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Abstract: Let G be a graph without isolated vertices. A function f : V(G)→ {0, 1, 2} is a total Roman
dominating function on G if every vertex v ∈ V(G) for which f (v) = 0 is adjacent to at least one
vertex u ∈ V(G) such that f (u) = 2, and if the subgraph induced by the set {v ∈ V(G) : f (v) ≥ 1}
has no isolated vertices. The total Roman domination number of G, denoted γtR(G), is the minimum
weight ω( f ) = ∑v∈V(G) f (v) among all total Roman dominating functions f on G. In this article
we obtain new tight lower and upper bounds for γtR(G) which improve the well-known bounds
2γ(G) ≤ γtR(G) ≤ 3γ(G), where γ(G) represents the classical domination number. In addition,
we characterize the graphs that achieve equality in the previous lower bound and we give necessary
conditions for the graphs which satisfy the equality in the upper bound above.
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1. Introduction

Domination theory is a classical and interesting topic in theory of graphs, as well as one of the
most active areas of research in this topic. The increasing interest in this area is partly explained by the
diversity of applications to both theoretical and real-world problems, such as facility location problems,
monitoring communication, coding theory, algorithm design, complex ecosystems, electrical networks,
among others. A set D ⊆ V(G) of vertices of a graph G is a dominating set if every vertex in V(G) \ D
is adjacent to at least one vertex in D. The domination number of G, denoted by γ(G), is the minimum
cardinality among all dominating sets of G. Many variants of the previous concept have appeared in
the literature. We refer to [1,2] for numerous results on this issue.

A remarkable variant of the parameter above, and one of the most studied, is as follows.
A dominating set D of a graph G without isolated vertices is a total dominating set if the subgraph
induced by the vertices of D has no isolated vertex. Notice that any graph with no isolated vertex has
a total dominating set, since D = V(G) is such a set. The total domination number of G, denoted by
γt(G), is the minimum cardinality among all total dominating sets of G. More information on total
domination in graphs can be found in the survey [3] and the book [4].

Next, we consider another variant of the concept of domination. A semitotal dominating set of a
graph G without isolated vertices, is a dominating set D of G such that every vertex in D is within
distance two of another vertex of D. The semitotal domination number, denoted by γt2(G), is the
minimum cardinality among all semitotal dominating sets of G. This parameter was introduced by
Goddard et al. in [5], and was also further studied in [6–8].
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For any graph without isolated vertices, we have that every semitotal dominating set is also a
dominating set. Similarly, every total dominating set is a semitotal dominating set. Hence, the next
inequality chain, given in [5], relates the parameters above.

γ(G) ≤ γt2(G) ≤ γt(G) (1)

In the last decades, functions defined on graphs have received much attention in domination
theory. This fact may be because the classical (total) domination problem can be studied using functions
defined on graphs. Based on this approach, we consider the following concepts, which are also variants
of the domination in graphs.

Let f : V(G) → {0, 1, 2} be a function on a graph G. Notice that f generates three sets V0, V1

and V2, where Vi = {v ∈ V(G) : f (v) = i} for i = 0, 1, 2. In this sense, from now on, we will write
f (V f

0 , V f
1 , V f

2 ) so as to refer to the function f . Given a set S ⊆ V(G), f (S) = ∑v∈S f (v). We define

the weight of f as ω( f ) = f (V(G)) = |V f
1 |+ 2|V f

2 |. In this sense, by an f (V(G))-function, we mean
a function of weight f (V(G)). If the function f is clear from the context, then we will simply write
f (V0, V1, V2). We shall also use the following notations: V1,2 = {v ∈ V1 : N(v) ∩ V2 6= ∅} and
V1,1 = V1 \V1,2.

Roman domination in graphs was formally defined by Cockayne, Dreyer, Hedetniemi, and
Hedetniemi [9] motivated, in part, by an article in Scientific American of Ian Stewart entitled “Defend
the Roman Empire" [10]. A Roman dominating function (RDF) on a graph G is a function f (V0, V1, V2)

satisfying that every vertex u ∈ V0 is adjacent to at least one vertex v ∈ V2. The Roman domination
number of G, denoted by γR(G), is the minimum weight among all RDFs on G. Further results on
Roman domination can be found for example, in [11–14].

Another kind of functions defined on graphs are the total Roman dominating functions, which
were introduced by Liu and Chang [15] and later, studied by Abdollahzadeh Ahangar et al. in [16].
A total Roman dominating function (TRDF) on a graph G without isolated vertices, is an RDF
f (V0, V1, V2) such that the set V1 ∪V2 is a total dominating set of G. The minimum weight among all
TRDFs on G is the total Roman domination number of G and it is denoted by γtR(G).

Abdollahzadeh Ahangar et al. [16] give the next relationship between the total Roman domination
number and the domination number of a graph: If G is a graph with no isolated vertex, then

2γ(G) ≤ γtR(G) ≤ 3γ(G). (2)

Also, the authors of [16] proposed open problems concerning characterizing the graphs that
satisfy the equalities in the inequality chain above. While the families of trees which satisfy these
equalities has been characterized in [17], it remains an open problem to characterize graphs in general.
In that sense, in this article we study the open problems above. In the next section we first give
new lower and upper bounds for this parameter, which improve the bounds given in the Inequality
chain (2). Also, in Section 3 we give a characterization for the graphs G that satisfy the equality
γtR(G) = 2γ(G); and finally, in Section 4 we give some necessary conditions that satisfy the graphs G
for which γtR(G) = 3γ(G).

Notation

Throughout this article we consider G = (V(G), E(G)) as a simple graph of order n = |V(G)|.
Given a vertex v of G, N(v) and N[v] represent the open neighbourhood and the closed neighbourhood
of v, respectively. For a set D ⊆ V(G), its open neighbourhood and closed neighbourhood are
N(D) = ∪v∈D N(v) and N[D] = N(D) ∪ D, respectively. The boundary of the set D is defined
as ∂(D) = N(D) \ D. The private neighbourhood of a vertex v with respect to a set D ⊆ V(G)

(v ∈ D), denoted by pn(v, D), is defined by pn(v, D) = {u ∈ V(G) : N(u) ∩ D = {v}}. The vertices
of pn(v, D) will be called private neighbours of v with respect to D. Given a vertex v ∈ D ⊆ V(G),
epn(v, D) = pn(v, D) ∩ (V(G) \ D) represent the external private neighbourhood of v with respect
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to D. Also, and as is commonly defined, G − D denotes the graph obtained from G such that
V(G − D) = V(G) \ D and E(G − D) = E(G) \ {uv ∈ E(G) : u ∈ D or v ∈ D}. The subgraph
induced by D ⊆ V(G) is denoted by G[D]. For any two vertices u and v, the distance d(u, v) between
u and v is the length of a shortest u− v path.

A set X of vertices of G is a packing in G if the closed neighbourhoods of vertices in X are pairwise
disjoint, that is, if N[u] ∩ N[v] = ∅, for every pair of different vertices u, v ∈ X.

A leaf vertex of a graph G is a vertex of degree one, and a support vertex of G is a vertex adjacent
to a leaf. The set of leaves and support vertices are denoted by L(G) and S(G), respectively. Also,
given a set D ⊆ V(G) we denote I(D) as an independent set of maximum cardinality in G[D] such
that |I(D) ∩ S(G)| is maximum.

Other definitions will be introduced as needed.

2. Main Result

We begin this section with the following useful result of total Roman dominating functions given
in [16].

Lemma 1 ([16]). If G is a graph with no isolated vertex, then there exists a γtR(G)-function f (V0, V1, V2)

such that either V2 is a dominating set of G, or the set S of vertices not dominated by V2 satisfies G[S] = kK2

for some k ≥ 1, where S ⊆ V1 and ∂(S) ⊆ V0.

It is known from [9] that for any graph G, γR(G) ≤ 2γ(G) and also, from Inequality chain (1)
that γ(G) ≤ γt2(G). Hence, and as consequence of both inequalities above, we deduce that the
following result improves the lower and upper bounds given in Inequality chain (2) for the total
Roman domination number of graphs.

Theorem 1. For any graph G with neither isolated vertex nor components isomorphic to K2,

γt2(G) + γ(G) ≤ γtR(G) ≤ γR(G) + γ(G).

Proof. We first prove the lower bound. By Lemma 1, there exists a γtR(G)-function g(Vg
0 , Vg

1 , Vg
2 )

such that either Vg
2 is a dominating set of G, or Vg

1,1 satisfies G[Vg
1,1]
∼= kK2 for some k ≥ 1. Hence, Vg

2
is a dominating set of G−Vg

1,1 and can be extended to a dominating set of G by adding to it the set
I(Vg

1,1). So γ(G) ≤ |Vg
2 ∪ I(Vg

1,1)| = |V
g
2 |+ |V

g
1,1|/2. Moreover, Vg

2 ∪ Vg
1,2 is a total dominating set of

G−Vg
1,1 and it is easy to check that Vg

2 ∪Vg
1,2 ∪ I(Vg

1,1) is a semitotal dominating set of G. Therefore
γt2(G) ≤ |Vg

2 ∪Vg
1,2 ∪ I(Vg

1,1)| = |V
g
2 |+ |V

g
1,2|+ |I(V

g
1,1)| = |V

g
2 |+ |V

g
1,2|+ |V

g
1,1|/2 and so,

γt2(G) + γ(G) ≤ (|Vg
2 |+ |V

g
1,2|+ |V

g
1,1|/2) + (|Vg

2 |+ |V
g
1,1|/2) = 2|Vg

2 |+ |V
g
1 | = γtR(G),

which completes the proof of the lower bound.
Now, in order to prove the upper bound, let D be a γ(G)-set and f (V0, V1, V2) be a γR(G)-function.

Also, we consider V1,0 = {v ∈ V1 : N(v) ⊆ V0} and let f ′(V′0, V′1, V′2) be a function defined as follows.

(a) For every vertex x ∈ (V1,0 ∪V2) ∩ D, choose a vertex u ∈ (V0 ∩ N(x)) \ D (if it exists), and label
it as f ′(u) = 1.

(b) For every vertex x ∈ V0 ∩ D, f ′(x) = 1.
(c) For any other vertex u not previously labelled, f ′(u) = f (u).
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Since f is an RDF on G, by construction we have that f ′ is a TRDF on G. Therefore,

γtR(G) ≤ ω( f ′)

≤ |V1|+ 2|V2|+ |(V1,0 ∪V2) ∩ D|+ |V0 ∩ D|
≤ (|V1|+ 2|V2|) + |D|
= γR(G) + γ(G),

which completes the proof.

Now, we show a family of graphs Gp,q given by Cabrera et al. in [18], which satisfy that
γtR(Gp,q) = γt2(Gp,q) + γ(Gp,q) (observe that γ(Gp,q) = p, γt2(Gp,q) = p + 1 and γtR(Gp,q) = 2p + 1).
Let p, q be two integers such that q ≥ p ≥ 2. From the complete bipartite graph Kp,q and the empty
graph Np, we construct the graph Gp,q as follows. We add p new edges which form a matching
between the vertices of Np and the vertices of degree q in Kp,q. Figure 1 shows the graph G3,4 and a
γtR(G3,4)-function g(V0, V1, V2).

1

1

1

1

1

2

0

0

0

0

Figure 1. The graph G3,4.

Next, we provide some useful properties that satisfies a specific TRDF for the graphs G with
γtR(G) = γt2(G) + γ(G).

Theorem 2. For any graph G such that γtR(G) = γt2(G) + γ(G), there exists a γtR(G)-function
f (V0, V1, V2) satisfying the following conditions.

(i) Either V2 is a dominating set of G, or the set V1,1 satisfies G[V1,1] = kK2 for some k ≥ 1, where
∂(V1,1) ⊆ V0.

(ii) V2 ∪ I(V1,1) is a γ(G)-set and V2 ∪V1,2 ∪ I(V1,1) is a γt2(G)-set.
(iii) G[V1,2] is isomorphic to an empty graph. Furthermore, if v ∈ V1,2, then |N(v) ∩V2| = 1.

Proof. Let f (V0, V1, V2) be a γtR(G)-function that satisfies Lemma 1. Hence, condition (i) holds.
Now, we proceed to prove (ii). First, we notice that A = V2 ∪ I(V1,1) and B = V2 ∪V1,2 ∪ I(V1,1)

are a dominating set and a semitotal dominating set, respectively. Hence, γ(G) ≤ |A| and γt2(G) ≤ |B|.
Since |A|+ |B| = γtR(G) and γtR(G) = γt2(G) + γ(G), we obtain that |B|+ |A| = γt2(G) + γ(G).
If |A| > γ(G), then |B| < γt2(G), which is a contradiction. Therefore, |A| = γ(G) and so, |B| = γt2(G),
which completes the proof of (ii).

Finally, we proceed to prove (iii). Let v ∈ V1,2. Clearly, N(v) ∩ V2 6= ∅. If N(v) ∩ V1,2 6= ∅
or |N(v) ∩ V2| > 1, then (V2 ∪ V1,2 ∪ I(V1,1)) \ {v} is a semitotal dominating set of G, which is a
contradiction with the fact that V2 ∪V1,2 ∪ I(V1,1) is a γt2(G)-set by (ii). Therefore, N(v)∩V1,2 = ∅ and
|N(v) ∩V2| = 1, which implies that G[V1,2] is isomorphic to an empty graph, and that |N(v) ∩V2| = 1,
which completes the proof.
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We consider again the family of graphs Gp,q. Let g(V0, V1, V2) be a γtR(Gp,q)-function defined as
V2 = {v} and V1 = (S(Gp,q) ∪ L(Gp,q)) \ {v}, for some v ∈ S(G). Notice that g satisfies the conditions
given in Theorem 2. For an example, see the γtR(G3,4)-function g showed in the Figure 1.

Next, we will show a family of graphs Gr that satisfy the upper bound in the Theorem 1. In this
case we have that γ(Gr) = r, γR(Gr) = 2r and γtR(Gr) = 3r, where r ≥ 2 is an integer. The graph Gr

is constructed from the path graph P3r−2 = v1v2 · · · v3r−2 and the empty graph N2 by taking one copy
of P3r−2 and r copies of N2 and adding edges between the vertex v3i−2 and the i-th copy of N2, for
i ∈ {1, . . . , r}. Figure 2 shows the graph G3.

Figure 2. The graph G3.

3. Graphs G with γtR(G) = 2γ(G)

We begin this section with a simple characterization, which is a direct consequence of Theorem 1
and the Inequality chains (1) and (2).

Theorem 3. Let G be a graph with no isolated vertex. Then γtR(G) = 2γ(G) if and only if γtR(G) =

γt2(G) + γ(G) and γt2(G) = γ(G).

We observe that the condition γtR(G) = γt2(G) + γ(G) is a necessary condition but is not
sufficient to satisfy the equality γtR(G) = 2γ(G). For instance, see the graph G3,4 shown in Figure 1.

Next, we give another characterization for the graphs G satisfying γtR(G) = 2γ(G). It is important
to emphasize that this characterization depends only of the existence of a γ(G)-set which satisfies
some specific conditions.

Theorem 4. Let G be a graph with no isolated vertex. Then γtR(G) = 2γ(G) if and only if there exist a
γ(G)-set S and a set D ⊆ S such that

(a) G[D] is isomorphic to an empty graph.
(b) |epn(v, S)| = 1, for every vertex v ∈ D.
(c) γ(G− D∗) = γt(G− D∗), where D∗ =

⋃
v∈D epn(v, S) ∪ D.

Proof. First, we suppose that γtR(G) = 2γ(G). By Lemma 1, there exists a γtR(G)-function
g(Vg

0 , Vg
1 , Vg

2 ) such that either Vg
2 is a dominating set of G, or Vg

1,1 satisfies G[Vg
1,1]
∼= kK2 for some k ≥ 1.

By proceeding analogously as the proof of the lower bound of Theorem 1 and since γtR(G) = 2γ(G) =

γt2(G) + γ(G), we obtain γ(G) = |Vg
2 |+ |V

g
1,1|/2 and γt2(G) = |Vg

2 |+ |V
g
1,2|+ |V

g
1,1|/2. Therefore

Vg
1,2 = ∅.

Let D be the set formed by taking one vertex from each K2-component of G[Vg
1,1]. Notice that

D ∪ Vg
2 is a dominating set of G. Hence 2γ(G) = γtR(G) = |Vg

1 | + 2|Vg
2 | = 2|D| + 2|Vg

2 |, which
implies that S = D ∪ Vg

2 is a γ(G)-set. Thus, by construction of sets S and D, it is easy to see that
Statements (a) and (b) hold.

Next, we prove Statement (c). Let D∗ =
⋃

v∈D epn(v, S)∪D. It is readily seen that from D and any
γ(G− D∗)-set we can construct a dominating set of G, and as Vg

1,2 = ∅, we obtain 1
2 γtR(G) = γ(G) ≤

γ(G− D∗) + |D| ≤ |Vg
2 |+

1
2 |V

g
1,1| =

1
2 γtR(G). Thus, we have equalities in the inequality chain above.

In particular, γ(G−D∗) = |Vg
2 |. Also, notice that Vg

2 is a total dominating set of G−D∗ since Vg
1,2 = ∅.

Hence, we deduce γt(G− D∗) ≤ |Vg
2 | = γ(G− D∗), which implies γt(G− D∗) = γ(G− D∗), and

Statement (c) holds, as desired.
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Conversely, we suppose there exist a γ(G)-set S and a set D ⊆ S such that Statements (a),
(b) and (c) hold. Let AD be a γt(G − D∗)-set. By Statements (a) and (b) we have that S \ D is a
dominating set of G−D∗ and so, by using Statement (c), we deduce that |AD| = γ(G−D∗) ≤ |S \D|.
Moreover, we observe that the function f (V0, V1, V2), defined by V1 = D∗ and V2 = AD, is a TRDF
on G. Therefore, by Inequality chain (2) and statements above, we obtain 2γ(G) ≤ γtR(G) ≤ ω( f ) =
|D∗|+ 2|AD| ≤ 2|D|+ 2|S \ D| = 2|S| = 2γ(G). Thus, we have equalities in the previous inequality
chain. In particular, γtR(G) = 2γ(G), which completes the proof.

4. Some Necessary Conditions for the Graphs G satisfying γtR(G) = 3γ(G)

Analogously to the section above, we continue now with a simple characterization, which is a
direct consequence of Theorem 1 and the well-know inequality γR(G) ≤ 2γ(G).

Theorem 5. Let G be a graph without isolated vertices. Then γtR(G) = 3γ(G) if and only if γtR(G) =

γR(G) + γ(G) and γR(G) = 2γ(G).

We want to accentuate that in all the examples in which we have observed that the upper bound
of Theorem 1 is achieved, we also have that γR(G) = 2γ(G). In such a sense, we propose the following
conjecture, which we could not prove.

Conjecture 1. Let G be a graph with no isolated vertex. Then γtR(G) = 3γ(G) if and only if γtR(G) =

γR(G) + γ(G).

In order to give some necessary conditions for the graphs G satisfying γtR(G) = 3γ(G), we shall
need the following definition and useful results.

Definition 1. A graph G satisfies Property P if for every γ(G)-set S, there exist no three vertices x, y, z ∈ S
such that

• There exists a vertex y′ ∈ epn(y, S) such that d(x, y′) = d(y′, z) = 2.
• |epn(x, S)| = |epn(z, S)| = 2.

Notice that the families of graphs Gp,q and Gr given in Section 2 satisfy the Property P . Moreover,
the Figure 3 shows a graph G that does not satisfy Property P . Observe that the set S = {x, y, z} is a
γ(G)-set and also, it is easy to see that |epn(x, S)| = |epn(z, S)| = 2 and that the vertex y′ ∈ epn(y, S)
satisfies the condition d(x, y′) = d(y′, z) = 2.

z

x

y′ y

Figure 3. A graph G that does not satisfy the Property P .

Lemma 2. Let G be a graph and let S be a γ(G)-set. If S is a packing, then for all v ∈ S there exists v′ ∈ S
such that d(v, v′) = 3.

Proof. Suppose there exists a vertex v ∈ S such that for all vertex v′ ∈ S \ {v}, it is satisfied that
d(v, v′) > 3 (notice that d(v, v′) ≥ 3 because S is a packing). Hence, every vertex at distance two of v is
not dominated by S, which is a contradiction. This completes the proof.

Proposition 1. If G is a graph such that every γ(G)-set is a packing, then for every γ(G)-set S and for every
v ∈ S it is satisfied that |epn(v, S)| ≥ 2.
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Proof. Let S be a γ(G)-set and let v ∈ S. Since S is a packing, we have that epn(v, S) 6= ∅. If
epn(v, S) = {u}, then v is a vertex of degree one. By using Lemma 2, we have that S′ = (S \ {v})∪ {u}
is a γ(G)-set, but is not a packing, contradicting the hypothesis. So |epn(v, S)| ≥ 2, as desired.

Theorem 6. Let G be a graph. If γtR(G) = 3γ(G), then the following statements hold.

(i) γR(G) = 2γ(G).
(ii) S is a packing, for every γ(G)-set S.
(iii) G satisfies Property P .

Proof. By Theorem 5, Statement (i) follows. Moreover, Abdollahzadeh Ahangar et al. showed in [16]
that every γ(G)-set is a packing, which implies that Statement (ii) holds.

Next we prove Statement (iii). In that sense, we suppose that G does not satisfy Property P . Hence
there exist a γ(G)-set S and three vertices x, y, z ∈ S satisfying the conditions given in Definition 1.
By Statement (ii) and Proposition 1 we have |epn(v, S)| ≥ 2, for every v ∈ S. Let x′ ∈ epn(x, S) \ N(y′)
and z′ ∈ epn(z, S) \ N(y′). Now, we consider the function f defined as follows.

(a) For every vertex u ∈ (S \ {x, z}) ∪ {y′}, set f (u) = 2.
(b) For every vertex v ∈ S \ {x, y, z}, choose a vertex v′ ∈ N(v), and label it as f (v′) = 1.
(c) For u ∈ {x, z, x′, z′}, set f (u) = 1.
(d) For any other vertex u not previously labelled, set f (u) = 0.

Notice that, by construction, f is a TRDF on G. Therefore,

γtR(G) ≤ ω( f )

≤ 2|(S \ {x, z}) ∪ {y′}|+ |S \ {x, y, z}|+ |{x, z, x′, z′}|
= 2(|S| − 1) + (|S| − 3) + 4

= 3|S| − 1

< 3γ(G),

which is a contradiction. Hence G satisfies Property P and the proof is complete.

5. Conclusions and Open Problems

New results concerning the study of total Roman domination in graphs have been presented in
this article. Among the main contributions, the following should be highlighted.

• As the main result, we have provided new lower and upper bounds for the total Roman
domination number of graphs, which improve other well-known bounds.

• We have shown a theoretical characterization for the graphs G satisfying γtR(G) = 2γ(G).
• We have shown some necessary conditions for the graphs G that satisfy γtR(G) = 3γ(G).

On the other hand, and as a consequence of this study, some open problems have arisen. Next,
we expose some of the most interesting.

(a) Characterize the graphs G satisfying γtR(G) = γt2(G) + γ(G).
(b) Characterize the graphs G satisfying γtR(G) = γR(G) + γ(G).
(c) Settle Conjecture 1.
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