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Abstract: Using an exhaustive computer search, we prove that the number of inequivalent (29, 5)-arcs
in PG(2, 7) is exactly 22. This generalizes a result of Barlotti (see Barlotti, A. Some Topics in Finite
Geometrical Structures, 1965), who constructed the first such arc from a conic. Our classification result
is based on the fact that arcs and linear codes are related, which enables us to apply an algorithm
for classifying the associated linear codes instead. Related to this result, several infinite families of
arcs and multiple blocking sets are constructed. Lastly, the relationship between these arcs and the
Barlotti arc is explored using a construction that we call transitioning.
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1. Introduction

Let Fq be the finite field with q elements, q a prime power. We denote by PG(2, q) the projective
plane over Fq. Two subsets K1 and K2 in PG(2, q) are projectively equivalent (denoted by K1 ∼ K2) if
there exists a projectivity τ such that τ(K1) = K2. An (n, r)-arc K in PG(2, q) is an n-set in PG(2, q) such
that each line contains at most r points of K and some lines contain exactly r points of K. An (n, 2)-arc
in PG(2, q) is simply called an n-arc. A fundamental problem of (n, r)-arcs in PG(2, q) is the following.

Problem. Let r be an integer with 2 ≤ r ≤ q− 1.

(1) Find mr(2, q), the maximum value of n for which an (n, r)-arc exists in PG(2, q).
(2) Classify (n, r)-arcs in PG(2, q) for n = mr(2, q) up to projective equivalence.

In the cases 3 ≤ q ≤ 16, the values of mr(2, q) are known as given in Table 1, see [1,2]. It is
also known that every (q + 1)-arc is projectively equivalent to a conic V(x2

1 − x0x2) when q is odd,
and that every (q + 2)-arc is projectively equivalent to a conic plus a point (called the nucleus) when
q = 4 or 8 [3]. Marcugini et al. [4,5] proved with the aid of a computer that (15, 3)-arcs in PG(2, 7)
are unique, and Hill and Love [6] showed that there are three (22, 4)-arcs in PG(2, 7) up to projective
equivalence, see Table 2 (see also [7,8] for q = 8, 9). In unpublished work, the authors of [7] have
classified the (33, 5)-arcs in PG(2, 8).
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Table 1. The known values and bounds on mr(2, q), 3 ≤ q ≤ 16.

r \ q 3 4 5 7 8 9 11 13 16

2 4 6 6 8 10 10 12 14 18

3 9 11 15 15 17 21 23 28

4 16 22 28 28 32 38–40 52

5 29 33 37 43–45 49–53 65

6 36 42 48 56 64–66 78–82

7 49 55 67 79 93–97

8 65 78 92 120

9 89–90 105 129–130

10 100–102 118–119 142–148

11 132–133 159–164

12 145–147 180–181

13 195–199

14 210–214

15 231

Table 2. The number of inequivalent (mr(2, q), r)-arcs.

r \ q 3 4 5 7 8 9

2 1 1 1 1 1 1

3 3 2 1 19 4

4 6 3 1 ?

5 22 6 ?

6 194 5 1

7 ? ?

8 ?

For 5-arcs in PG(2, 7), it has been known that the maximal size is n = 29 [9,10], but it was not
known how many inequivalent arcs of maximal size exist. In [11], the second author presented 13
inequivalent (29, 5)-arcs in PG(2, 7). Subsequently, Professor M. Grassl, attending the same conference,
found in total 22 inequivalent linear codes corresponding to (29, 5)-arcs with the help of the computer
algebra system Magma [12]. Those results have been presented in [13]. Finally, using the package
Q-EXTENSION developed by the first author [14] (see Section 2), the following extended result has
been confirmed.

Theorem 1. There are exactly 22 inequivalent (29, 5)-arcs in PG(2, 7) as listed in Table 3.
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Table 3. The (29, 5)-arcs in PG(2, 7).

Arc a0 a1 a2 a3 a4 a5 |Aut| Construction

K1 0 5 3 9 6 24 6

K2 0 8 0 0 21 28 336 Barlotti [10]

K3 1 3 4 8 8 33 2

K4 1 4 3 5 13 31 2

K5 2 1 5 7 10 32 2

K6 2 1 6 4 13 31 1

K7 2 2 2 10 9 32 2

K8 2 2 4 4 15 30 2

K9 2 2 4 4 15 30 2

K10 2 3 2 4 17 29 2

K11 3 0 3 9 11 31 1 Theorem 4 (3)

K12 3 0 3 9 11 31 6

K13 3 0 4 6 14 30 2 Theorem 3

K14 3 1 1 9 13 30 1 Theorem 4 (2)

K15 3 1 2 6 16 29 1

K16 3 1 2 6 16 29 1

K17 3 1 2 6 16 29 2

K18 3 1 3 3 19 28 3

K19 3 2 0 6 18 28 2

K20 3 2 0 6 18 28 6 Theorem 5

K21 4 0 0 8 17 28 8 Example 2.3 in [15]

K22 4 0 1 5 20 27 2 Theorem 7

In Section 2, we explain the algorithms in the package Q-EXTENSION, which is used for
classification of linear codes with many different parameters over different fields including codes with
given restrictions (self-orthogonal, self-complementary, etc.). Many published results are based on
calculations with Q-EXTENSION and most of them are verified with other software, programs and
theoretical proofs (for example [16]).

An [n, k]q code C is a linear code over Fq of length n and dimension k. C is called an [n, k, d]q code
if it has minimum weight d. A k× n matrix over Fq whose rows form a basis of C is called a generator
matrix of C. A code C is projective if any two columns of G are linearly independent. Consequently,
G has no all-zero column if C is projective. Two q-ary codes are equivalent if one can be obtained from
the other by a sequence of the following transformations: (1) a permutation of the coordinate positions
of all codewords; (2) a multiplication of a coordinate of all codewords with a nonzero element of Fq;
(3) a field automorphism. The set of all automorphisms of C forms the automorphism group of C,
denoted by Aut(C). Two codes are monomially equivalent if one can be obtained from the other by a
sequence of the transformations (1) and (2). The equivalent codes over a prime field are monomially
equivalent. For i = 1, 2, let Gi be a generator matrix of a projective [n, k, d]q code Ci and let Ki be the
n-set in PG(k− 1, q) corresponding to the n columns of Gi. Then C1 and C2 are monomially equivalent
if and only if K1 ∼ K2.

For a projective [n, 3, d]q code C with a generator matrix G, the n columns of G can be considered
as an (n, n− d)-arc in PG(2, q) and vice versa. For more details about the equivalence between sets in
projective spaces over a finite field and linear codes, see Chapter 16 in [17].



Mathematics 2020, 8, 320 4 of 16

An ( f , m)-blocking set B in PG(2, q) is an f -set such that each line contains at least m points of B and
some lines contain exactly m points of B. If n + f = q2 + q + 1 and r + m = q + 1, then the complement
Kc of an (n, r)-arc K in PG(2, q) is an ( f , m)-blocking set. Thus, (n, r)-arcs and ( f , m)-blocking sets are
equivalent objects.

Lemma 1 ([17,18]). Let C be a projective [n, 3]q code with a generator matrix G and let K be the n-set in
PG(2, q) given by the n columns of G. Then, C has minimum weight d if and only if K is an (n, n− d)-arc
(equivalently, Kc is a (q2 + q + 1− n, q + 1− (n− d))-blocking set) in PG(2, q).

For an [n, k, d]q code, we have n ≥ d + d d
q e+ · · ·+ d

d
qk−1 e, which is called the Griesmer bound.

A linear code attaining the Griesmer bound is called a Griesmer code. Since Griesmer [n, k, d]q codes
with d ≤ qk−1 are projective [18], the (29, 5)-arcs in PG(2, 7) and the [29, 3, 24]7 codes are equivalent
objects. For a set K in PG(2, q), a line is called an i-line if it meets K in exactly i points. We denote ai(K)
(or simply ai when no confusion arises) the number of i-lines of K. The list {ai} is called the spectrum
of K. Let Aut(K) be the automorphism group of K, that is, the set of projectivities τ in PGL(3, q) with
τ(K) = K. The spectra, together with the order of the automorphism group for the 22 projectively
inequivalent (29, 5)-arcs in PG(2, 7) are given in Table 3.

In Section 3, we construct the arcs K1, . . . , K22 in Table 3 without computer. We show how to
construct these arcs from the well-known arc found by Barlotti [10] by exchanging some points,
an operation called transition. From the geometrical point of view, we show how to distinguish K8

and K9 (also K15 and K16), which can not be distinguished from their spectra and automorphism
group orders.

In Section 4, we generalize some of the (29, 5)-arcs given in Section 3 to (q2 − 3q + 1, q− 2)-arcs
(equivalently, (4q, 3)-blocking sets) in PG(2, q).

Remark 1. We have also confirmed that there are exactly 194 inequivalent (36, 6)-arcs in PG(2, 7) by exhaustive
search using the package Q-EXTENSION as in Table 2. For the 194 inequivalent (36, 6)-arcs in PG(2, 7), see
http://mars39.lomo.jp/opu/36_3_30.txt.

Remark 2. A similar interesting problem in the real projective plane is so called the real configuration problem.
A configuration of lines and points is called an (nk) configuration if it consists of n lines and n points, each
of which is incident to exactly k of the other type. It is called geometric if these are points and lines in the real
projective plane. Especially, the problem concerning the existence of geometric (n4) configurations remains open
only for the case n = 23, see [19].

Remark 3. The (29, 5)-arc K2 in Table 3 is given as K2 = C ∪ I(C), in Section 3, where C is a conic and I(C)
is the interior of C. In [20], they gave a realization of the configuration (214) and Coxeter’s coordinates of them
in the plane PG(2, 7), which is equals to I(C) where C is the conic defined by the equation x2 + y2 + z2 = 0.

2. Algorithms in the Package Q-EXTENSION

We have proved that there are exactly 22 inequivalent (29, 5)-arcs (and also 194 inequivalent
(36, 6)-arcs) in PG(2, 7) by exhaustive computer search using the package Q-EXTENSION [14]. It is
available on the web page http://www.moi.math.bas.bg/~iliya/Q_ext.htm of the first author for fields
with q ≤ 5 elements (for larger fields write to Iliya Bouyukliev). In this section we briefly describe the
algorithms in the package. We present the explanation in terms of linear codes because Q-EXTENSION

is a software for construction and investigations of linear codes. We discuss the background and give
the main ideas.

Each linear code is completely determined by its generator matrix. The main problem we solve is
how to construct generator matrices of all inequivalent linear codes with length n, dimension k, and
minimum distance d over the field Fp, where p is a prime. If we know a part of the generator matrix,

http://mars39.lomo.jp/opu/36_3_30.txt
http://www.moi.math.bas.bg/~iliya/Q_ext.htm
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the problem will be much easier. This previously given part (submatrix) can be a generator matrix of a
residual code or the identity matrix of size k, since any code has a generator matrix in systematic form.

Let G be a generator matrix of an [n, k, d]p code C. Then the residual code Res(C, c) of C with respect
to a codeword c is the code generated by the restriction of G to the columns where c has zero entries.

Lemma 2 ([21]). Let C be an [n, k, d] code over Fp and let c ∈ C be a codeword of weight w < (p/(p− 1))d.
Then Res(C, c) is an [n− w, k− 1, d′] code with d′ ≥ d− w + dw/pe.

Let C be an [n, k, d]p code with generator matrix G and let G0 be a k× (n−m) matrix with rows
g1, . . . , gk such that G = (G0 X). The main idea of our approach is to construct all inequivalent codes
with given parameters on the current step and to use these codes (their generator matrices) in the next
step of the extension.

Let Ω1 be the set consisting of the codes generated by a matrix in the form

G1 =


g1 a11 . . . a1m

g2
... O

gk

 ,

where O is the zero matrix, and a = (a11, . . . , a1m) is such a vector that the first row of G has weight
≥ d. We can assume that a11 = . . . = a1j = 0 and a1,j+1 = . . . , a1m = 1. The codes from Ω1 form
the root of our search tree. We define Ωs to be the set of all codes which have a generator matrix of
the form

Gs =



g1 a11 . . . a1m
...

...
. . .

...
gs as1 . . . asm

gs+1
... O

gk


,

such that the first s rows of Gs generate an [n, s]p code whose minimum weight is at least d.
We use the equivalence of codes in terms of group action on a proper set. We consider the action

of the group Mn of all monomial matrices of size n on the set Ω of linear codes with length n over the
field Fp. This action induces an equivalence relation in Ω as two codes C1, C2 ∈ Ω are equivalent if and
only if they belong to the same orbit. Hence the equivalence classes for the defined relation are the
orbits with respect to this action. The set of matrices σ ∈ Mn such that Cσ = C form the automorphism
group Aut(C) of the linear code C.

The nodes in our search tree are objects from the search space Ω = Ω1 ∪Ω2 ∪ · · · ∪Ωk. From
a linear code A ∈ Ωs−1 corresponding to the node A, we obtain linear codes from Ωs which are
children of the code A. We denote the set of inequivalent children by Child(A). The elements of
Child(A) correspond to the nodes of the next level which are connected to A by edges. To find only the
inequivalent children in Ωs, s < k, we use a special type of equivalence which we call equivalence up to
extension. This type of equivalence is defined considering the action of the subgroup of Mn consisting
of the monomial matrices of block-diagonal form with two blocks of sizes n−m and m, respectively.
Obviously, such a matrix acts on the first n−m coordinates and the last m coordinates of the given
linear code C separately.

It is easy to see that two equivalent codes up to extension have equivalent children. Practically,
the rule A→ Child(A), which connects all children to a code, defines our search tree. The execution of
the algorithm can be considered as traversing the search tree and visiting all nodes through the edges.
This can be done by a depth first search.



Mathematics 2020, 8, 320 6 of 16

We use the algorithm only in the case when the search tree is not so big. That is why our isomorph
rejection approach is very natural, and it is known as isomorph rejection with recorded objects [22].
The basic idea of this technique is to keep a global record R of the objects seen so far during traversal
of a search tree. Whenever an object C is constructed, it is checked for equivalence against the recorded
objects in R. If C is equivalent to an object in R, then the subtree rooted at C is pruned. This approach
is fast enough for us because of concepts of canonical form. The use of canonical form reduces the
problem of equivalence test of codes to comparison of codes (for more details see [22]).

We obtain the automorphism group and a canonical form of a given code C using a modification
of the algorithm presented in [23]. This algorithm gives the order of the group, a set of generating
elements, and a canonical permutation. One of the advantages of the algorithm is the effective
construction of child codes. We give an example.

Example 1. Let us try to construct all [13, 3, 9]3 codes taking their generator matrices in a systematic form:

G =

 100
010 X
001

 .

Any row in the unknown matrix X must have at least eight nonzero coordinates. For a row a in X, consider
the triple (x0, x1, x2), where xi is the number of coordinates in a equal to i, i = 0, 1, 2. We are looking for
all triples with x0 + x1 + x2 = 10 and x1 + x2 ≥ 8. The number of nonnegative triples which satisfy these
constrains is 30. They form the set S1 of possible solutions.

Without loss of generality we can take the first row of X to be (0011111111), (0111111111) or
(1111111111). This means that the root Ω1 consists of three codes with generator matrices 100 0011111111

010 0000000000
001 0000000000

 ,

 100 0111111111
010 0000000000
001 0000000000

 ,

 100 1111111111
010 0000000000
001 0000000000

 .

Consider in detail the first node. We can divide the matrix X into two parts, X = (X1 X2) where X1 and
X2 have 2 and 8 columns respectively. Using the possible solutions from S1, the algorithm finds by exhaustive
search all possible solutions for the next rows as tuples of triples {(x00, x01, x02), (x10, x11, x12)} such that
x0i = |{bj = i, 1 ≤ j ≤ 2}|, x1i = |{bj = i, 3 ≤ j ≤ 10}|, where b = (b1, b2, . . . , b10) is the second or third
row of X. The constrains for xij are

x00 + x01 + x02 = 2, x10 + x11 + x12 = 8, x0i + x1i = xi, i = 0, 1, 2.

We denote by S2 the set of all possible solutions in this step. Furthermore, the code generated by the vectors
(100011111111) and (010|b) must have minimum distance at least 9 which reduces the possibilities and the
algorithm obtains

S2 = {{(0, 2, 0), (2, 3, 3)}, {(0, 1, 1), (2, 3, 3)}, {(0, 0, 2), (2, 3, 3)}}.

This gives us the information that the first two coordinates of b are not zeros, but two of the other 8
coordinates are zeros, three of them are 1 and three are equal to 2. It turns out that, up to a permutation, the
second row of X must be (1100111222), (1200111222) or (2200111222). The codes which correspond to these
solutions have generator matrices 100 0011111111

010 1100111222
001 0000000000

 ,

 100 0011111111
010 1200111222
001 0000000000

 ,

 100 0011111111
010 2200111222
001 0000000000

 .



Mathematics 2020, 8, 320 7 of 16

Obviously, these three codes are equivalent, therefore there is only one node in the second level of the tree
connected with the considered root node.

Now we divide the matrix X into four parts (cells), X = (X1 X20 X21 X22) where X20, X21 and X22 have
2, 3 and 3 columns respectively. One possible solution for the matrix G is 100 0011111111

010 1100111222
001 1212012012

 .

This solution turns out to be unique up to equivalence. The solution for the third row comes from
{(0, 1, 1), (2, 3, 3)} ∈ S2. The algorithm also provides that the code C must be projective. It is easy to prove
that the matrix G in systematic form cannot have rows with weights 9 and 10 (the algorithm proves this by
exhaustive search).

The same code can be constructed using as a prescribed part its residual code with respect to a codeword of
weight 9. The residual code has parameters [4, 2, 3]3. There is a unique ternary code with these parameters, so we
are looking for a generator matrix of C in the form 0000 111111111

1011 . . .
0112 . . .

 .

The algorithm in this case works in a similar way and it is even more effective, but it is a little bit more
complicated to explain.

Consider now the construction of the [29, 3, 24]7 codes. If C is a code with these parameters,
then its residual code with respect to a codeword of weight 24 is a [5, 2, 4]7 code. It is easy to prove

(even by hand) that the code with a generator matrix

(
10111
01123

)
is, up to equivalence, the only [5, 2, 4]7

code. Therefore we are looking for a generator matrix of C of the form

G =

 00000 111111111111111111111111
10111 . . .
01123 . . .

 .

The program finds all inequivalent solutions in about 23 hours on a computer with Intel Xeon
E5-2640 processor. The constructed tree consists of 8 nodes on the second level and 22 nodes on the
third level. In this case the tree is not big, but finding solutions for the last level is computationally
expensive. Since this search is exhaustive, we can conclude that there are exactly 22 [29, 3, 24]7 codes
up to equivalence, which proves Theorem 1.

Remark 4. Many problems for classification of combinatorial objects are solved using computer programs. But
there are only a few more general software packages for such classification, for example “Split” by David Jaffe [24]
and “Orbiter” by Anton Betten [25]. Q-EXTENSION is convenient for our purposes, we have experience with it
and therefore we use exactly this package in our classification.

3. Construction of (29, 5)-Arcs in PG(2, 7)

We start with the conic

C = {P(1, a, a2) | a ∈ Fq} ∪ {P(0, 0, 1)}.

A line ` in PG(2, q) is called external, tangent or secant to C if |C ∩ `| = 0, 1 or 2, respectively.
For odd q, a point P /∈ C in PG(2, q) is called internal or external if the number of tangent lines on
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P is 0 or 2, respectively. Let I(C) (resp. E(C)) be the set of all internal (resp. external) points of C.
Then, |I(C)| = q(q− 1)/2, |E(C)| = q(q + 1)/2, see ([3] Chapter 8). The following construction of a

( q2+q+2
2 , q+3

2 )-arc in PG(2, q) is due to [10].

Theorem 2. For q odd, let K = I(C) ∪ C. Then

(1) K forms a ( q2+q+2
2 , q+3

2 )-arc in PG(2, q) with spectrum

(a1, a(q+1)/2, a(q+3)/2) = (q + 1, q(q− 1)/2, q(q + 1)/2).

(2) Aut(K) ∼= PGL(2, q) and |Aut(K)| = q(q2 − 1).

Proof. The tangents, the secants and the external lines of C are 1-lines, (q + 3)/2-lines and (q +

1)/2-lines for the arc K, respectively. Recall that Aut(C) ∼= PGL(2, q) [3]. Since any automorphism σ

of K satisfies σ(E(C)) = E(C), σ maps any tangent line of C to a tangent line. Then, σ(C) = C and
σ(I(C)) = I(C). Hence, we get the assertion.

Let K2 be the above arc K for q = 7. We denote the line {P(x, y, z) ∈ PG(2, q) | ax + by + cz = 0}
by [a, b, c] or [abc]. There is another simple construction of a (29, 5)-arc in PG(2, 7).

Lemma 3 (Example 2.3 in [15]). Let B0 be the set of points on the lines [100], [010], [001], [111] together with
the points P(−1, 1, 1), P(1,−1, 1). Then, the complement of B0 forms a (q2 − 3q + 2, q− 2)-arc if q is even
and a (q2 − 3q + 1, q− 2)-arc if q is odd.

The arc K21 given below is such an arc obtained by the above lemma for q = 7. We give another
construction for K21 later. See Section 4 for the spectra of the arcs in Lemma 3.

In the following, we show how to construct the arcs in Table 3 from K2 = C ∪ I(C). For two
(29, 5)-arcs Ki and Kj, we define the distance between them as

d(Ki, Kj) = min
K′∼Kj

(29− |Ki ∩ K′|).

We also define the transition number of Ki as

t(Ki) = min
Kj 6∼Ki

d(Ki, Kj).

Then, one can obtain some arc Kj( 6∼ Ki) from Ki by exchanging t(Ki) or t(Kj) points, denoted
by Ki → Kj, that is, Kj = (Ki \ D) ∪ A for some disjoint t-sets D ⊂ Ki and A ⊂ PG(2, 7) \ Ki with
t = t(Ki) or t(Kj), see Table 4. In what follows, we discuss how to find the set D to be deleted from
the arc Ki and the set A to be added to get Kj in Table 4. Here by xyz we denote the point P(x, y, z) in
PG(2, 7). For two points P and Q, 〈P, Q〉 denotes the line through P and Q. Table 4 follows from the
following lemmas.
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Table 4. Transition Ki → Kj = (Ki \ D) ∪ A, together with the values ti = t(Ki) and tj = t(Kj).

Ki ti D A Kj tj Ki ti D A Kj
K2 3 001, 100, 111 131, 145, 153 K20 2 K22 1 146 120 K14
K2 3 136, 146, 151 131, 145, 153 K1 3 K22 1 133 120 K15
K20 2 115, 163, 165 015, 103, 106 K3 3 K22 1 165 120 K16
K20 2 101, 131 015, 130 K4 2 K22 1 101 120 K17
K20 2 124, 131 015, 114 K10 2 K22 1 152 120 K19
K20 2 131, 132 015, 122 K18 2 K22 1 131 111 K21
K20 2 132, 154 152, 164 K22 1 K17 1 134 014 K7
K10 2 102, 144 016, 141 K6 2 K17 1 113 014 K8
K22 1 113, 155 103, 105 K9 2 K14 1 126 130 K11
K9 2 145, 153 123, 135 K5 2 K14 1 104 130 K13
K21 1 102, 146 120, 140 K12 2

Lemma 4. K20 = (K2 \ {001, 100, 111}) ∪ {131, 145, 153} and t(K2) = 3.

Proof. Since every external point Q of the conic C is on the three 5-lines (the secants through Q),
we have t(K2) ≥ 3. We construct K20 from K2 by three point exchanges, which implies t(K2) = 3.
Note that the tangents of C are the 1-lines for K2. Take three points P1, P2, P3 on the conic C. Since
Aut(C) is 3-transitive, we may assume that P1 = 161, P2 = 142, P3 = 124. Let `i be the tangent of C
at Pi for i = 1, 2, 3, i.e., `1 = [121], `2 = [134], `3 = [162], and let Qk = `i ∩ `j for {i, j, k} = {1, 2, 3}.
For i = 1, 2, 3, the line `′i = 〈Pi, Qi〉 is a secant meeting C in Pi and Pi+3 say. Then, Q1 = 131,
Q2 = 145, Q3 = 153, `′1 = [106], `′2 = [150], `′3 = [013], P4 = 111, P5 = 001, P6 = 100. Taking
D = {P4, P5, P6} and A = {Q1, Q2, Q3}, one obtains the transition K2 → K20. Actually, the tangents
at P4, P5, P6 are the 0-lines and the tangents at P7 = 132 and P8 = 154 are the 1-lines for K20, where
C = {P1, P2, . . . , P8}.

We confirmed that |Aut(K20)| = 6 (and similar for the other values of |Aut| in Table 3 by computer.
In what follows, let C = {P1, P2, . . . , P8}, `′1, `′2, `′3, Q1, Q2, Q3, be as in the proof of Lemma 4 and let `i
be the tangent at Pi to C for 1 ≤ i ≤ 8 and `ij = 〈Pi, Pj〉 for 1 ≤ i < j ≤ 8. Then, `4 = [151], `5 = [100],
`6 = [001], `7 = [144], `8 = [112], `12 = [165], `13 = [143], `14 = l′1 = [106], `18 = [154], `28 = [126],
`23 = [111], `24 = [142], `25 = l′2 = [150], `36 = l′3 = [013], `37 = [156], `38 = [105], `45 = [160],
`46 = [016], `56 = [010], `57 = [120], `68 = [014], `78 = [161]. Note that `14, `57, `68 are the secants
through Q1. Let Qij = `i ∩ `j apart from Q1 = Q23, Q2 = Q13, Q3 = Q12. For any point R and for a

given arc Ki, we state that R is of type ij1
1 ij2

2 . . . if there exist j1 i1-lines and j2 i2-lines and so on through
R for Ki.

Lemma 5. K1 = (K2 \ {136, 146, 151}) ∪ {131, 145, 153} and t(K1) = 3.

Proof. Let Ri = `′i ∩ `jk for {i, j, k} = {1, 2, 3}. Then, R1 = 151, R2 = 146, R3 = 136. Taking
D = {R1, R2, R3} and A = {Q1, Q2, Q3}, one can get the transition K2 → K1. The tangents at P1, P2, P3

are 3-lines for K1, while the other five tangents remain 1-lines. The three external lines 〈Ri, Rj〉
(1 ≤ i < j ≤ 3) to C form the 2-lines for K1. Now, take R /∈ K1. Then the possible types of R are:
11213254, 11334153, 1121314253, 122155, 12314154, 22324153, 124353. So, t(K1) ≥ 3. Now, by the transition
K2 → K1, we get K1 by exchanging three points. Hence, we determine t(K1) = 3.

For a point R 6∈ K20, the possible types of R are: 11324352, 01314452, 01324253, 024155, 01114254,
01324253, 124353. Since every point out of K20 is on at least two 5-lines, we get t(K20) ≥ 2. By exhaustive
computer search, we get the following.

Lemma 6. t(Ki) ≥ 2 for i = 4, 5, 6, 9, 10, 12, 18, 20.
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Lemma 7. K4 = (K20 \ {101, 131}) ∪ {015, 130} and t(K4) = t(K20) = 2.

Proof. Let S1 = `57 ∩ `1, S2 = `68 ∩ `1 and R4 = `56 ∩ `′1. Then, S1 = 130, S2 = 015, R4 = 101. Taking
D = {Q1, R4} and A = {S1, S2}, one can get the transition K20 → K4. Since the two tangents `5 and `6

contain the points S2 and S1, respectively, the two tangents at `5, `6 are 1-lines for K4, while the tangent
at `4 remains a 0-line. The two 1-lines for K20 remain 1-lines for K4. Now, the transition K20 → K4

yields t(K4) = t(K20) = 2 by Lemma 6.

Lemma 8. K18 = (K20 \ {131, 132}) ∪ {015, 122} and t(K18) = 2.

Proof. Take Q18 = `1 ∩ `8 = 122. Setting D = {Q1, P7} and A = {S2, Q18}, we get the transition
K20 → K18. As for the 0-lines `4, `5, `6 for K20, two lines `4 and `6 are also 0-lines for K18, but `5 is a
1-line for K18. Two 1-lines `7 and `8 for K20 are a 0-line and a 2-line for K18, respectively. The other
2-lines for K18 are `2 and `3. The transition K20 → K18 yields t(K18) = 2 by Lemma 6.

Lemma 9. K10 = (K20 \ {124, 131}) ∪ {015, 114} and t(K10) = 2.

Proof. Let T1 = `37 ∩ `1, T2 = `38 ∩ `1. Then, T1 = S2 = 015, T2 = 114. Taking D = {Q1, P3} and
A = {T1, T2}, one can get the transition K20 → K10. Since the tangent `5 contains T1, it is a 1-line for
K10, while the tangents `4 and `6 remain 0-lines. The other 1-lines for K10 are the tangents `3 and `8.
The transition K20 → K10 yields t(K10) = 2 by Lemma 6.

Lemma 10. K22 = (K20 \ {132, 154}) ∪ {052, 164}.

Proof. Take Q24 = `2 ∩ `4 = 164 and Q34 = `3 ∩ `4 = 152. Setting D = {P7, P8} and A = {Q24, Q34},
we get the transition K20 → K22. The tangent `4 is a 0-line for K20, but a 2-line for K22, while the
tangents `5 and `6 remain 0-lines. The tangents `7 and `8 are 1-lines for K20, but 0-lines for K22.

Lemma 11. K6 = (K10 \ {102, 144}) ∪ {016, 141} and t(K6) = 2.

Proof. Let V1 = 〈Q2, P4〉 ∩ `23, V2 = 〈Q2, P4〉 ∩ `13, V3 = 〈Q2, P5〉 ∩ `46, V4 = 〈Q2, P5〉 ∩ `14. Then,
V1 = 016, V2 = 102, V3 = 144, V4 = 141. Taking D = {V2, V3} and A = {V1, V4}, one can get the
transition K10 → K6. The 0-lines for K10 are also 0-lines for K6. The tangent `3 remains a 1-line, but the
other 1-lines for K10 are 2-lines for K6. The transition K10 → K6 yields t(K6) = 2 by Lemma 6.

Lemma 12. K9 = (K22 \ {113, 155}) ∪ {103, 105} and t(K9) = 2.

Proof. Take W1 = `56 ∩ `2 = 103, W2 = `56 ∩ `3 = 105, W3 = `13 ∩ `45 = 113, W4 = `12 ∩ `46 = 155.
Setting D = {W3, W4} and A = {W1, W2}, we get the transition K22 → K9. The tangents `5, `6 are
0-lines for K9 and the tangents `7, `8 are 1-lines for K9. We note that three of the four 2-lines `4, `45, `46

and [131] are concurrent at the point P4. The transition K22 → K9 yields t(K9) = 2 by Lemma 6.

Lemma 13. K5 = (K9 \ {145, 153}) ∪ {123, 135} and t(K5) = 2.

Proof. Take the two points `13 ∩ `4 = 135 and `12 ∩ `4 = 123 for the set A to be deleted from K9.
Setting D = {Q2, Q3}, we get the transition K9 → K5. The 0-lines for K9 are also 0-lines for K5. The
tangents `7 and `8 are 2-lines for K5 and the unique 1-line for K5 is `1. The transition K9 → K5 yields
t(K5) = 2 by Lemma 6.

Lemma 14. K14 = (K22 \ {146}) ∪ {120}, K15 = (K22 \ {133}) ∪ {120}, K16 = (K22 \ {165}) ∪ {120},
K17 = (K22 \ {101}) ∪ {120}, K19 = (K22 \ {152}) ∪ {120}.
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Proof. Take the point Q34 = `3 ∩ `4 = 152 and let L = 〈Q34, R4〉 = [136], U = L ∩ `2 = 120 and
K′ = K ∪ {U}. Then, K′ has spectrum (a0, a1, a2, a3, a4, a5, a6) = (3, 1, 1, 5, 14, 32, 1) and L is the unique
6-line for K′. The 1-points of L other than U are U1(= R2) = 146, U2 = 133, U3 = 165, U4(= R4) = 101,
U5(= Q34) = 152. Then, K13+j = K′ \ {Uj} for 1 ≤ j ≤ 4 and K19 = K′ \ {U5}. As can be seen in
Table 3, K15, K16 and K17 have the same spectrum. Nevertheless, one can distinguish them as follows.
The 3-lines for K15 are `1, `18, `45, `56, `57, `78. And there are two points on three 3-lines; the point 106
on `1, `56, `78 and the point P5 on `45, `56, `57. As for K16, the 3-lines are `24, `45, `46, `56, [123], `1 and
there is only one point on three 3-lines; the point P4 on the three lines `24, `45, `46. Meanwhile, the
3-lines for K17: `1, `28, `37, `45, `46, `78 form a 6-arc of lines (no three of which are concurrent). Thus, K15,
K16 and K17 are projectively inequivalent. K19 and K20 can be also distinguished similarly as follows.
Let L and L′ be the sets of 3-lines for K19 and K20, respectively. Then, L′ = {`1, `2, `3, `45, `46, `56} is a
6-arc of lines, but L = {`1, `3, `45, `46, `56, `78} is not, for 106 = l1 ∩ `56 ∩ `78 and 110 = l3 ∩ `45 ∩ `78.
Hence, K19 and K20 are projectively inequivalent.

Lemma 15. K21 = (K22 \ {131}) ∪ {111}.

Proof. Taking D = {Q1} and A = {P4}, we get the transition K22 → K21. The tangents `5, `6, `7, `8,
no three of which are concurrent, remain 0-lines. The two 0-points out of the 0-lines are `23 ∩ `1 = 106
and Q1. It turns out that K21 is projectively equivalent to the arc constructed in Lemma 3. The tangent
`4 is the 2-line for K22, but a 3-line for K21.

Lemma 16. K7 = (K17 \ {134}) ∪ {014}, K8 = (K17 \ {113}) ∪ {014}.

Proof. Take the points Q24 = `2 ∩ `4 = 164 and X = 〈Q24, R4〉 ∩ `3 = 014, where R4 = `56 ∩ `′1, and
let K′17 = K17 ∪ {X}. Then, the arc K′17 has spectrum (a0, a1, a2, a3, a4, a5, a6) = (2, 2, 2, 6, 10, 34, 1) and
the unique 6-line for K′ is L1 = 〈X, U〉 = [131]. The 1-points of L1 other than X are X1 = 134, X2 = 113,
X3 = 162, X4 = 155, X5 = 120. Then, K7 = K′17 \ {X1} and K8 = K′17 \ {X2}. K′17 \ {X3}, K′17 \ {X4},
K′17 \ {X5} are projectively equivalent to K7, K8, K17, respectively. We can distinguish K8 and K9 as
follows. The 2-lines for K8 are `4, `28, `45, `56, which form a 4-arc of lines. On the other hand, the
2-lines for K9 are `4, `45, `46, L1, the first three of which are concurrent at the point P4.

Lemma 17. K11 = (K14 \ {126}) ∪ {130}, K13 = (K14 \ {104}) ∪ {130}.

Proof. Let E = l′1 ∩ `′2 ∩ `′3 = 141, L2 = 〈Q34, E〉 and Y = L2 ∩ `1 = 130, where Q34 = 152. Then,
K′14 = K14 ∪ {Y} has spectrum (a0, a1, a2, a3, a4, a5, a6) = (3, 0, 2, 8, 9, 34, 1) and the unique 6-line for
K′14 is L2 = [125]. The 1-points of L2 other than Y are Y1 = 126, Y2 = 104, Y3 = 163, Y4 = 115, Y5 = 130.
Then, K11 = K′14 \ {Y1} and K13 = K′14 \ {Y2}. K′14 \ {Y3}, K′14 \ {Y4}, K′14 \ {Y5} are projectively
equivalent to K11, K13, K14, respectively.

Lemma 18. K12 = (K21 \ {102, 146}) ∪ {120, 140} and t(K12) = 2.

Proof. Take the two points `13 ∩ `′2(= R2) = 146 and `13 ∩ `56(= V2) = 102 for the 2-set D to be
deleted and take A = {Q26 = 120, Q46 = 140}. Then, we get the transition K21 → K12. The 0-line `6

for K21 becomes a 2-line for K12, while the tangents `5, `7, `8 remain 0-lines. The arcs K11 and K12 are
projectively inequivalent since their automorphism group orders are different. In addition, we can
distinguish K11 and K12 as follows. The 2-lines for K11 are [101], `4, `6, having no common point. On
the other hand, the 2-lines for K12 are [101], `5, `6, which are concurrent at the point 010. The transition
K21 → K12 yields t(K12) = 2 by Lemma 6.

Lemma 19. K3 = (K20 \ {115, 163, 165}) ∪ {015, 103, 106} and t(K3) = 3.
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Proof. Take the points Z1 = `68 ∩ `1(= S2) = 015, Z2 = `68 ∩ `23 = 115, Z3 = `23 ∩ `1 = 106,
Z4 = `24 ∩ `3(= W1) = 103, Z5 = `24 ∩ `78 = 165, Z6 = `37 ∩ 〈Z3, Q1〉 = 163. Setting D = {Z2, Z5, Z6}
and A = {Z1, Z3, Z4}, we get the transition K20 → K3. The 0-lines `4, `5 for K20 are 1-lines for K3, while
the `6 remains a 0-line. The 1-lines `7 and `8 for K20 are a 1-line and a 2-line for K3, respectively. Now,
there are only two points out of K3, namely 122 and 165, which are on at most two 5-lines. The types
of 122 and 165 are 21334252 and 21334252, respectively. Hence t(K3) ≥ 2. Suppose t(K3) = 2. Then,
we have a transition K3 → (K3 \ {Z, Z′}) ∪ {122, 165} for some points Z, Z′ ∈ K3. Since the five lines
〈122, 143〉 = [103], 〈122, 106〉 = [121], 〈165, 142〉 = [142], 〈165, 106〉 = [161], 〈122, 165〉 = [155] are
6-lines for K3 ∪ {122, 165}, the points Z and Z′ must be on the five lines, which is impossible. Thus,
t(K3) ≥ 3. Now, by the transition K20 → K3, we determine t(K3) = 3.

In summary, we have determined the transition numbers of each Ki as in Table 4. Considering
the graph with vertex set {Ki : t(Ki) = 1}, where two vertices Ki, Kj are joined if d(Ki, Kj) = 1, we get
Figure 1.
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Figure 1. Graph of (29, 5)-arcs with distance 1.

4. Construction of Some Generalized Arcs in PG(2, q)

Recall from Lemma 1 that the complement of a (b, 3)-blocking set B is a (q2 + q + 1− b, q− 2)
-arc in PG(2, q). When q is odd, for a (b, 3)-blocking set B is known that b = |B| ≥ 4q if B contains a
line [26]. The set B0 for odd q in Lemma 3 is such a (4q, 3)-blocking set.

In this section, we generalize some construction results in Section 3 by constructing some
(4q, 3)-blocking sets in PG(2, q) for odd q. Obviously, we have ai(K) = aq+1−i(Kc), where Kc is
the complement of K in PG(2, q).

Theorem 3. For odd q ≥ 5, let C be a conic in PG(2, q). For any three points P1, P2, P3 in C, let `i be the
tangent of C through Pi and `ij be the secant of C through Pi and Pj, and let Pij = `i ∩ `j for 1 ≤ i ≤ j ≤ 3.
Take any two points P and Q from the three points P12, P23, P13, and let B = C ∪ `12 ∪ `23 ∪ `13 ∪ {P, Q}.
Then K = Bc is a (q2 − 3q + 1, q− 2)-arc with spectrum
(a0, a1, a2, a3) = (5, 1, 10, 15) for q = 5 and
(a0, aq−5, aq−4, aq−3, aq−2) = (3, q− 3, (q−3)(q−4)

2 , 2q, (q+5)(q−2)
2 ) for q ≥ 7.

Proof. Let C = {P1, P2, . . . , Pq+1} be a conic in PG(2, q) and let ` be a line. If ` contains none of
P1, P2, P3, then ` meets `12 ∪ `23 ∪ `13 at three points. Thus, |` ∩ B| ≥ 3. If ` contains exactly one of P1,
P2, P3, say P′, ` meets `12 ∪ `23 ∪ `13 at two points. Then, ` is a secant or a tangent of C. If ` is a secant
of C, ` meets C at P′ and another point. So, |` ∩ B| ≥ 3. If ` is a tangent of C, ` is `1, `2 or `3, and `

contains at least one of the points P and Q. So, |` ∩ B| ≥ 3. If ` contains two of P1, P2 and P3, then
` is `12, `23 or `13. Thus, B is a (4q, 3)-blocking set. Without loss of generality, we may take P = P13

and Q = P12. Assume q ≥ 7. The (q + 1)-lines for B are `12, `23, `13. So, aq+1(B) = 3. The 6-lines are

the secants through P or Q except 〈P, P2〉 and 〈Q, P3〉. Hence a6(B) = 2
(

q−1
2 − 1

)
= q− 3. For q = 5,

the above (q + 1)-lines are also 6-lines for B, and a6(B) = 5. Now, assume q ≥ 5. The 5-lines are
the secants of C passing through none of P1, P2, P3 except the 6-lines. So, a5(B) = (q+1−3

2 )− a6(B) =
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(q− 3)(q− 4)/2. The 4-lines are the external lines of C through P or Q, the secants 〈P, P2〉, 〈Q, P3〉,
the tangents at P4, P5, . . . , Pq+1 and 〈P, Q〉. Hence, a4(B) = q− 1 + 2 + (q + 1− 3) + 1 = 2q. Finally,
a3(B) = q2 + q + 1− a4(B)− a5(B)− a6(B)− aq+1(B) = (q + 5)(q− 2)/2.

By some transitions from B in Theorem 3, we get the following.

Theorem 4. Under the conditions of Theorem 3 with q ≥ 7, take P = P13, Q = P12 and a point Q′ in
`2 with Q′ 6∈ {Q, P2, l13 ∩ `2}. Let B′ = (B \ {Q}) ∪ {Q′} and ` = 〈P, Q′〉. Then K = (B′)c forms a
(q2 − 3q + 1, q− 2)-arc with spectrum

(1) (a0, aq−5, aq−4, aq−3, aq−2) = (3, q− 3, (q−3)(q−4)
2 , 2q, (q+5)(q−2)

2 ) if ` is a tangent,

(2) (a0, aq−6, aq−5, aq−4, aq−3, aq−2) = (3, 1, q− 6, q2−7q+18
2 , 2q− 1, (q+5)(q−2)

2 ) if ` is a secant,

(3) (a0, aq−5, aq−4, aq−3, aq−2) = (3, q− 4, q2−7q+18
2 , 2q− 3, q2+3q−8

2 ) if ` is an external line.

Proof. Since ` is a tangent of C if and only if Q′ = P23, we get the spectrum (1) from Theorem 3 if ` is a
tangent. As we have already seen in the proof of Theorem 3, the tangent 〈Q, P〉 and the secant 〈Q, P3〉
are 4-lines, the other (q− 3)/2 secants through Q are 6-lines and the (q− 1)/2 external lines through
Q are 4-lines for B. Note that aq+1(B′) = aq+1(B), for Q′ ∈ `2 \ {P2, `13 ∩ `2}.

If ` is a secant, then for B, the tangent ( 6= `2) through Q′ is a 4-line, the secant ` is a 6-line,
the secants 〈Q′, P1〉, 〈Q′, P3〉 are 3-lines, other (q− 7)/2 secants on Q′ are 5-lines and the (q− 1)/2
external lines on Q′ are 3-lines. Hence, a3(B′) = a3(B) + 2 + (q − 1)/2− 2− (q − 1)/2 = a3(B),
a4(B′) = a4(B)− 2− (q− 1)/2− 1 + 2 + (q− 1)/2 = a4(B)− 1, a5(B′) = a5(B) + (q− 3)/2 + 1−
(q− 7)/2 = a5(B) + 3, a6(B′) = a6(B)− (q− 3)/2− 1 + (q− 7)/2 = a6(B)− 3, b′7 = 1.

If ` is an external line, then for B, the tangent ( 6= `2) through Q′ is a 4-line, the secants 〈Q′, P1〉,
〈Q′, P3〉 are 3-lines, other (q− 5)/2 secants on Q′ are 5-lines, the external line ` is a 4-line and the
(q− 3)/2 external lines on Q′ are 3-lines. Hence, a3(B′) = a3(B) + 2 + (q− 1)/2− 2− (q− 3)/2 =

a3(B) + 1, a4(B′) = a4(B)− 2− (q− 1)/2− 1 + 2− 1 + (q− 3)/2 = a4(B)− 3, a5(B′) = a5(B) + (q−
3)/2 + 1− (q− 5)/2 + 1 = a5(B) + 3, a6(B′) = a6(B)− (q− 3)/2 + (q− 5)/2 = a6(B)− 1.

We note that the construction of a (4q, 3)-blocking set with spectrum (1) or (3) in Theorem 4 is also
valid for q = 5, but not for the spectrum (2) since ` is a secant if and only if Q′ = `13 ∩ `2 when q = 5.

For q = 7, the (q2 − 3q + 1, q− 2)-arcs of Theorem 4 (1), (2) and (3) are equivalent to K13, K14 and
K11, respectively. The next lemma is given in [3, Corollary 7.5].

Lemma 20 ([3]). In PG(2, q) with q ≥ 4, there is a unique conic through a 5-arc.

We can get one more (4q, 3)-blocking set in PG(2, q) from the set B in Theorem 3 by exchanging
two points.

Theorem 5. Let q = ph ≥ 7 for an odd prime p 6= 3. Under the conditions of Theorem 3, let C be
the conic {P(1, a, a2) : a ∈ Fq} ∪ {P(0, 0, 1)} and take P1 = P(1, 1, 1), P2 = P(0, 0, 1), P3 = P(1, 0, 0),
P4 = P(1, 2−1, 2−2), P5 = P(1, 2, 22), S = 〈P1, P4〉 ∩ 〈P2, P5〉 and T = 〈P1, P5〉 ∩ 〈P3, P4〉. Let B1 =

(B \ {P4, P5}) ∪ {S, T}. Then K′ = (B1)
c is a (q2 − 3q + 1, q− 2)-arc, which is not projectively equivalent to

any arc in Theorems 3 and 4.

Proof. Note that P4 6= P5 if p 6= 3 and that S = P(1, 2, 2 + 2−1), T = P(2 + 2−1, 2, 1). Since
P = `1 ∩ `3 = P(1, 2−1, 0) and Q = `1 ∩ `2 = P(0, 1, 2), the lines 〈P, P2〉 and 〈Q, P3〉 are
passing through P4 and P5, respectively. Let B−1 = B \ {P4, P5}. Then, the 2-lines for B−1
are 〈P1, P4〉, 〈P1, P5〉, 〈P2, P5〉 and 〈P3, P4〉. Hence, adding S = 〈P1, P4〉 ∩ 〈P2, P5〉 and T =

〈P1, P5〉 ∩ 〈P3, P4〉 to B−1 , B1 = B−1 ∪ {S, T} forms a (4q, 3)-blocking set. It can be checked
using computer that B1 has spectrum (a3(B1), a4(B1), a5(B1), a7(B1), a8(B1)) = (28, 18, 6, 2, 3)
for q = 7, (a3(B1), a4(B1), a5(B1), a6(B1), a7(B1), a12(B1)) = (66, 38, 16, 8, 2, 3) for q = 11 and
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(a3(B1), a4(B1), a5(B1), a6(B1), a14(B1)) = (93, 44, 27, 16, 3) for q = 13. Hence, B1 is not projectively
equivalent to any blocking set in Theorems 3 and 4. Assume q ≥ 17 and suppose B1 contains a conic
C′. Since C 6= C′, it follows from Lemma 20 that C′ could contain at most 4 points from C, 6 points
from `12 ∪ `13 ∪ `23 and the other 4 points, in total at most 14 points from B1, a contradiction. Thus, B1

contains no conic for q ≥ 17. On the other hand, the blocking sets in Theorem 3 and 4 contain a conic.
Hence, the arc (B1)

c is not projectively equivalent to any of the arcs in the previous theorems.

For q = 7, the (q2 − 3q + 1, q− 2)-arc of Theorem 5 is equivalent to K20.

Remark 5. (1) Assume q = 5 in Theorem 5. From Table 2 in Section 1, there exist two inequivalent (11, 3)-arcs
(equivalently, (20, 3)-blocking sets) in PG(2, 5), see also ([3], Table 12.5). The(11, 3)-arcs have spectrum

(a) (a0, a1, a2, a3) = (5, 1, 10, 15) or
(b) (a0, a1, a2, a3) = (4, 4, 7, 16).

There are four 6-lines `12, `13, `23 and 〈S, T〉 for the arc (B1)
c in Theorem 5 when q = 5. So, (B1)

c has spectrum
(b) and hence (B1)

c is projectively equivalent to the arc in Theorem 4 (3).
(2) When q = 7, the line 〈P, S〉 in the proof of Theorem 5 is a secant of C. On the other hand, when q = 13,

〈P, S〉 is an external line of C. Thus, depending on the value of q, the line 〈P, S〉 can form a tangent, a secant
or an external line of C. That is why we could not determine the spectrum of the (q2 − 3q + 1, q− 2)-arc in
Theorem 5.

Next, we determine the spectrum of the arc B0 in Lemma 3 for odd q to find one more
inequivalent arc.

Theorem 6. For odd q ≥ 5, let B = `1 ∪ `2 ∪ `3 ∪ `4 ∪ {P1, P2}, consisting of the lines `1 = [100],
`2 = [010], `3 = [001], `4 = [111] and the points P1 = P(−1, 1, 1), P2 = P(1,−1, 1). Then, Bc forms a
(q2 − 3q + 1, q− 2)-arc with spectrum (a0, aq−4, aq−3, aq−2) = (4, 2q− 6, q2 − 7q + 17, 6q− 14).

Proof. Note that no three of the lines `1, `2, `3, `4 are concurrent. LetQ = {Qij = li ∩ `j : 1 ≤ i < j ≤ 4},
r1 = 〈Q14, Q23〉, r2 = 〈Q13, Q24〉 and r3 = 〈Q12, Q34〉. Then, P1 and P2 are equal to r2 ∩ r3 and r1 ∩ r3,
respectively. Hence, r3 = 〈P1, P2〉 is a 4-line. Let ` be a line. Then ` meets

⋃4
i=1 `i at two, three

or four points. When |` ∩ (
⋃4

i=1 `i)| = 2, ` is r1, r2 or r3. So, ` contains P1 or P2. Thus, Bc is a
(q2 − 3q + 1, q− 2)-arc. Now, the (q + 1)-lines for B are `1, . . . , `4, and aq+1(B) = 4. The 5-lines for B
are the lines containing one of P1, P2 but none of Q. Hence, a5(B) = 2(q + 1− 4). The 3-lines for B are
the lines through one of two points Q12, Q34 containing no other point ofQ, the lines through one point
( 6= Q12, Q34) of Q containing none of {P1, P2}, and two more lines r1, r2. Thus, a3(B) = 2(q + 1− 3) +
4(q + 1− 4) + 2 = 6q− 14. Finally, a4(B) = q2 + q + 1− aq+1(B)− a5(B)− a3(B) = q2 − 7q + 17.

Theorem 7. Under the conditions of Theorem 6, let P3 = r1 ∩ r2. Take P′2 ∈ r1 \ {P2, P3, Q14, Q23} and let
B′ = (B \ {P2}) ∪ {P′2}. Then, K = (B′)c is a (q2 − 3q + 1, q − 2)-arc with spectrum (a0, a1, a2, a3) =

(5, 1, 10, 15) for q = 5 and (a0, aq−5, aq−4, aq−3, aq−2) = (4, 1, 2q− 9, q2 − 7q + 20, 6q− 15) for q ≥ 7.

Proof. Since the 3-line for B through P2 is r1 only, B′ forms a (4q, 3)-blocking set. The lines through P2

for K except r1 = 〈P2, P′2〉 are three 4-lines 〈P2, Q13〉, 〈P2, Q24〉, 〈P1, P2〉 and (q− 3) 5-lines. On the other
hand, the lines through P′2 for K other than r1 are four 3-lines 〈P′2, Qij〉 with Qij ∈ Q \ r1, one 5-line
〈P′2, P1〉 and (q− 5) 4-lines. Hence, a3(B′) = a3(B) + 3− 4, a4(B′) = a4(B)− 3 + (q− 3) + 4− (q− 5),
a5(B′) = a5(B) − (q − 3) − 1 + (q − 5), a6(B′) = 1 (or a6(B′) = 1 + 4 = 5 for q = 5). Now, our
assertion follows from Theorem 6.

From the above theorems we get the following.
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Corollary 1. There exist at least six projectively inequivalent (q2 − 3q + 1, q− 2)-arcs in PG(2, q) for q =

ph ≥ 7 with odd prime p 6= 3.

Finally, we consider the case q is even. Assume q ≥ 4. Then, it is known that a (b, 3)-blocking set B
containing a line satisfies b ≥ 4q− 1 [27]. The set B0 for even q in Lemma 3 is such a (4q− 1, 3)-blocking
set with spectrum

(a3(B0), a4(B0), a5(B0), aq+1(B0)) = (6q− 9, q2 − 6q + 8, q− 2, 4).

When q = 4, the complement of a (4q− 1, 3)-blocking set is a 6-arc (a hyperoval). So, assume
q ≥ 8. We can construct two more (4q− 1, 3)-blocking sets as follows.

Theorem 8. For even q ≥ 8, let C be a conic in PG(2, q) with nucleus N. For any three points P1, P2, P3 in
C ∪ {N} with P1, P2 ∈ C, let `ij = 〈Pi, Pj〉 for 1 ≤ i < j ≤ 3. Then,

(1) B = C ∪ `12 ∪ `23 ∪ `13 is a (4q− 1, 3)-blocking set with spectrum

(a3(B), a5(B), aq+1(B)) =
(
(q + 6)(q− 1)

2
,
(q− 1)(q− 2)

2
, 3
)

with |Aut(B)| = 2(q− 1) if P3 = N,
(2) B = C ∪ `12 ∪ `23 ∪ `13 ∪ {N} is a (4q− 1, 3)-blocking set with spectrum

(a3(B), a5(B), aq+1(B)) =
(
(q + 6)(q− 1)

2
,
(q− 1)(q− 2)

2
, 3
)

with |Aut(B)| = 6 if P3 6= N.

The (4q− 1, 3)-blocking sets in Theorem 8 were first found for q = 8, see [7].

Corollary 2. There exist at least three projectively inequivalent (q2 − 3q + 2, q− 2)-arcs (equivalently, (4q−
1, 3)-blocking sets) in PG(2, q) for every even q ≥ 8.

Remark 6. From Table 1, (q2 − 3q + 2, q− 2)-arcs are optimal for q = 4, 8 and give the known lower bound
on m14(2, 16) for q = 16.
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