclidean distance between the center of the unit disk D and the horocycle Hb(z) with
normal b that passes through z ∈ D.

(iv) The following equality holds:

[
1− |z|2

1 + |z|2 − 2|z| cos(ψ− φ)

]λ

=
1

[cosh v− sinh v cos(ψ− φ)]λ
(λ ∈ C). (66)

Proof. (i) The level lines of the Poisson kernel P(z, b) are the circles tangent from within to the unit circle
at the point b = eiφ′ ; when interpreted in a non-Euclidean fashion, they represent horocycles Hb(z) with
normal b (p. 7, [26]).

(ii) The Laplace–Beltrami operator ∆D on the non-Euclidean unit disk D is given by [2,27]

∆D =
1
4

[
1− (u2

1 + u2
2)
]2
(

∂2

∂u2
1
+

∂2

∂u2
2

)
.

For λ ∈ C, a direct computation gives [2,27]

∆D [P(z, b)]λ = λ(λ− 1) [P(z, b)]λ (λ ∈ C). (67)

(iii) In the Euclidean case, the function x 7→ eik(x,ω), k ∈ R, ω ∈ S(n−1), x ∈ Rn, represents a plane
wave with normal ω: it is an eigenfunction of the Laplacian in Rn and is constant on every hyperplane
perpendicular to ω. In the case of the non-Euclidean disk D, the geometric analog of the plane wave is the
function represented by Equation (65) [2,27]. In fact, it is an eigenfunction of the Laplace–Beltrami operator
on D, as proved by statement (ii) (see (67)). Let zmin = |zmin|eiχ denote the point on the horocycle Hb(z)
(i.e., the one with normal b = eiφ′ and passing through z) that is closest to the center of D. Then, χ = φ′ or
χ = φ′ + π depending on whether the origin of D lies, respectively, outside or inside the horocycle Hb(z).
Therefore, from the definition of 〈z, b〉, we have:

|〈z, b〉| .
= ln

1 + |zmin|
1− |zmin|

= |ln P(zmin, b)| = |ln P(z, b)| ,

the last equality following from statement (i). If we define 〈z, b〉 .
= ln P(z, b), then 〈z, b〉 is indeed constant

on each horocycle Hb(z) and represents the hyperbolic analog of (x, ω). Moreover, 〈z, b〉 is positive if z is
such that the origin of D lies outside the horocycle Hb(z), whereas it is negative if the origin falls inside.

(iv) Equality (66) follows by plugging |z| = tanh(v/2) in formula (64).

We now introduce the Spherical Functions Φλ(g) on G/K (g ∈ G = SU(1, 1), K = SO(2)).

Definition 1. The Spherical Functions on G/K are defined by [28]

Φλ(g) .
=
∫

B

∣∣∣∣d(g−1 · b)
db

∣∣∣∣λ db (g ∈ G, λ ∈ C),



Mathematics 2020, 8, 287 25 of 30

where B = {z : |z| = 1} is the boundary of the non-Euclidean disk D.

Lemma 2 (Eymard [28]). The functions Φλ(g) satisfy the following properties:

(i) Φλ(g) = P−λ(cosh v), (g ∈ G, λ ∈ C, v ∈ R), where P−λ(·) are the Legendre functions of the first kind.
(ii) ∆DΦλ(g) = λ(λ− 1)Φλ(g), (g ∈ G, λ ∈ C), where ∆D is the non-Euclidean Laplace–Beltrami operator.

(iii) For λ = − 1
2 + iµ (µ ∈ R):

(iii.a) P− 1
2+iµ(cosh v) = P− 1

2−iµ(cosh v),

(iii.b) P− 1
2+iµ(cosh v) =

1
2π

∫ 2π

0

(
1

cosh v− sinh v cos(ψ− φ)

) 1
2−iµ

dφ

=
1

2π

∫ 2π

0

(
1− |z|2

1 + |z|2 − 2|z| cos(ψ− φ)

) 1
2−iµ

dφ

=
1

2π

∫
B

e(
1
2−iµ)〈z,b〉 db (z ∈ D).

(68)

Proof. See Ref. [28].

Remark 6. Representation (68) of the conical function is attained by varying within the integral the angle φ (or,
equivalently, the normal b) in such a way as to span the entire horizon (φ ∈ [0, 2π]). This amounts to considering in
the non-Euclidean disk all the families of horocycles which are obtained by varying the normal b on the horizon. On
the other hand, we have seen in Section 3.2 that only one family of horocycles (the one with tangency point at z = −i)
results from the fibration of the upper sheet 2X+

2 of the real two-sheeted hyperboloid. However, from formula (68),
we see that the same representation of the conical function can be obtained by keeping φ fixed and varying ψ in the
range [0, 2π]. Let us recall once again that here we consider only functions of the form F = F(cosh v) and therefore
not depending on b (see Remark 4(ii)). Consequently, in the non-Euclidean transform (that will be analyzed in the
next subsection), the b-dependence of the integrand derives solely from the integral representation (68) of the conical
function.

3.4.2. Non-Euclidean Fourier Transform

It is well known that the classical Fourier transform refers to the decomposition of a function,
belonging to an appropriate space, into exponentials of the form eikx (k real), which can also be viewed
as the irreducible unitary representations of the additive group of the real numbers. However, the
non-Euclidean disk is not a group. Therefore, a straightforward generalization of this viewpoint is not
applicable here. Nevertheless, in view of the fact that the functions P−λ(cosh v) correspond for λ = 1

2 − iµ
to the principal series of the irreducible unitary representations of the group SU(1, 1), the exponentials
e(

1
2−iµ)〈z,b〉 (µ ∈ R) (see statement (iii.b) of Lemma 2) represent the analog of the Euclidean exponentials

and play the same role in the non-Euclidean Fourier analysis. We can now state the following classical
theorem due to Helgason.

Theorem 4 (Helgason [2,27]). For f ∈ C∞
c (D), let f̃ denote the Fourier transform

f̃ (µ, b) =
∫

D
e(

1
2−iµ)〈z,b〉 f (z)dz (µ ∈ R, b ∈ B), (69)

where dz is the invariant surface element on D. Then:
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(i) The inverse Fourier transform is given by

f (z) =
1

(2π)2

∫
R+

∫
B

e(
1
2+iµ)〈z,b〉 f̃ (µ, b) µ tanh πµ dµ db, (70)

where db is the angular measure on B.
(ii) The mapping f → f̃ extends to an isometry of the space L2(D, dz) onto the space L2(R+ ×

B, 1
2π µ tanh πµ dµ db).

Proof. See Refs. [2,27].

Remark 7. (i) Since we are considering functions of the form F = F(cosh v), we can restrict the
integrals (69) and (70) to the case of radial functions [27] that is, to functions f (z) = F(d(0, z)), F even. In fact,
since d(0, z) = ln 1+|z|

1−|z| and |z| = tanh(v/2), then d(0, z) = v and f (z) = F(v) = F(cosh v). Hence, f̃ (µ, b) is
an even function of µ alone. In view of statements (iii.a) and (iii.b) of Lemma 2 (see also Remark 6), noting that
the expression of the invariant surface element dz in the coordinates (v, ψ) is dz = sinh v dv dψ, and writing
f̃ (µ, b) = 2πF̃(µ), then formulas (69) and (70) read

F̃(µ) =
∫ +∞

0
F(cosh v) P− 1

2+iµ(cosh v) sinh v dv, (71a)

F(v) = F(cosh v) =
∫ +∞

0
F̃(µ) P− 1

2+iµ(cosh v) µ tanh πµ dµ, (71b)

which coincide with formulas (54), i.e., the Mehler transform pair.
(ii) It is worth noting the close analogy between the non-Euclidean Fourier transform pair (69) and (70) and

the Euclidean Fourier transform in the plane R2. The Fourier transform f̃ of a function f on R2 is given by

f̃ (µω) =
∫
R2

f (x)e−iµ (x,ω) dx.

Then, the Fourier inversion formula, valid, for example, if f ∈ C∞
c (R2), reads

f (x) =
1

(2π)2

∫
R+

∫
S1

f̃ (µω) eiµ (x,ω) µ dω dµ,

dω denoting the circular measure on S1 (p. 4, [2]).

3.4.3. Connection between the Spherical Laplace Transform at Re λ = − 1
2 and the Non-Euclidean Fourier

Transform

We can now prove the following theorem.

Theorem 5. Suppose that the sequence { fn}∞
n=0, where fn = (n + 1)2 an (an being the Legendre coefficients of

expansion (14)) satisfies the Hausdorff condition (20). Then:
(i) The spherical Laplace transform at Re λ = − 1

2 , restricted to the odd component (in µ) of ã(σ + iµ) (see
Section 3.1) reads

F̃(µ) =
∫ +∞

0
F(cosh v)P− 1

2+iµ(cosh v) sinh v dv, (72)

where the equality holds in the sense of the L2-norm. Precisely, F(cosh v) ∈ L2(1,+∞) and F̃(µ) is an even
function of µ which belongs to L2(R+, µ tanh πµ dµ).
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(ii) The inverse of formula (72) reads

F(v) = F(cosh v) =
∫ +∞

0
F̃(µ)P− 1

2+iµ(cosh v) µ tanh πµ dµ. (73)

(iii) The following equality holds:∫ +∞

0

∣∣∣F̃(µ)∣∣∣2 µ tanh πµ dµ =
∫ +∞

1
|F(cosh v)|2 d(cosh v). (74)

(iv) The spherical Laplace transform coincides at Re λ = − 1
2 with the non-Euclidean Fourier transform.

Proof. We start by proving statements (ii) and (iii) and, successively, we shall prove (i) and (iv).
(ii) In view of the assumptions on { fn}∞

n=0, we may use the results of Theorem 3 and from formula (50)
with σ ≡ Re λ = − 1

2 :

F(v) = F(cosh v) =
1

4π

∫ +∞

−∞
ã
(
− 1

2 + iµ
)
(2iµ)P− 1

2+iµ(cosh v)dµ. (75)

Let F̃(µ) .
= ã(−1/2+iµ)
−iπ tanh πµ , as we already did when passing from (53) to (54b). Formula (75) can be

rewritten as

F(v) = F(cosh v) =
∫ +∞

0
F̃(µ) P− 1

2+iµ(cosh v) µ tanh πµ dµ, (76)

which coincides with the inverse spherical Laplace transform (73). Note that formula (76) coincides with
the inversion of the non-Euclidean Fourier transform (70) in the specific case of radial functions.

(iii) First, we prove that the l.h.s. of (74) is convergent. The integral
∫ +∞

0 |F̃(µ)|2µ tanh πµ dµ is split

into the integral over [0, 1] plus the integral over [1,+∞). We have
∫ 1

0 |F̃(µ)|
2µ tanh πµ dµ = 1

π2

∫ 1
0 |ã(−

1
2 +

iµ)|2 µ
tanh πµ dµ, which is convergent since limµ→0(µ/ tanh πµ) = 1/π, and ã(− 1

2 + iµ) belongs to L2(0, 1)

for inequality (25). The integral
∫ +∞

1 |F̃(µ)|2µ tanh πµ dµ is convergent since |tanh πµ|−1 6 M (M
constant) for µ ∈ [1,+∞) and

∫ +∞
1 |√µ ã(− 1

2 + iµ)|2 dµ <
∫ +∞

1 |µ2 ã(− 1
2 + iµ)|2 dµ < ∞ in view of

statement (ii) of Proposition 2. We have proved above that (76) coincides with the inverse non-Euclidean
Fourier transform (70). From statement (ii) of Theorem 4, we know that the mapping f → f̃ (which,
in our case, corresponds to the mapping F(v) = F(cosh v) → F̃(µ)) is an isometry of L2(D, dz) onto
L2(R+ × B, 1

2π µ tanh πµ dµdb). Therefore, the convergence of integral
∫ +∞

0 |F̃(µ)|2µ tanh πµ dµ along
with the above mentioned isometry allows us to state equality (74) and that F(cosh v) ∈ L2(1,+∞).

(i) Consider formula (54b), which is the formal expression of the spherical Laplace transform at
Re λ = − 1

2 (restricted to its odd component with respect to the variable µ ∈ R). We note that it coincides
with formula (72) which, by formula (74) proved above, holds as an equality in the sense of the L2-norm,
as specified by statement (i).

(iv) We have indeed proved that formulas (72) and (73) coincide, respectively, with
formulas (71a) and (71b), which are the Mehler reduction of the non-Euclidean Fourier transform
pair (69) and (70).

4. Conclusions

In summary, we have proved the following results. Let the Fourier–Legendre expansion 1
4π ∑∞

n=0(2n+

1)anPn(cos θ), and assume the numbers { fn}∞
n=0 ( fn = (n + 1)2an) to satisfy the Hausdorff-type

condition (20). Then:
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1. (a) The Fourier–Legendre expansion converges to a function f (cos u) analytic in the interval −1 <

cos u < 1.
(b) The function f (cos u) admits a holomorphic extension to the complex (cos θ)-plane (θ = u + iv)
cut along the semi-axis [1,+∞).

2. (a) The Fourier–Legendre coefficients {an}∞
n=0 are the restrictions to non-negative integers of

a transform, called spherical Laplace transform, which is the composition of the ordinary Laplace
transform with the Abel transform of F(v) ≡ F(cosh v), which is the jump function across the cut
[1,+∞). Namely, for Re λ > − 1

2 ,

ã(λ) =
∫ +∞

0
e−(λ+

1
2 )w (AF)(w)dw = 2

∫ +∞

0
F(cosh v) Qλ(cosh v) sinh v dv, (77)

Qλ(·) being the Legendre function of the second kind.

(b) The function ã(λ), holomorphic in the half-plane Re λ > − 1
2 , satisfies Carlson’s bound and

interpolates uniquely the coefficients {an}∞
n=0, that is, an = ã(λ)|λ=n.

3. The jump function across the cut admits the following integral representation:

F(v) = F(cosh v) =
1

2π

∫ +∞

−∞
ã(σ + iµ)

(
σ + 1

2 + iµ
)

Pσ+iµ(cosh v)dµ

=
1

2πi

∫ σ+i∞

σ−i∞
ã(λ)

(
λ + 1

2

)
Pλ(cosh v)dλ

(
σ > − 1

2

)
,

(78)

where Pλ(·) denotes the Legendre function of the first kind. Representation (78) is the inverse of the
spherical Laplace transform (77).

4. (a) For Re λ = − 1
2 the spherical Laplace transform, restricted to the odd component in µ of ã(σ + iµ),

reads

F̃(µ) =
∫ +∞

0
F(cosh v)P− 1

2+iµ(cosh v) sinh v dv, (79)

where F̃(µ) = ã(O)(− 1
2+iµ)

−iπ tanh πµ (ã(O)(− 1
2 + iµ) denoting the odd component of ã(− 1

2 + iµ)). Equality (79)

holds in the sense of L2-norm: F(cosh v) ∈ L2(1,+∞), F̃(µ) ∈ L2(R+, µ tanh πµ dµ). The inverse of
formula (79) reads

F(v) = F(cosh v) =
∫ +∞

0
F̃(µ)P− 1

2+iµ(cosh v) µ tanh πµ dµ. (80)

(b) Formulas (79) and (80) can be written explicitly, passing through Mehler transform, in terms of
non-Euclidean Fourier transform as follows:

f̃ (µ, b) =
∫

D
e(

1
2−iµ)〈z,b〉 f (z)dz (µ ∈ R, b ∈ B), (81)

where f̃ (µ, b) = 2πF̃(µ) and dz is the invariant surface element on the non-Euclidean disk D. The
inverse of (81) is

f (z) =
1

(2π)2

∫
R+

∫
B

e(iµ+
1
2 )〈z,b〉 f̃ (µ, b) µ tanh πµ dµ db,

where db is the angular measure on the boundary B of the unit disk D.
(c) The functions P− 1

2+iµ(cosh v) can be represented as follows:

P− 1
2+iµ(cosh v) =

1
2π

∫
B

e(
1
2−iµ)〈z,b〉 db (µ ∈ R, z ∈ D, |z| = tanh(v/2)),
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where: 〈z, b〉 = ln P(z, b) is the signed non-Euclidean distance from the center of D to the horocycle
with normal b passing through z ∈ D, and P denotes the Poisson kernel.
(d) The conical functions P− 1

2+iµ(cosh v) = P− 1
2−iµ(cosh v) correspond to the fundamental series

of the unitary irreducible representation of the group SU(1, 1), which acts transitively on the
non-Euclidean disk D.

5. Last but not least, we wish to spend a few words to emphasize the differences between the classical
Stein and Wainger approach and ours. First of all, we want to stress the great relevance of the
pioneering work of Stein and Wainger; nevertheless, we believe that some remarks are in order.
(a) Stein and Wainger [9] assume that the Legendre coefficients are the restriction to the integers of
a function (denoted by a(s) in their notation), which belongs to a space H2

∗(Re s > − 1
2 ). This latter is

the space of functions a(s) which belong to H2(Re s > − 1
2 ) and, for which, in addition, the squared

norm ‖a‖2
∗ =

∫ +∞
−∞ |a(−

1
2 + it)− a(− 1

2 − it)|2 t dt
tanh πt is finite. In their approach, it remained open

and rather obscure the following question: How can it be established if the coefficients {an} are the
restriction of a function belonging to H2

∗(Re s > − 1
2 )? Conversely, in our approach, we start directly

from the Legendre coefficients, which are required to satisfy a suitable Hausdorff-type condition
strictly connected with the moment theory. This second approach seems more direct, especially in the
applications (e.g., scattering theory), where only the coefficients of the expansion are known.
(b) A geometrical analysis of the problem (see Section 3 of this paper) is missing in Stein and Wainger’s
work. Correspondingly, the remarkable results of Helgason on the non-Euclidean Fourier analysis are
not mentioned.
(c) In Stein and Wainger’s paper, the analytical properties of the Spherical Laplace Transform, as well
as its character of being the composition of a Laplace and an Abel-type transform, do not emerge.
This also makes the connection between the Mehler transform and the spherical Laplace transform
not transparent.
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