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Abstract: This paper is concerned with the output synchronization problems for a class of delayed
complex dynamical networks. Based on the invariant principle of functional differential equations
and Lyapunov stability theory, the feedback controller and parameter update laws are constructed
for a large-scale network with uncertainties. The general complex delayed network can achieve
synchronization by adaptively adjusting their feedback gains. Numerical examples are presented to
further verify the effectiveness of the proposed control scheme.
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1. Introduction

Ever since small-world and scale-free features were discovered in many real-world networks
(see [1,2] and the references therein) synchronization in complex dynamical network has attracted
much attention for its potential application in [3–13]. It is motivated by a broad area of potential
applications: Networks of robots, formations of flying and underwater vehicles, control of industrial,
electrical, communication, and production networks, etc. Thus, synchronization control for a general
complex dynamical network becomes a new subject of active research. By introducing various
complex dynamical network models, fruitful theoretical and applicable results have been studied
for the corresponding synchronization issues in [14–17]. It is well known that under some extremely
strict conditions, complex dynamical network models can achieve synchronization, especially for
chaotic synchronization. In the past decades, many control methods have been proposed for chaotic
synchronization, see [11,18,19] and the references therein. Min et al. [18] studied the synchronization
of three different chaotic systems by using the theory of discontinuous dynamical systems. Chen et al.
designed a nonlinear synchronization controller with exponential function, and realized the projection
synchronization of two magnetically controlled memory chaotic systems in [19]. However, these
methods focused mainly on synchronization of two identical systems, which is quite different from
synchronization of complex networks. A key reason is that there are numerous mutual coupled cells in
complex networks, with each one being a subsystem. What should be pointed out is that the coupling
strengths of many complex networks are more likely to vary; they can even vary widely, e.g., [20].

Besides, there exist time delays in transmission due to limited transmission speeds or heavy traffic.
It is almost impossible to learn the exact information of strength between cells or time delays, especially
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for a large-scale network. The existences of time delays can deteriorate the control performance and
cause instability, see, e.g., [21–29]. In [21], an adaptive feedback strategy is proposed for a class
of Takagi–Sugeno fuzzy complex networks with unknown topological structure and distributed
time-varying delay, and the designed controller is only related to the dynamic behavior of directly
related nodes. The authors of [22] researched the exponential synchronization of second-order nodes in
dynamic networks with time-varying communication delays and switched communication topologies.
The problem of synchronization control of complex dynamic networks with time-varying delays
is studied in [27], a study in which is designed the synchronization controller of sampling system,
which can make the generated synchronization error system stable. In [28], a global exponential
synchronization criterion considering discrete time communication unit and delay is obtained by
introducing a larger decision matrix. Hence, how to determine the appropriate feedback gain becomes
an unavoidable problem if one adopts common error feedback control schemes. Actually, adaptive
adjustment mechanisms are conveniently applied to the oretical analysis of uncertain closed-loop
controlled systems. Motivated by the above discourse and examination, this paper will concentrate on
adaptive output synchronization of general complex dynamical networks with time-varying delays.

The main contributions are listed as follows:

(i). An appropriate adaptive output feedback synchronize problem is successfully solved for every
cell output of general complex networks with time-varying delays.

(ii). Based on the invariant principle of functional differential equations, the feedback controller and
parameter update laws are constructed for a large-scale network with uncertainties. In addition,
the general complex delayed network can achieve synchronization by adaptively adjusting their
feedback gains.

(iii). Numerical examples are presented to demonstrate the effectiveness of the control scheme.
Compared with the state-feedback case, the output synchronization of the general complex
dynamical network is closer to the real application.

The rest of this article is arranged as follows. The general delayed complex dynamical networks
are introduced in Section 2. The adaptive output feedback synchronization criteria and corresponding
numerical simulations are given in Sections 3 and 4, respectively. Section 5 concludes the paper.

2. Preliminaries and Model Description

Throughout the whole paper, R is the set of real numbers; R+ denotes the set of all non-negative
real numbers; Ri is the i-dimensional Euclidean space; ‖ · ‖ denotes the Euclidean norm of a vector or
its induced matrix norm and | · | stands for the absolute value of a function or constant.

Lemma 1 (see [30]). For any vectors x, y ∈ Rn and positive definite matrix P ∈ Rn×n, the following linear
matrix inequality holds: 2xTy ≤ xT Px + yT P−1y.

The design goal of this paper is to design an output feedback controller for a class of nonlinear
time-varying delay coupled complex dynamical network to achieve synchronous control. Without
loss of generality, we consider a general dynamical network with time-varying delays [11], the
network consists of N identical cells with diffusion linear coupling, each of which is an n-dimensional
dynamic subsystem.

One considers{
ẋi(t) = fi(xi) + ∑N

j=1 Gij(t)yj(t) + ∑N
j=1 Ĝij(t)yj(t− τ(t)) + ui(t),

yi(t) = Cxi(t), i ∈ L = {1, 2, · · · , N},
(1)

where fi(·) ∈ Rn is continuously differentiable, governing the dynamics of the isolated cell, xi =

[xi1, xi2, · · · , xin]
T stands for the state variable of the i-th cell, τ(t) ≥ 0 represents the time delay,

and ui(t) is the controller, C ∈ Rn×n is the output matrix with an inverse, the coupling matrices
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Gij(t), Ĝij(t) ∈ RN×N describe the topology of the network and coupling strength between cells at
time t, with Gii(t) (the diagonal entries Ĝii(t) can be defined in the same way) being

Gii(t) = −
N

∑
j=1,j 6=i

Gij(t), i ∈ L. (2)

Obviously, all entries of coupling matrices are time-varying bounded uncertainties such that{
|Gij(t)| < m

|Ĝij(t)| < n
∀i, j = 1, 2, · · · , n

with m, n ∈ R+. For fi(·) ∈ Rn, one has

fi(x)− fi(y) = Mx,y(x− y), ∀x, y ∈ Rn,

where Mx,y = M(x, y) is a bounded matrix such that ||Mx,y|| ≤ α with α ∈ R+.

Remark 1. Since Mx,y is a bounded matrix, there must exist a constant λm such that λ(Mx,y + MT
x,y) < λm,

where λ(·) is the eigenvalue of the corresponding matrix.

The objective of this paper is to achieve an asymptotical output synchronization for (1). Such that

lim
t→∞

(yi(t)− ŷ(t)) = 0, ∀i ∈ L, (3)

where ŷ(t) = CTs(t) is the synchronous output of the whole network. Consider

ṡ(t) = f (s(t)), (4)

s(t) is one solution of an isolated cell can be an equilibrium point, a periodic orbit, and an aperiodic
orbit, or a chaotic orbit in the phase space. To realize the objective, the following assumption is imposed
on System (1).

Assumption 1. In general delayed systems, time delay τ(t), usually written as τ for simplification, satisfies{
0 ≤ τ(t) ≤ ς1

τ̇(t) ≤ ς2 ≤ 1,
(5)

where ς1 and ς2 are both positive constants.

Remark 2. This paper mainly studies a general dynamical network with time-varying delays. What should be
emphasized is that Assumption 1 is reasonable and widely applied. Assumption 1 is generally and commonly
adopted, see [7,8,10,11]. If the delay is too large or the delay changes too fast, the controller will fail. Assumption
1 can limit the time variation of the system to a certain range, and the model closer to the real application.

Let

ei(t) = xi(t)− s(t),

εi(t) = yi(t)− ŷ(t), (6)

the dynamical network (1) can achieve output synchronization if

lim
t→∞
||εi(t)||2 = lim

t→∞
||ei(t)||2 = 0, ∀i ∈ L. (7)
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3. Output Synchronization in Complex Delayed Networks

Consider Systems (1) and (6), the following error dynamical system can be achieved:{
ėi = Mxi ,sei + ∑N

j=1 Gijε j + ∑N
j=1 Ĝijε

τ
j + ui,

εi = Cei,
(8)

where ετ
j = ε j(t− τ(t)). Choose Lyapunov function,

V(t) =
N

∑
i=1

Vi(ei, eτ
i ), (9)

Vi(ei, eτ
i ) =

1
2

eT
i ei +

1
2

HT(Ki − l In)
2H +

1
2(1− ς2)

∫ t

t−τ
eT

i (θ)ei(θ)dθ, (10)

where eτ
i = ei(t− τ(t)), H = [1, 1, · · · , 1]T , In is an n× n unit matrix, and l is the normal constant to

be determined. The time derivative of Vi along the error dynamic system trajectory (8) is given by

V̇i =
1
2

ėT
i ei +

1
2

eT
i ėi + HT(Ki − l In)K̇i H +

1
2

δ1eT
i ei −

1
2

δ2eτT
i eτ

i

=
1
2

eT
i (Mx1,s + MT

x1,s)ei +
N

∑
j=1

GijeT
i Cej +

N

∑
j=1

ĜijeT
i Ceτ

j −
1
2

eT
i (KiC + CTKi)ei

+ εT
i (KiΓi − l In)εi +

1
2

δ1eT
i ei −

1
2

δ2eτT
i eτ

i

=
1
2

eT
i (Mx1,s + MT

x1,s − 2lCTC)ei +
N

∑
j=1

GijeT
i Cej +

N

∑
j=1

ĜijeT
i Ceτ

j +
1
2

δ1eT
i ei −

1
2

δ2eτT
i eτ

i

+
1
2

eT
i (2CTKiΓiC− KiC− CTKi)ei,

where δ1 = 1/(1− ς2), δ2 = (1− τ̇)/(1− ς2). According to (5), one has

0 ≤ 1− ς2 ≤ 1− τ̇.

It is obvious that δ2 > 1. Then, (14) can be rewritten as

Kij = Γij

∫ t

0
ε2

ij(v)dv + Kij(0).

On the other hand, since (15) holds and CTΓ2
i C > 0, one can obtain

Ki(0)C + CTKi(0)− 2CTKi(0)C > θ1 In > 0,

ai(2CTΓ2
i C− CTΓi − ΓiC) > θ2 In > 0,

by properly selecting Γi > 0, where θ1, θ2 ∈ R+ such that θ1 > θ2, and

ai = min{
∫ t

0
ε2

ij(v)dv|j = 1, 2, · · · , n} > 0.

Therefore, it holds that
2CTKiΓiC ≤ KiC + CTKi.
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Thus, it can be received that

V̇i ≤
1
2

eT
i (Mx1,s + MT

x1,s − 2lCTC)ei +
N

∑
j=1

GijeT
i Cej +

N

∑
j=1

ĜijeT
i Ceτ

j +
1
2

δ1eT
i ei −

1
2

eτT
i eτ

i

≤ 1
2
(λm + δ1 − 2lλc)eT

i ei +
N

∑
j=1

GijeT
i Cej +

N

∑
j=1

ĜijeT
i Ceτ

j −
1
2

eτT
i eτ

i , (11)

where λc = λmin(CTC) > 0 is the minimal eigenvalue of CTC. Substituting System (11) into System
(9), one can get

V̇ ≤ 1
2
(λm + δ1 − 2lλc)eTe− 1

2
eτTeτ +

N

∑
i=1

N

∑
j=1

GijeT
i Cej +

N

∑
i=1

N

∑
j=1

ĜijeT
i Ceτ

j , (12)

where e = [eT
1 , eT

2 , · · · , eT
N ]

T .
Now, we give the main result in the following theorem.

Theorem 1. With the controller
ui(t) = −Ki(t)εi(t), (13)

and the parameter updating laws
K̇ij(t) = Γijε

2
ij(t), (14)

with 1 ≤ j ≤ n, the general delayed network (1) is synchronous with ŷ(t) starting from any initial condition
xi(0) and s(0), where Ki(t) and Γi are both diagonal matrices with Ki(0) being selected by

Ki(0)C + CTKi(0) > 0, (15)

and Γij > 0 for all i ∈ L.

Proof. Using Lemma 1, (12), and λ(CTC) = λ(CCT), one can yield

V̇ ≤ 1
2
(λm + δ1 − 2lλc)eTe− 1

2
eτTeτ +

1
2

N

∑
i=1

N

∑
j=1

(eT
i G2

ijCCTei + eT
j ej)

+
1
2

N

∑
i=1

N

∑
j=1

(eT
i Ĝ2

ijCCTei + eτT
j eτ

j )

≤ 1
2
(λm + δ1 + N(λcm2 + 1 + λcn2)− 2lλc)eTe.

Selecting

l =
λm + δ1 + N(λcm2 + 1 + λcn2) + 2

2λc
,

one can get V̇ ≤ −eTe. Obviously, V̇ = 0 if and only if e(t) = 0. According to the invariant principle
of functional differential [31], e(t)→ 0 as t→ ∞. Thus, the output error ε(t) of (8) is asymptotically
stable under the adaptive controllers (13) and updating laws (14). Namely, the dynamical network (1)
achieves output synchronization, which completes the proof.

Remark 3. In fact, one cannot always find a diagonal matrix Ki(0) to satisfy (15). A sufficient condition is
that all diagonal entries of an output matrix are not equal to zero. Let us explain how to select Ki(0).
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Consider a linear matrix inequality

M(n) = K(n)C(n) + CT
(n)K(n) > 0, (16)

where K(n) is an n× n diagonal matrix to be determined, and C(n) ∈ Rn×n can be any matrix whose
entries Cii 6= 0 for all i ≤ n.

Let εi be a large enough positive constant with i = 1, 2, · · · , n.

(1) If n = 1, it is easy to select ε1 > K(1)C(1) > 0.
(2) If n = 2, one can select Kii which is satisfied

K11C11 > 0, K11K22|C(2)| > 0,

where K11 = K(1), C11 = C(1). Thus, ε2 I2 > M(2) > 0 holds.
One supposes that εm Im > M(m) > 0 holds by selecting proper Kii for all i ≤ m and m =

1, 2, · · · , n. If n = m + 1, M(m+1) can be rewritten as

M(m+1) =

[
M(m) K(m)x + ky

xTK(m) + kyT 2kc

]
,

where x, y ∈ Rn, c = Cm+1,m+1, k = Km+1,m+1, and

C(m+1) =

[
C(m) x
yT c

]
, K(m+1) =

[
K(m) 0

0 k

]
.

Since
2kc− (xTK(m) + kyT)M−1

(m)
(K(m)x + ky) > 0,

one has M(m+1) > 0. By solving the above inequality, one can easily derive that k has solutions if and
only if

c > 2xT M−1
(m)

y or c < 2xT M−1
(m)

y. (17)

(17) holds if

c > 2ε−1
m xTy or c < 2ε−1

m xTy. (18)

Since εm is large enough, (18) always holds. Therefore, one gets M(n) > 0.

4. Numerical Simulations

In this part, the nonlinear examples are presented to further verify the effectiveness of the
proposed adaptive feedback. Consider a nine-node network with each cell being an identical Lorenz
system, which is described by 

ẋi1 = a1(xi2 − xi1)

ẋi2 = b1xi1 − xi2 − xi1xi3

ẋi3 = −c1xi3 + xi1xi2,

(19)
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where a1 = 10, b1 = 8/3, c1 = 28. The system has a bounded, zero volume, globally attracting set [32].
Therefore, the state trajectories xij with j = 1, 2, 3 are always bounded and continuously differentiable,
and Mx,y is a bounded matrix. The output matrix C is

C =

 1 2 3
2 −1 1
0 1 2

 .

Given time delay τ = et/(1 + et) and the coupling matrices being

G(t) =



−2e−t e−t 0 0 0 0 0 0 e−t

arctan t −2 arctan t arctan t 0 0 0 0 0 0
0 −e−2t 3e−2t −2e−2t 0 0 0 0 0
0 0 1 −4 3 0 0 0 0
0 0 0 −th(t) 0 th(t) 0 0 0
0 0 0 0 −2 sin t sin t sin t 0 0
0 0 0 0 0 0 arctan t − arctan t 0
0 0 0 0 0 0 −2th(t) th(t) th(t)

−3e−3t 0 0 0 0 0 0 e−3t 2e−3t


,

Ĝ =



−3 2 0 0 0 0 0 0 1
3 −2 −1 0 0 0 0 0 0
0 1 −2 1 0 0 0 0 0
0 0 2 −5 3 0 0 0 0
0 0 0 1 −4 3 0 0 0
0 0 0 0 −1 −2 3 0 0
0 0 0 0 0 2 −2 0 0
0 0 0 0 0 0 1 0 −1
1 0 0 0 0 0 0 1 −2


,

where th(t) = (et − e−t)/(et + e−t).
By exactly following the design procedue in Section 3 with

Ki(0) =

 1 0 0
0 −1 0
0 0 2

 ,

Γi = In for all i ∈ L. According to Theorem 1, the synchronous solution s(t) of the obtained dynamical
network is globally asymptotically stable.

If the isolated cell is a Chua’s oscillator, which is given by
ẋi1 = a2(xi2 − xi1 − h(xi1))

ẋi2 = b2(xi1 − xi2) + c2xi3

ẋi3 = −dxi2,

where a2 = 7, b2 = 0.35, c2 = 0.5, d = 7, and

h(x) = m1x +
1
2
(m2 −m1)(|x + 1| − |x− 1|),
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with m1 = −1/7 and m2 = −40/7. One can easily derive

|h(x)− h(s)|2 ≤ m0ei1 + (m0 −m1)|ei1| ≤ −m1|ei1|.

Thus, Chua’s oscillator satisfies the Lipschitz condition. The synchronous error ei(t) is shown in
Figure 1, where s(0) = [1.5,−4.4, 0.15]T . Obviously, the zero error is globally asymptotically stable for
(8). Thus, the designed controller can make the closed-loop systems asymptotically stable.

0 10 20
−10

−5

0

5

t

e i1

0 10 20
−5

0

5

t
e i2

0 10 20
−5

0

5

t

e i3

Figure 1. The errors between the cell output and synchronous output, with a chaotic Chua system
being a cell.

5. Conclusions

An appropriate adaptive output feedback synchronize problem is introduced for a general
dynamical network with time-varying delays. The general complex delayed network can achieve
synchronization by adaptively adjusting their feedback gains. Based on the invariant principle of
functional differential equations, the feedback controller and parameter update laws are constructed for
a large-scale network with uncertainties. Numerical examples are given to demonstrate validity of the
control scheme. A problem under investigation is how to design a controller with better performance
in terms of timing and speed of synchronous control for System (1).
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