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Abstract: The present paper is devoted to Bidirectional Associative Memory (BAM) Cohen–Grossberg-type
impulsive neural networks with time-varying delays. Instead of impulsive discontinuities at fixed
moments of time, we consider variable impulsive perturbations. The stability with respect to
manifolds notion is introduced for the neural network model under consideration. By means of the
Lyapunov function method sufficient conditions that guarantee the stability properties of solutions
are established. Two examples are presented to show the validity of the proposed stability criteria.

Keywords: global exponential stability; h-manifolds; BAM Cohen–Grossberg neural networks;
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1. Introduction

The Cohen–Grossberg-type neural network models were first proposed by Cohen and
Grossberg [1] in 1983, and since then an extensive work on this subject has been done by numerous
researchers due to the opportunities for applications of such models in key fields of science and
engineering such as parallel computing, associative memory, pattern recognition, signal and image
processing, etc. [2–4].

On the other side, it is well known that BAM neural networks were first proposed by Kosko [5–7]
and this type of models also has been investigated intensively due to its extension of the single-layer
auto-associative Hebbian correlation to two-layer hetero-associative circuits [8].

It is also well known that time delays naturally exist in neural network models, due mainly
to the limited speed of signal transmissions and amplifiers switching. Time delays, also known as
synaptic transmission delays, may affect the dynamical behaviors and synchronization control of
neural networks. That is why numerous researchers considered delay effects on both Cohen–Grossberg
and BAM neural networks, and excellent results have been reported in the literature. We will direct
the reader to see [9–11] for some results on delayed Cohen–Grossberg neural networks, and [8,12–14]
for results on BAM neural networks with delays, including some very recent publications [15–18].

In addition, the hybrid Cohen–Grossberg-type BAM neural networks with delays are an important
subject of research and hence, is very well studied by numerous researchers. See, for example,
references [19–23] and the references therein. Most of the above cited authors considered time-varying
delays in their investigations of such neural networks. Indeed, it is noted that in real-world applications,
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models with time-varying delays provide generally a more realistic description than these with constant
delays, in particular, in the population dynamics neural network models [24].

Since impulsive phenomena exist in numerous fields of science and engineering [25–29] and the
impulsive control methods are find to be more efficient than other control strategies [30–38], there has
been an increasing research interest on the impulsive generalizations of Cohen–Grossberg-type BAM
neural networks with delays. For example, in [39] the problem of existence of equilibrium states
of Cohen–Grossberg BAM neural networks with delays and impulses and their global exponential
stability behavior are investigated using topological degree theory, the Lyapunov functional method
and some analysis techniques. Sufficient conditions for existence, uniqueness and global exponential
stability of equilibrium states of a class of Cohen–Grossberg-type BAM impulsive neural networks
with time-varying delays has been proposed in [40] by establishing a delay differential inequality and
utilizing the homeomorphism and M-matrix theories. Efficient criteria for existence, uniqueness and
exponential stability of equilibrium points on the base on the application of Lyapunov functionals,
impulsive control and some analysis methods are established in [41]. The author demonstrates the
importance of the impulsive control technique in stabilizing unstable Cohen–Grossberg-type BAM
neural networks with time-varying delays. The paper [42] deals with the questions of the existence
and global exponential stability of single periodic solutions for Cohen–Grossberg-type BAM neural
networks with impulsive perturbations and both continuously distributed and finite distributed delays.
A class of Markovian jumping Cohen–Grossberg BAM-type neural networks with impulsive effects
and mixed time delays has been investigated in [43] and criteria for global exponential stability of its
states have been proposed. The authors in [44] study the impulsive effects on the exponential stability
behavior of delayed Cohen–Grossberg-type BAM neural networks.

However, all cited above papers considered impulsive perturbations and impulsive control at fixed
instants. Such systems are particular cases of more general and realistic impulsive models with variable
impulsive perturbations. It is now well recognized that systems with impulsive perturbations at
variable time, including neural network systems, are more useful from the applied point of view [45–49].
However, their investigations are related to some difficulties such as bifurcation, “merging” of solutions,
“beating” phenomena, loss of the property of autonomy, etc. [29,47]. Most of the challenges are due to
the fact that the impulsive effects such as instantaneous perturbations and abrupt changes on distinct
solutions are not, in general, the same for all solutions. A novelty in our research is that we will propose
an impulsive delayed Cohen–Grossberg-type bidirectional associative memory neural network with
variable impulsive perturbations in this paper.

Due to the importance for applications the investigations on impulsive Cohen–Grossberg-type
neural networks with delays and variable impulsive perturbations just began. Recently, some results
on such models has been proposed in [50]. However, the authors in the above cited paper do not
consider BAM neural networks. Hence, the topic of impulsive Cohen–Grossberg-type neural network
with delays and variable impulsive perturbations is far from completion.

It is not surprised that in the existing results on Cohen–Grossberg-type BAM impulsive neural
networks with time-varying delays the most investigated problem is the problem of exponential
stability of their solutions. The authors of [39–44] considered mainly the stability of single solutions of
great importance such as equilibrium points and periodic solutions. However, in many applications
the stability properties of manifolds or sets related to a system are very significant for the qualitative
behavior of the correspondent system [47,51–54]. Therefore, it is important and interesting to further
investigate and generalize the stability results to stability of manifolds case.

Stimulated by the above discussions, in this paper, we will generalize the concept of the stability
of a single solution, and investigate the stability of Cohen–Grossberg-type BAM impulsive neural
networks with time-varying delays and variable impulsive perturbations with respect to manifolds.
These manifolds will be determined by particular functions [55]. To the best of our knowledge,
such generalization of the stability notion is not already studied for the Cohen–Grossberg-type BAM
neural networks.
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The remaining part of the paper is arranged as follows. In Section 2, the class of
Cohen–Grossberg-type BAM impulsive neural networks with time-varying delays and variable
impulsive perturbations is introduced. Some notations, assumptions and definitions are also given.
Section 3 is devoted to our main h-global exponential stability result. The proof is performed by
using the Lyapunov function technique and differential inequalities. In Section 4, two examples are
provided to show the efficacy of the obtained criteria. Finally, some conclusions and open problems
are presented in Section 5.

2. Preliminary Notes

Let Rn denotes the n-dimensional Euclidean space endowed with the norm ||x|| = ∑n
i=1 |xi| and

R+ = [0, ∞). In the case when z = (x, y)T ∈ Rn+m, ||z|| = ∑n
i=1 |xi|+ ∑m

j=1 |yj|.
The goal of this paper is to investigate the qualitative properties, in this case the global exponential

stability of the solutions with respect to a manifold defined by a function, for Cohen–Grossberg-type
BAM impulsive neural networks with time-varying delays and variable impulsive perturbations
of the type:

ẋi(t) = −ai(xi(t))

[
bi(xi(t))−

m

∑
j=1

cji f j(yj(t))

−
m

∑
j=1

djigj(yj(t− σj(t)))− Ii

]
, t 6= τk(x(t), y(t)),

ẏj(t) = −âj(yj(t))

[
b̂j(yj(t))−

n

∑
i=1

pij f̂i(xi(t))

−
n

∑
i=1

qij ĝi(xi(t− σ̂i(t)))− Jj

]
, t 6= τk(x(t), y(t)),

(xi(t+), yj(t+))T = (xi(t) + Pik(xi(t)), yj(t) + Qjk(yj(t)))T , t = τk(x(t), y(t)),

(1)

where the model parameters cji, dji, pij, qij, Ii, Jj ∈ R, the functions
ai, âj, bi, b̂j, f j, f̂i, gj, ĝi, σj, σ̂i, Pik, Qjk ∈ C[R,R], t > σj, t > σ̂i, i = 1, 2, . . . , n, j = 1, 2, . . . , m,
τk : Rn+m → R, k = 1, 2, . . . .

System (1) is a generalization of the existing models of impulsive BAM Cohen–Grossberg
neural networks with time-varying delays [39–44], where x(t) = (x1(t), x2(t), . . . , xn(t))T ,
y(t) = (y1(t), y2(t), . . . , ym(t))T , xi(t), i = 1, 2, . . . , n and yj(t), j = 1, 2, . . . , m, are the states of the
ith unit and jth unit, respectively, at time t, the functions σj(t) (0 ≤ σj(t) ≤ σj), σ̂i(t) (0 ≤ σ̂i(t) ≤ σ̂i)
correspond to the transmission time delays at time t, cji, pij, dji and qij represent the connection
weights, f j, f̂i, gj and ĝi are the signal functions, Ii and Jj are the external inputs, ai and âj represent the
amplification functions, bi and b̂j represent the appropriately behaved functions, such that all solutions
of (1) remain bounded.

Different from the existing models [39–44], we consider variable impulsive perturbations in
(1) such that Pik and Qjk represent the abrupt changes of the states at the impulsive moments,
where (xi(t), yj(t))T = (xi(t−), yj(t−))T and (xi(t+), yj(t+)T = lim

h→0+
(xi(tk + h), yj(tk + h))T ,

are, respectively, the states of the ith unit from the first neural field and the jth unit from the second
neural field before and after an impulsive perturbation at the moment t. Note that the abrupt changes
Pik(xi(t)) = ∆xi(t) = xi(t+)− xi(t) and Qjk(yj(t)) = ∆yj(t) = yj(t+)− yj(t) can be considered as
impulsive controls [31–38].

Let J be an interval, J ⊂ R+, and define the following class of piecewise continuous functions
PC[J,Rn] = {s : J → Rn : s(t) is piecewise continuous on J with points of discontinuity tk ∈ J at
which s(t−k ) and s(t+k ) exist and s(t−k ) = s(tk)}.
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Let σ = max1≤j≤m σj, σ̂ = max1≤i≤n σ̂i, ϕ0 ∈ PCB[[−σ̂, 0],Rn], φ0 ∈ PCB[[−σ, 0],Rm], where
PCB[J,Rn] = {s ∈ PC[J,Rn] : s(t) is bounded on J}.

For a t0 ∈ R+ we denote by z(t) = (x(t), y(t))T = (x(t; t0, ϕ0), y(t; t0, φ0))
T , x ∈ Rn, y ∈ Rm the

solution of model (1) which satisfies initial conditions of the type:
x(t; t0, ϕ0) = ϕ0(t− t0) = ϕ0(ξ), −σ̂ ≤ ξ = t− t0 ≤ 0,
y(t; t0, φ0) = φ0(t− t0) = φ0(ξ), −σ ≤ ξ = t− t0 ≤ 0,
x(t+0 ; t0, ϕ0) = ϕ0(0), y(t+0 ; t0, φ0) = φ0(0).

(2)

As usual, the solution z(t) = (x(t), y(t))T of the problem (1), (2) is [29,45–49] a function from the
class PC[J,Rn+m], i.e., at the moments tlk when the integral curve of the solution (x(t), y(t)) meets the
hypersurfaces

θk =
{
(t, x, y) ∈ [t0, ∞)×Rn ×Rm : t = τk(x, y)

}
,

we have:
xi(t−lk ) = xi(tlk ), xi(t+lk ) = xi(tlk ) + Pilk xi(tlk ),

yj(t−lk ) = yj(tlk ), yj(t+lk ) = yj(tlk ) + Qjlk (yj(tlk )).

The points tl1 , tl2 , . . . (t0 < tl1 < tl2 < . . . ) are called impulsive moments at which impulsive
control techniques can be applied [34–38]. Note that, in general, the number k of the hypersurface θk
may not be equal to the number lk of the impulsive moment tlk . Furthermore, different solutions may
have different impulsive moments.

Denote by ν = max{σ, σ̂}, ψ0 = (ϕ0, φ0)
T , and let PCB = PCB[[−ν, 0],Rn+m]. To eliminate any

opportunity of “beating” of solutions, and to assurance existence, uniqueness and continuability of
the solution z(t) = z(t; t0, ψ0) of the initial value problem (IVP) (1), (2), on the interval [t0, ∞) for
ψ0 ∈ PCB and t0 ∈ R+ we assume that:

1. τ0(x, y) ≡ t0 for x ∈ Rn, y ∈ Rm, the functions τk(x, y) are continuous, and the following relations
hold:

t0 < τ1(x, y) < τ2(x, y) < . . . , τk(x, y)→ ∞ as k→ ∞,

uniformly on x ∈ Rn, y ∈ Rm.
2. The functions ai, âj, bi, b̂j, f j, f̂i, gj, ĝi, σj, σ̂i, Pik, Qjk are smooth enough on [t0, ∞).

Let h = h(t, z), h : [t0 − ν, ∞)×Rn+m → R, be a function in [t0 − ν, ∞)×Rn+m. We will consider
the h-manifolds

Mt(n + m) = {z ∈ Rn+m : h(t, z) = 0, t ∈ [t0, ∞)},
Mt,ν(n + m) = {z ∈ Rn+m : h(t, z) = 0, t ∈ [t0 − ν, t0]},

Mt(n + m)(ε) = {z ∈ Rn+m : ||h(t, z)|| < ε, t ∈ [t0, ∞)}, ε > 0,

Mt,ν(n + m)(ε) =
{

ψ ∈ PCB : sup
−ν≤ξ≤0

||h(t, ψ(ξ))|| < ε; t ∈ [t0 − ν, t0]
}

.

The next hypotheses will be very important in the proofs of our main results:

Hypothesis 1. The functions ai, âj, i = 1, 2, . . . , n, j = 1, 2, . . . , m are bounded and there exist positive
constants ai, âj such that ai ≤ ai(t) ≤ ai and âj ≤ aj(t) ≤ âj for t ∈ R.

Hypothesis 2. For the functions bi and b̂j there exist positive constants Bi, B̂j respectively, such that

bi(χ1)− bi(χ2)

χ1 − χ2
≥ Bi,

b̂j(χ1)− b̂j(χ2)

χ1 − χ2
≥ B̂j,



Mathematics 2020, 8, 335 5 of 14

for any χ1, χ2 ∈ R, χ1 6= χ2 and i = 1, 2, . . . , n, j = 1, 2, . . . , m.

Hypothesis 3. There exist constants Lj > 0, Mj > 0, L̂i > 0, M̂i > 0 such that

| f j(χ1)− f j(χ2)| ≤ Lj|χ1 − χ2|, |gj(χ1)− gj(χ2)| ≤ Mj|χ1 − χ2|

| f̂i(χ1)− f̂i(χ2)| ≤ L̂i|χ1 − χ2|, |ĝi(χ1)− ĝi(χ2)| ≤ M̂i|χ1 − χ2|

for all χ1, χ2 ∈ R, χ1 6= χ2, i = 1, 2, . . . , n, j = 1, 2, . . . , m.

Hypothesis 4. The function h is continuous on [t0 − ν, ∞)×Rn+m and the sets Mt(n + m), Mt,ν(n + m)

are (n + m− 1)-dimensional manifolds in Rn+m.

Hypothesis 5. Each solution z(t) of the IVP (1), (2) satisfying

||h(t, z(t, t0, ψ0))|| ≤ H < ∞

is defined on [t0, ∞)×Rn+m, H > 0.

Note that, a constant state z∗ = (x∗, y∗)T ∈ Rn+m,

z∗ = (x∗, y∗)T = (x∗1 , x∗2 , . . . , x∗n, y∗1 , y∗2 , . . . , y∗m)
T

is called an equilibrium state of (1), if and only if

bi(x∗i ) =
m

∑
j=1

cji f j(y∗j ) +
m

∑
j=1

djigj(y∗j ) + Ii, b̂j(y∗j ) =
n

∑
i=1

pij f̂i(x∗i ) +
n

∑
i=1

qij ĝi(x∗i ) + Jj,

Pik(x∗i ) = 0, Qjk(y∗j ) = 0, i = 1, 2, . . . , n, j = 1, 2, . . . , n, k = 1, 2, . . . .

Suppose that z∗ is an equilibrium of (1), and for a solution z(t) = (x(t), y(t))T of (1) with
an initial function ψ0 ∈ PCB consider z̃(t) = (x̃(t), ỹ(t))T , where x̃(t) = (x̃1(t), x̃2(t), . . . , x̃n(t))T ,
ỹ(t) = (ỹ1(t), ỹ2(t), . . . , ỹm(t))T , x̃i(t) = xi(t)− x∗i , ỹj(t) = yj(t)− y∗j , i = 1, 2, . . . , n, j = 1, 2, . . . , m.

Next, for i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . , we will also use the notations:
αi(x̃i(t)) = ai(x̃i(t) + x∗i ), α̂j(ỹj(t)) = âj(ỹj(t) + y∗j );

βi(x̃i(t)) = bi(x̃i(t) + x∗i )− bi(x∗i ), β̂ j(ỹj(t)) = b̂j(ỹj(t) + y∗j )− b̂j(y∗j );
Fj(ỹj(t)) = f j(ỹj(t) + y∗j )− f j(y∗j ), Gj(ỹj(t)) = gj(ỹj(t) + y∗j )− gj(y∗j );

F̂i(x̃i(t)) = f̂i(x̃i(t) + x∗i )− f̂i(x∗i ), Ĝi(x̃i(t)) = ĝi(x̃i(t) + x∗i )− ĝi(x∗i );
P̂ik(x̃i(t)) = Pik(x̃i(t) + x∗i ), Q̂jk(ỹj(t)) = Qjk(ỹj(t) + y∗j ), t ∈ θk.
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Then z̃(t) satisfies

˙̃xi(t) = −αi(x̃i(t))

[
βi(x̃i(t))−

m

∑
j=1

cjiFj(ỹj(t))

−
m

∑
j=1

djiGj(ỹj(t− σj(t)))

]
, t 6= τk(x(t), y(t)),

˙̃yj(t) = −α̂j(ỹj(t))

[
β̂ j(ỹj(t))−

n

∑
i=1

pij F̂i(x̃i(t))

−
n

∑
i=1

qijĜi(x̃i(t− σ̂i(t)))

]
, t 6= τk(x(t), y(t)),

(x̃i(t+), ỹj(t+))T = (x̃i(t) + P̂ik(x̃i(t)), ỹj(t) + Q̂jk(ỹj(t)))T , t = τk(x(t), y(t)),

(3)

In this research, we will introduce the following definition of global exponential stability of the
equilibrium z∗ of (1) with respect to the function h (or with respect to the manifold defined by this
function), which generalizes the stability definitions given in [39–44].

Definition 1. We will say that the equilibrium z∗ of (1) is globally exponentially stable with respect to the
function h if there exists a constant µ > 0 such that

z̃(t) ∈ Mt(n + m)
(
M(ψ0) exp(−µ(t− t0))

)
, t ≥ t0, t0 ∈ R+, ψ0 ∈ PCB,

whereM(0) = 0,M(ψ) is Lipschitz continuous with respect to ψ ∈ PCB, andM(ψ) ≥ 0.

Introduce the following sets

Gk = {(t, x, y) : τk−1(x, y) < t < τk(x, y), (x, y) ∈ Rn+m}, k = 1, 2, . . . , G =
∞⋃

k=1

Gk.

In our investigations, we will use the Lyapunov-Razumikhin approach, which for impulsive
systems requires a definition of Lyapunov’s like piecewise continuous functions [29].

Definition 2. We will say that a function V : R+ ×Rn+m → R+, V = V(t, x, y) = V(t, z), belongs to the
class V0 if:

1. The function V is continuous in G and locally Lipschitz continuous with respect to (x, y) on each of the
sets Gk, k = 1, 2, . . . .

2. For (t∗0 , x∗0 , y∗0) ∈ θk and each k = 1, 2, . . . there exist the finite limits

V(t∗0
−, x∗0 , y∗0)= lim

(t,x,y)→(t∗0 ,x∗0 ,y∗0 )
(t,x,y)∈Gk

V(t, x, y), V(t∗0
+, x∗0 , y∗0)= lim

(t,x,y)→(t∗0 ,x∗0 ,y∗0 )
(t,x,y)∈Gk+1

V(t, x, y)

and V(t∗0
−, x∗0 , y∗0) = V(t∗0 , x∗0 , y∗0).

For (t, z) ∈ G, we will apply the following upper right-hand derivative of a function V from the
class V0 with respect to system (1), defined by [29]

D+V(t, ψ(0)) = lim
h→0+

sup
1
h
[
V(t + h, z(t + h; t0, ψ))−V(t, ψ(0))

]
,

for (t, ψ) ∈ R+ ×PCB.
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Let each of the points tk be a solution of some of the equations t = τk(z(t)), k = 1, 2, . . . , i.e.,
t1, t2 , . . . are the impulsive control instants for the IVP (1), (2). In the proof of the main result, we will
apply the following comparison result from [29].

Lemma 1. Let the function V ∈ V0 be such that for t ∈ [t0, ∞), ψ ∈ PCB,

V(t+, ψ(0) + ∆ψ) ≤ V(t, ψ(0)), t = tk, k = 1, 2, . . . ,

and the inequality
D+V(t, ψ(0)) ≤ −µV(t, ψ(0)), t 6= tk, k = 1, 2, . . .

is valid whenever V(t + ξ, ψ(ξ)) ≤ V(t, ψ(0)), −ν ≤ ξ ≤ 0, µ > 0.
Then

V(t, z(t; t0, ψ0)) ≤ sup−ν≤ξ≤0V(t+0 , ψ0(ξ)) exp(−µ(t− t0))

for t ∈ [t0, ∞).

3. H-Stability Results

We will now derive our main h−stability results for the equilibrium state of the model (1).

Theorem 1. Assume that:
1. Hypotheses 1–5 are satisfied.
2. There exists a positive number µ such that

min
1≤i≤n

(
aiBi − aj

m

∑
j=1
|pij|L̂i|

)
+ min

1≤j≤m

(
âj B̂j − âj

n

∑
i=1
|cji|Lj|

)

−
(

max
1≤j≤m

aj

n

∑
i=1
|dji|Mj + max

1≤i≤n
âi

m

∑
j=1
|qij|M̂i

)
≥ µ.

3. The functions Pik and Qjk are such that

Pik(xi(tk)) = −γik(xi(tk)− x∗i ), Qjk(yj(tk)) = −µjk(yj(tk)− y∗j ),

where 0 < γik < 2, 0 < µjk < 2, i = 1, 2, . . . , n, j = 1, 2, . . . , m, k = 1, 2, . . . .
4. There exists a function h(t, z) such that the next inequalities hold

||h(t, z)|| ≤ ||z|| < Λ(H)||h(t, z)||, (t, z) ∈ [t0, ∞)×Rn+m,

where Λ(H) ≥ 1 exists for any 0 < H ≤ ∞.
Then the equilibrium z∗ of the Cohen–Grosberg-type BAM impulsive delayed neural network system (1) is

globally exponentially stable with respect to the function h.

Proof. We define a Lyapunov function

V(t, z̃(t)) = ||z̃|| =
n

∑
i=1
|x̃i(t)|+

m

∑
j=1
|ỹj(t)|.
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In the case when t = tk, k = 1, 2, . . . by condition 3 of Theorem 1 and Hypotheses 1–3 and 5,
we get

V(t+k , z̃(t+k )) = ||z̃(t
+
k )|| =

n

∑
i=1
|(1− γik)x̃i(tk)|+

m

∑
j=1
|(1− µjk)ỹj(tk)|

<
n

∑
i=1
|x̃i(tk)|+

m

∑
j=1
|ỹj(tk)| = V(tk, z̃(tk)).

(4)

Let now t ≥ t0 and t 6= τk(x, y), k = 1, 2, . . . , x ∈ Rn, y ∈ Rm. Then, from the fact that z∗ is an
equilibrium of (1), using Hypotheses 1–5, for the upper right-hand derivative D+V(t, ψ̃(0)), ψ̃ ∈ PCB,
along the solutions of system (3), we get

D+V(t, ψ̃(0)) ≤
n

∑
i=1

(
− aiBi|ϕ̃(0)|+ ai

m

∑
j=1
|cji|Lj|φ̃(0)|+ ai

m

∑
j=1
|dji|Mj|φ̃(−σj(0))|

)

+
m

∑
j=1

(
− âj B̂j|φ̃(0)|+ âj

n

∑
i=1
|pij|L̂i|ϕ̃(0)|+ âj

n

∑
i=1
|qij|M̂i|ϕ̃(−σ̂i(0))|

)

≤ −
n

∑
i=1

(
aiBi − âi

m

∑
j=1
|pij|L̂i|

)
|ϕ̃(0)| −

m

∑
j=1

(
âj B̂j − aj

n

∑
i=1
|cji|Lj|

)
|φ̃(0)|

+
n

∑
i=1

m

∑
j=1

ai|dji|Mj|φ̃(−σj(0))|+
m

∑
j=1

n

∑
i=1

âj|qij|M̂i|ϕ̃(−σ̂i(0))|

≤ −
[

min
1≤i≤n

(
aiBi − aj

m

∑
j=1
|pij|L̂i|

)
+ min

1≤j≤m

(
âj B̂j − âj

n

∑
i=1
|cji|Lj|

)]
V(t, ψ̃(0))

+
(

max
1≤j≤m

aj

n

∑
i=1
|dji|Mj + max

1≤i≤n
âi

m

∑
j=1
|qij|M̂i

)
sup
−ν≤ξ≤0

V(s, ψ̃(ξ)),

where ψ̃ = (ϕ̃, φ̃)T = (ϕ− x∗, φ− y∗)T .
The last inequality and condition 2 of Theorem 1 imply

D+V(t, ψ̃(0)) ≤ −µV(t, ψ̃(0)), t 6= tk, k = 1, 2, . . . (5)

whenever V(t + ξ, ψ̃(ξ)) ≤ V(t, ψ̃(0)), −ν ≤ ξ ≤ 0.
Then using (4) and (5), by Lemma 1, we obtain

V(t, z̃(t)) ≤ sup
−ν≤ξ≤0

V(0, ψ̃0(ξ)) exp(−µ(t− t0)), t > t0.

Hence, from condition 4 of Theorem 1 we have

||h(t, z̃(t, t0, ψ̃0)|| ≤ V(t, z̃(t)) ≤ sup
−ν≤ξ≤0

V(0, ψ̃0(ξ)) exp(−µ(t− t0))

< Λ(H) sup
−ν≤ξ≤0

||h(t+0 , ψ0(ξ)− z∗)|| exp(−µ(t− t0)), t ≥ t0.

LetM =M(ψ0) = Λ(H) sup−ν≤ξ≤0 ||h(t
+
0 , ψ0(ξ)− z∗)||.

Then
||h(t, z(t, t0, ψ0)− z∗|| <M exp(−µ(t− t0)), t ≥ t0,

where we have thatM≥ 0 andM = 0 only for h(t+0 , ψ0(ξ)− z∗) = 0, ξ ∈ [−ν, 0].
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The last estimate implies the global exponential stability of the equilibrium state z∗ of (1) with
respect to the function h.

Remark 1. The concept of stability with respect to manifolds defined by a particular function h generalizes
numerous stability notions. Hence, Theorem 1 can be applied to a number of concrete situations depending on
the choice of the norm ||z|| and the Lyapunov function V(t, z). Some of the most applicable cases are when the
function h is

h(t, z) = z− z∗,

where z∗ is an arbitrary nontrivial solution of (1) (an equilibrium, periodic solution, almost periodic
solution, etc.);

h(t, z) =
√

x2
1 + x2

2 + · · ·+ x2
n + y2

1 + y2
2 + · · ·+ y2

m;

h(t, z) = d(z, A),

where A ⊂ Rn+m and d is the distance function. Therefore, the proposed stability result extends and
generalizes the existing stability results for Cohen–Grossberg-type BAM impulsive neural networks with
time-varying delays.

Remark 2. The stability criteria provided by Theorem 1 also generalize the results in [39–44] considering
variable impulsive perturbations and h−manifolds. It is worth noting that, in the case when h(t, z) = z− z∗,
the impulsive moments of both solutions z(t) and z∗(t) can be different which is not considered in [39–44].
However, considering impulsive perturbations at variable time in impulsive neural network models is more
natural and realistic, and, therefore, the new results offer an extended horizon for applications. Observe also
that, if the impulsive events are realized at fixed times or when τk(x, y) = tk, k = 1, 2, . . . , and the function
h(t, z) = z, then the exponential stability criteria in [39–44] can be obtained as corollaries from our result.

4. Illustrative Examples

In this section, we will demonstrate the validity of the obtained in Theorem 1 criteria for
global exponential stability with respect to manifolds.

Example 1. Consider the following Cohen–Grossberg-type BAM impulsive neural networks with
time-varying delays

ẋi(t) = −ai(xi(t))

[
bi(xi(t))−

2

∑
j=1

cji f j(yj(t))

−
2

∑
j=1

djigj(yj(t− σj(t)))− Ii

]
, t 6= τk(x(t), y(t)),

ẏj(t) = −âj(yj(t))

[
b̂j(yj(t))−

2

∑
i=1

pij f̂i(xi(t))

−
2

∑
i=1

qij ĝi(xi(t− σ̂i(t)))− Jj

]
, t 6= τk(x(t), y(t)),

(6)
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with impulsive perturbations of the type

x(t+)− x(t) =

(
−1 + 1

2k 0
0 −1 + 1

2k

)
x(t), t = τk(x(t), y(t)), k = 1, 2, . . . ,

y(t+)− y(t) =

(
−1 + 1

3k 0
0 −1 + 1

3k

)
y(t), t = τk(x(t), y(t)), k = 1, 2, . . . ,

(7)

where t > 0,

x(t) =

 x1(t)

x2(t)

 , y(t) =

 y1(t)

y2(t)

 , I1 = I2 = J1 = J2 = 1,

f j(yj) = gj(yj) =
|yj + 1| − |yj − 1|

2
, f̂i(xi) = ĝi(xi) =

|xi + 1| − |xi − 1|
2

, i = 1, 2, j = 1, 2,

0 ≤ σj(t) ≤ 1, 0 ≤ σ̂i(t) ≤ 1, ai(xi) = âj(yj) = 1, b1(xi) = 2xi, b2(xi) = 3xi,

b̂1(yj) = b̂2(yj) = 2yj, i = 1, 2, j = 1, 2,

(cij)2×2 =

(
c11 c12

c21 c22

)
=

(
1 0.5
0.6 −0.5

)
, (dij)2×2 =

(
d11 d12

d21 d22

)
=

(
0.3 0.4
−0.4 0.2

)
,

(pij)2×2 =

(
p11 p12

p21 p22

)
=

(
0.7 −0.6
0.9 0.8

)
, (qij)2×2 =

(
q11 q12

q21 q22

)
=

(
0.2 −0.1
0.1 −0.2

)
,

τk(x, y) = |x|+ |y|+ k, k = 1, 2, . . . .

We have that all assumptions of Theorem 1 are satisfied for

L1 = L2 = 1, M1 = M2 = 1, L̂1 = L̂2 = 1, M̂1 = M̂2 = 1,

ai = ai = 1, âi = âi = 1, B1 = 2, B2 = 3, B̂1 = B̂2 = 2.

We can verify that condition 2 of Theorem 1 is satisfied for 0 < µ ≤ 0.2.
In addition, the given functions τk are continuous on their domains, τk(x, y)→ ∞ as k→ ∞ uniformly

on (x, y) ∈ R4, and also
0 < τ1(x, y) < τ2(x, y) < . . . , (x, y) ∈ R4.

Condition 3 of Theorem 1 is also true since γik = 1− 1
2k , µjk = 1− 1

3k for i, j = 1, 2, k = 1, 2, . . . .
Therefore, according to Theorem 1, we conclude that the zero equilibrium (x∗, y∗) = (0, 0) of the model (6),

(7) is globally exponentially stable with respect to the function h =
√

x2
1 + x2

2 + y2
1 + y2

2. The stable behavior of
each neural state is shown in Figure 1.

Example 2. Let again consider the Cohen–Grossberg impulsive BAM neural network with time-varying
delays (6), and replace the impulsive condition (7) with the following equations

x(t+)− x(t) =

(
−1 + 1

2k 0
0 1

2k

)
x(t), t = τk(x(t), y(t)), k = 1, 2, . . . ,

y(t+)− y(t) =

(
−1 + 1

3k 0
0 −1 + 1

3k

)
y(t), t = τk(x(t), y(t)), k = 1, 2, . . . .

(8)

Since we have that
γ2k = −

1
2k

< 0, k = 1, 2, . . . ,
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then the condition 3 of Theorem 1 is not satisfied. Hence, we can not make any conclusion on the stability
behavior of the equilibrium state of (6). For example, in this case when τk(x, y) = |x|+ |y|+ k, the unstable

behavior of the node x2(t) with respect to the function h =
√

x2
1 + x2

2 + y2
1 + y2

2 is shown in Figure 2.

Remark 3. The presented examples not only show the effectiveness of the proposed theoretical results, but also
illustrated how the stability behavior of a class of Cohen–Grossberg BAM delayed neural networks can be
controlled via appropriate impulsive perturbations.

t
0 2 4 6

x 1

0

1

2

t
0 2 4 6

x 2

0

1

2

3

t
0 2 4 6

y 1

-0.1

0

0.1

0.2

0.3

t
0 2 4 6

y 2

0

2

4

6

Figure 1. The global exponentially stable behavior of model (6), (7) with respect to the function

h =
√

x2
1 + x2

2 + y2
1 + y2

2. Behavior of the state variables x1(t), x2(t), y1(t) and y2(t).

t
0 0.5 1 1.5 2 2.5 3 3.5

x 2

-100

-50

0

50

100

150

200

250

Figure 2. The unstable behavior of the state variable x2(t) of the model (6) with impulsive perturbations (8).
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5. Conclusions

In this paper, the important notion of global exponential stability of single solutions of
Cohen–Grossberg BAM impulsive neural networks with time-varying delays is extended and
generalized. We introduce the concept of stability with respect to a manifold defined by a function h
with specific properties. Thus, our research generalize some existing results in the literature on global
exponential stability of solutions of impulsive BAM Cohen–Grossberg neural networks. In addition,
instead of impulsive effects at fixed moments of time, we consider variable impulsive perturbations.
The proposed notion and the results obtained in the paper can be extended to various other types of
impulsive neural network models.
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