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Abstract: The history of boundary value problems for differential equations starts with the
well-known studies of D. Bernoulli, J. D’Alambert, C. Sturm, J. Liouville, L. Euler, G. Birkhoff
and V. Steklov. The greatest success in spectral theory of ordinary differential operators has been
achieved for Sturm–Liouville problems. The Sturm–Liouville-type boundary value problem appears
in solving the many important problems of natural science. For the classical Sturm–Liouville problem,
it is guaranteed that all the eigenvalues are real and simple, and the corresponding eigenfunctions
forms a basis in a suitable Hilbert space. This work is aimed at computing the eigenvalues and
eigenfunctions of singular two-interval Sturm–Liouville problems. The problem studied here differs
from the standard Sturm–Liouville problems in that it contains additional transmission conditions
at the interior point of interaction, and the eigenparameter λ appears not only in the differential
equation, but also in the boundary conditions. Such boundary value transmission problems (BVTPs)
are much more complicated to solve than one-interval boundary value problems ones. The major
difficulty lies in the existence of eigenvalues and the corresponding eigenfunctions. It is not clear how
to apply the known analytical and approximate techniques to such BVTPs. Based on the Adomian
decomposition method (ADM), we present a new analytical and numerical algorithm for computing
the eigenvalues and corresponding eigenfunctions. Some graphical illustrations of the eigenvalues
and eigenfunctions are also presented. The obtained results demonstrate that the ADM can be
adapted to find the eigenvalues and eigenfunctions not only of the classical one-interval boundary
value problems (BVPs) but also of a singular two-interval BVTPs.

Keywords: two-interval problems; Sturm–Liouville equation; transmission conditions; eigenvalues;
eigenfunctions; adomian decomposition method

1. Introduction

In this study we are interested in the eigenvalues and eigenfunctions of two-interval
Sturm–Liouville problems that arise when modeling many real problems appearing in physics,
engineering and other branches of natural science. For example, they arise when considering Kirchoff’s
law in electrical circuits, the balance of tension in elastic, the steady-state temperature in a heated rod,
the vibrations of a string or the energy eigenfunctions of a quantum mechanical oscillator, in which
eigenvalues correspond to the resonant frequencies or energy levels (See, [1,2]).

It is evident that not all equations of Sturm–Liouville type have exact solutions. Some special
cases are solved by different numerical methods, such as the Runge–Kutta method, the finite difference
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method, the shooting method, the weighed residual method, Picard’s successive approximation
method, the variational iteration method and the differential transformation method.

Chen and Ho [3] used the differential transformation method (DTM) to calculate the eigenvalues
of the linear Sturm–Liouville problem

d
dx

[p(x)
dy(x)

dx
] + [q(x) + λw(x)]y(x) = 0

y(0) + αy′(0) = 0, y(1) + βy′(1) = 0

and the results were compared with those calculated by other analytical methods.
Golmankhaneh et al. [4] used the homotop perturbation method (HPM), the variational iteration
method (VIM) and the new iteration method (NIM) for finding approximation solutions of nonlinear
Sturm–Liouville equation

−u′′ + uk(x) = λu(x),

with the initial conditions
u0 = u(0) = A, u′0 = u′(0) = B

where k ≥ 2. By comparing the obtained results, they deduced that HPM gives better approximation
solutions than VIM and NIM.

In the 1980s, George Adomian [5–7] developed a new decomposition method, called the
Adomian decomposition method (ADM), for solving linear or nonlinear equations; ordinary or partial
differential equations; various types of integral, algebraic and delay equations; and stochastic systems.
An advantage of this method is that it can provide analytical approximations to a rather wide class of
problems requiring no linearization, perturbation, closure approximations or discretization methods,
which can require massive numerical computation.

S. Somali and G. Gokmen [8] considered ADM for computing eigenvalues and eigenfunctions of
nonlinear Sturm–Liouville equation

−y′′(t) + yp(t) = λy(t)

together with simple boundary conditions

y(0) = y(1) = 0.

By using the shooting technique and the direct integrating method, Malathi et al. [9] computed
eigenvalues of periodic Sturm–Liouville problems.

Attili et al. [10] used ADM for computing eigenvalues of a one-interval boundary value problem
for the Sturm–Liouville equation. Al-Hayani [11] considered a modified ADM to solve linear and
nonlinear boundary-value problems with Neumann boundary conditions. Momani and Noor [12] used
the DTM, ADM and HPM for solving a special class of boundary value problems for a fourth-order
ordinary differential equation.

Recently a great deal of interest has been focused on the application of different types of
approximation methods for the solutions of linear and nonlinear problems (See, [13–17]).

Bibi and Merahi [13] derived approximate solutions of linear stochastic differential equations.
They showed the efficiency of ADM in the field of sthochastic differential equations. Erturk and
Momani [18] presented a numerical comparison between DTM and ADM applied to the solution of
fourth-order boundary value problems.

We will be interested in the computation of the eigenvalues and eigenfunctions of a new type of
SLPs (Sturm–Liouville problems), the main feature of which is the nature of the boundary conditions
imposed. Namely, the boundary conditions contain not only end points of the considered interval,
but also an interior point of discontinuity at which given supplementary conditions are called
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transmission conditions. Moreover, the spectral parameter appears not only in the differential equation,
but also in the boundary conditions. Such two-interval boundary value problems arise in various
type problems of natural science, such as in heat and mass transfer problems; diffraction problems;
vibrating string problems when the string is loaded additionally with point masses; and thermal
conduction problems for a thin laminated plate.

We want emphasize that two-interval boundary-value problems with additional transmission
conditions are much more complicated to solve than one-interval boundary value problems.
The existence and uniqueness theorems for the solution of a two-interval boundary value
transmission problem (BVTP) can be found in many articles by the first author and his collaborators
(see, for example, [19–24].)

The organization of the rest of this study will be as follows. In Section 2 we explain the
application of the Adomian decomposition method to computing the solution of the linear and
nonlinear Sturm–Liouville equations. In Section 3 we present a new analytical method for the
computing of exact eigenelements. In Section 4 we adapt the ADM to obtain approximate values of
eigenvalues and eigenfunctions.

The graphical illustration of the obtained eigenfunctions is given in Sections 3 and 4. The results
are illustrated graphically in the Sections 3 and 4. Concluding remarks are presented in Section 5.

Remark 1. Our motivation for this work comes from the problem regarding the Earth’s seismic behavior,
the stability and velocity of large-scale waves in the atmosphere, etc. If the Earth is assumed to be spherically
symmetric and non-rotating, and to consist of an isotropic, perfect elastic medium, then the mathematical
model can be written in singular Sturm–Liouville form with interior discontinity, where discontinuities in
the elastic parameters are transformed to discontinuities in the eigenfunctions. The transmission conditions
for the solutions come from continuity of displacement and stress at an interface. Since the Earth has several
discontinuities in the upper mantle, we are motivated to consider singular Sturm–Liouville problems with
additional transmission conditions at one interior point of discontinuity.

2. Outline of the Decomposition Method for Linear and Nonlinear Sturm–Liouville Problems

Let us recall basic principles of the Adomian decomposition method (see [5–7]) for solving linear
or nonlinear differential equations of the form Fy = g, where the operator F is the differential operator
involving both linear and nonlinear terms. The linear term is decomposed into L + R, where L is
highest order derivation and R is the reminder of the linear term. Thus, the equation Fy = g may be
rewritten in the following form.

Ly + Ry + Ny = g(x), (1)

Here Ny represents the nonlinear term. Since the highest order derivation operator L is easily
invertable, from (1) we have

y = −(L−1R)y− (L−1N)y + L−1g. (2)

A solution we can be expanded as following series

y =
∞

∑
n=0

yn. (3)

and the nonlinear term Ny can be decomposed by the infinite series of polynomials An, n = 0, 1, 2...,
so-called Adomian polynomials, as Ny = ∑∞

n=0 An, where

A0(y0) = N(y0),

A1(y0, y1) = y1N′(y0),

A2(y0, y1, y2) = y2N′(y0) +
y2

1
2!

N′′(y0),
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A3(y0, y1, y2, y3) = y3N′(y0) + y1y2N′′(y0) +
y3

1
3!

N′′′(y0)

and so on. Then with a reasonable u0 which may be identified with respect to the representation of the
inverse operator L−1, we have the following recurrence formula.

y1 = −(L−1R)y0 − L−1 A0

yn+1 = −(L−1R)yn − L−1 An, n = 1, 2, 3, ...

Now consider the Sturm–Liouville equation(
d

dx
(p(x)

dy
dx

)

)
+ (q(x)− λ)y + f (y) = g(x) (4)

where the function p(x) is continuously differentiable and nonzero for all x, and q(x) is a continuous
function. Define the Adomian’s operators L, R and N as

Ly :=
d

dx

(
p(x)

dy
dx

)
, Ry := (q(x)− λ)y, Ny := f (y)

The Equation (4) reduces to an operator form

Ly + Ry + Ny = g(x). (5)

By integrating twice, the equation

Ly :=
d

dx

(
p(x)

dy
dx

)
= h(x),

we see that the inverse operator L−1 has the form

L−1(h) =
∫ x

0

dx
p(x)

(∫ x

0
h(s)ds + p(0)h′(0)

)
+ h(0)

Operating L−1 on both sides of the operator, Equation (5) yields

L−1L(y(x)) =
∫ x

0

1
p(x)

(∫ x

0
(p(x)y′(x)dx

)′
dx

=
∫ x

0

1
p(x)

(p(x)y′(x)− p(0)y′(0))dx

= y(x)− (y(0) + p(0)y′(0)
∫ x

0

dx
p(x)

)

Thus,

y(x) = (L−1g)(x)− p(0)
(

d
dx

(q(x)− λ)y(x)
)
|x=0

∫ x

0

ds
p(s)

− (q(0)− λ)y(0)

− L−1(Ry)− L−1(Ny) (6)

The ADM assumes that the solution y of the Equation (6) can be decomposed into an infinite series

y =
∞

∑
n=0

yn(x). (7)

Now, assuming f (y) is analytic, we can write
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Ny =
∞

∑
n=0

An(y0, y1, ..., yn)

where the terms An(y0, y1, ..., yn) are specially defined polynomials (so-called Adomian polynomials),
which depend only on the first n + 1 components and form a rapidly convergent series (see [7]). These
polynomials are defined by

A0(y0) = f (y0), A1(y0, y1) = y1(
d

dy
) f (y0),

A2(y0, y1, y2) = y2(
d

dy
) f (y0) +

y2
1

2!
(

d2

dy2 ) f (y0),

A3(y0, y1, y2, y3) = y3(
d

dy
) f (y0) + y1y2(

d2

dy2 ) f (y0) +
y3

1
3!
(

d3

dy3 ) f (y0), ...

The solution y(x) can now be written as

y(x) = y0(x)− (L−1R)

(
∞

∑
n=0

yn(x)

)
− L−1

(
∞

∑
n=0

An(y0, y1, ..., yn)

)
.

Therefore, in accordance with the well-known fixed-point theorem, we can choose successive
approximations y0(x), y1(x), ... of the solution y(x) as

y0(x) = (L−1g)(x)− (q(0)− λ)y(0)− p(0)
(

d
dx

(q(x)− λ)y(x)
)
|x=0

∫ x

0

1
p(s)

ds (8)

y1(x) = −(L−1R)y0(x)− (L−1 A0(y0))(x)

y2(x) = −(L−1R)y1(x)− (L−1 A1(y0, y1))(x) (9)

y3(x) = −(L−1R)y2(x)− (L−1 A2(y0, y1, y2))(x)

and so on.
The first approximation y0(x) can be obtained by using initial and boundary conditions.

Thus we have recurrence formulas (8) and (9) for obtaining other components y1(x), y2(x), ... of
the decomposition (7). Convergence of this decomposition and rapidity of this convergence have been
established by Y. Cherrualt [25].

3. A New Analytical Technique for Computing Exact Eigenvalues and Eigenfunctions of the
BVTP for Two-Interval SLPs

Let us consider the following two-interval Sturm–Liouville equation.

y′′(x, λ) + λy(x, λ) = 0, x ∈ [−1, 0) ∪ (0, 1] (10)

together with eigenparameter dependent boundary conditions, given by

λy(−1, λ) + y′(−1, λ) = 0, y(1, λ) + λy′(1, λ) = 0 (11)

and with additional transmission conditions at the point of interaction x = 0, given by

y(−0, λ) = y(+0, λ), y′(−0, λ) = 2y′(+0, λ) (12)
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where λ is an eigenparameter. Recall that the values of the parameter λ for which the BVTP (10)–(12) has
a nontrivial solution are called eigenvalues, and nontrivial solutions corresponding to an eigenvalues
are called eigenfuncions.

Remark 2. The considered problem (10)–(12) differs from the classical Sturm–Liouville problems in that it
contains not only end-point boundary conditions, but also the additional transmission conditions at the interior
point of interaction x = 0. Moreover the eigenparameter λ appears not only in the differential equation but
also in the boundary conditions. The major difficulty lies in the existence of eigenvalues. It is well-known
that the classical Sturm–Liouville problems have infinitely many real eigenvalues which can be ordered in a
monotonous increasing magnitude λ1 < λ2 < λ3 < ... such that λn → ∞ as n→ ∞. Nevertheless there are
Sturm–Liouville problems with transmission conditions that do not have infinitely many eigenvalues. Moreover,
the set of eigenvalues of such BVTPs may even be empty. For example, we can show that the simple two-interval
Sturm–Liouville BVTP

−y′′(x) = λy(x), x ∈ [−1, 0) ∪ (0, 1]

y(−1) = y′(1) = 0, y(−0) = y(+0), y′(−0) = −y′(+0)

has only the trivial solution y = 0 for arbitrary real λ; i.e., the simplest BVTP has no real eigenvalue.

Now, to find the exact eigenvalues and eigenfunctions we shall construct some auxiliary initial
value problems on the left side interval [−1, 0) and right side interval (0, 1] separately. At first we shall
consider the following initial value problem, given by

y′′(x, λ) + λy(x, λ) = 0, x ∈ [−1, 0)

y(−1, λ) = 1, y′(−1, λ) = −λ

It is easy to show that for each λ, this initial-value problem has a unique solution

y = φ1(x, λ) = cos(
√

λ(1 + x))−
√

λsin(
√

λ(1 + x)).

Now consider the following initial-value problem on the right side [0, 1), given by

y′′(x, λ) + λy(x, λ) = 0, x ∈ (0, 1]

y(0, λ) = cos
√

λ−
√

λsin
√

λ, y′(0, λ) =

√
λ

2
sin
√

λ + λcos
√

λ

This initial-value problem has an exact solution

y = φ2(x, λ)

= (cos
√

λ−
√

λsin
√

λ)cos
√

λx +
1
2
(−sin

√
λ−
√

λcos
√

λ)sin
√

λx

It is easy to verify that the function y = φ(x, λ) defined by

φ(x, λ) =


cos(
√

λ(1 + x))−
√

λsin(
√

λ(1 + x)), f or x ∈ [−1, 0)

(cos
√

λ−
√

λsin
√

λ)cos
√

λx− 1
2 (sin

√
λ
√

λcos
√

λ)sin
√

λx, f or x ∈ (0, 1]
(13)

satisfies the differential Equation (10) in the whole of [−1, 0) ∪ (0, 1], the first boundary condition
λy(−1, λ) + y′(−1, λ) = 0 and both transmission conditions (12). Now, substituting (13) in the second
boundary condition y(1, λ) + λy′(1, λ) = 0, we have the following characteristic equation.
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w(λ) := (cos
√

λ−
√

λsin
√

λ)cos
√

λ− 1
2
(sin
√

λ +
√

λcos
√

λ)sin
√

λ

+λ(λsin
√

λ−
√

λcos
√

λ)sin
√

λ− λ

2
(λcos

√
λ +
√

λsin
√

λ)cos
√

λ = 0

A graph of the characteristic function w(λ) is given below in Figure 1.

Figure 1. Graph of the characteristic function w(λ). (This graph was sketched by using
“Mathematica 8”).

We can show that the characteristic function w(λ) has infinitely many real zeros λ1, λ2, ... which
coincide with the set of eigenvalues of the considered BVTP (10)–(12). Then the functions yn =

φ(x, λn), n = 1, 2, ... form a sequence of the corresponding eigenfunctions.
Below we illustrate the graphical simulations of the first fundamental solution y = φ(x, λ) for

some values of the eigenparameter λ. Namely, the graphs of the first fundamental solutions φ(x, λ) for
λ = 3, λ = 30 and λ = 300 are shown in Figure 2, Figure 3 and Figure 4, respectively.

Figure 2. Graph of the first fundamental solution y = φ(x, λ), for λ = 3. (This graph was sketched by
using “Mathematica 8”).



Mathematics 2020, 8, 415 8 of 14

Figure 3. Graph of the first fundamental solution y = φ(x, λ), for λ = 30. (This graph was sketched by
using “Mathematica 8”).

Figure 4. Graph of the first fundamental solution y = φ(x, λ), for λ = 300. (This graph was sketched
by using “Mathematica 8”).

Now by applying the same analytical technique, we can show that the function y = χ(x, λ)

defined by

χ(x, λ) =


(−λ

√
λcos
√

λ−sin
√

λ√
λ

)cos
√

λx + 2√
λ
(cos
√

λ− λ
√

λsin
√

λ)sin
√

λx, x ∈ [−1, 0)

(−λ)cos(
√

λ(x− 1))− 1√
λ

sin(
√

λ(1− x)), x ∈ (0, 1]

satisfies the differential equation (10), the second boundary condition χ(1, λ) + λχ′(1, λ) = 0 and the
both transmission conditions

χ(−0, λ) = χ(+0, λ), χ′(−0, λ) = 2χ′(+0, λ).

Below we illustrate the graphical simulation of the second fundamental solution y = χ(x, λ) for
some values of eigenparameter λ. Namely, the graphs of the second fundamental solution χ(x, λ) for
λ = 3, λ = 30 and λ = 300 are shown in Figure 5, Figure 6 and Figure 7, respectively.
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Figure 5. Graph of the second fundamental solution y = χ(x, λ) for λ = 3. (This graph was sketched
by using “Mathematica 8”).

Figure 6. Graph of the second fundamental solution y = χ(x, λ) for λ = 30. (This graph was sketched
by using “Mathematica 8”).

Figure 7. Graph of the second fundamental solution y = χ(x, λ) for λ = 300. (This graph was sketched
by using “Mathematica 8”).

4. A New Iterative Technique Based on the Decomposition Method

In order to solve the BVTP (10)–(12) by means of the decomposition method, we shall consider
some auxiliary initial-value problems as follows:

First, consider the following left-side initial-value problem, given by

y′′l (x, λ) + λyl(x, λ) = 0, x ∈ [−1, 0] (14)

yl(−1, λ) = 1, y′l(−1, λ) = −λ. (15)
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By using the decomposition method which is described in Section 2, we can calculate the
successive approximations of the left solution yl(x); that is, we can find the decomposition
yl = ∑∞

n=0(yl)n of the solution yl of the initial value problem (14)–(15).
Namely, by applying the recurrence formulas (8) and (9), we have

(yl)0(x, λ) = 1− λx− λ

(yl)1(x, λ) = −λ

[(
1
2
− λ

6

)
+

(
1− λ

2

)
x +

(
1
2
− λ

2

)
x2 − λ

6
x3
]

(yl)2(x, λ) = λ2 −1
120

(1 + x)4(λ− 5 + xλ)

(yl)3(x, λ) = λ3 1
5040

(1 + x)6(λ− 7 + xλ)

......................

Thus, the left-side solution yl(x, λ) is readily obtained in a series form by

yl(x, λ) = 1− λx− λ + (−λ)
(

1
2 + x + x2

2 −
λ
6 −

λ
2 x− 1

2 λx2 − 1
6 λx3

)
− 1

120 λ2(1 + x)4(λ− 5 + λx) + 1
5040 λ3(1 + x)6(λ− 7 + λx)

+ .....

(16)

Obviously it is possible to calculate more components in this decomposition series to improve the
approximation. We next consider the following right-side initial-value problem, given by

y′′r (x, λ) + λyr(x, λ) = 0, (17)

yr(0, λ) = 1− λ− (
1
2
− λ

6
)λ +

1
120

(5− λ)λ2 − 1
5040

(7− λ)λ3 (18)

y′r(0, λ) = 2(−λ− (1− λ

2
)λ− 1

30
(−5 + λ)λ2 − λ3

120
+

1
840

(−7 + λ)λ3 +
λ4

5040
)

Similarly to the calculation of the left-side solution yl(x), we can calculate the following
components of the decomposition yr = ∑∞

n=0(yr)n of the right-side solution yr of the problem (17)–(18)
given by

(yr)0(x, λ) = yr(0, λ) + xy′r(0, λ)

= 1− λ− (
1
2
− λ

6
)λ +

1
120

(5− λ)λ2 − 1
5040

(7− λ)λ3

+ x(−λ− (1− λ

2
)λ− 1

30
(−5 + λ)λ2 − λ3

120
+

1
840

(−7 + λ)λ3 +
λ4

5040
)

(yr)1(x, λ) = (−λ)

[
x2

2
− 3

4
x2λ− 1

3
x3λ +

5
48

x2λ2 +
1
9

x3λ2 − 7
1440

x2λ3
]

+ (−λ)

[
−1
120

x3λ3 +
1

10080
x2λ4 +

1
4320

x3λ4
]
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(yr)2(x, λ) = λ2 1
604800

(x4(25200 + 25λ(−7560 + λ(1050 + (−49 + λ)λ)))

+ λ2 1
604800

(7xλ(−1440 + λ(480 + (−36 + λ)λ)))

(yr)3(x, λ) = (−λ3)
t6(5040 + λ(−7560 + λ(1050 + (−49 + λ)λ) + x(−1440 + λ(480 + (−36 + λ)λ))))

3628800

......................

Consequently, the right-side solution yr(x, λ) is obtained in a series form by

yr(x, λ) = 1− λ− ( 1
2 −

λ
6 )λ + 1

120 (5− λ)λ2 − 1
5040 (7− λ)λ3

+ x(−λ− (1− λ
2 )λ−

1
30 (−5 + λ)λ2 − λ3

120 + 1
840 (−7 + λ)λ3 + λ4

5040 )

+ (−λ)
[

x2

2 −
3
4 x2λ− 1

3 x3λ + 5
48 x2λ2 + 1

9 x3λ2 − 7
1440 x2λ3

]
+ (−λ)

[
−1
120 x3λ3 + 1

10080 x2λ4 + 1
4320 x3λ4

]
+ λ2 1

604800 (x4(25200 + 25λ(−7560 + λ(1050 + (−49 + λ)λ)))

+ λ2 1
604800 (7xλ(−1440 + λ(480 + (−36 + λ)λ)))

− λ3 t6(5040+λ(−7560+λ(1050+(−49+λ)λ)+x(−1440+λ(480+(−36+λ)λ))))
3628800

+ ...

(19)

Consequently, the approximate solution is given by

y(x, λ) =


yl(x, λ), x ∈ [−1, 0)

yr(x, λ), x ∈ (0, 1]

where the left and right side solutions yl(x, λ) and yr(x, λ) are given by (16) and (19) respectively.
Substituting (19) in the formula

w̃(λ) = yr(1, λ) + λy′r(1, λ)
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we have that the characteristic function w̃(λ) has the following representation

w̃(λ) =
3
2
− 43λ

12
− (1− λ

2
)λ +

55λ2

144
− 1

24
(−5 + λ)λ2 − 31λ3

1440
+

1
720

(−7 + λ)λ3 +
λ4

1890

+
25200 + 5λ(−7560 + λ(1050 + (−49 + λ)λ)) + 7λ(−1440 + λ(480 + (−36 + λ)λ))

604800

+
5040 + λ(−9000 + λ(1050 + (−49 + λ)λ) + λ(480 + (−36 + λ)λ))

3628800

+ λ(1− 7λ

2
− (1− λ

2
)λ +

13λ2

24
− 1

30
(−5 + λ)λ2 − 31λ3

720
+

1
840

(−7 + λ)λ3 +
11λ4

10080
)

+ λ
43λ(−1440 + λ(480 + (−36 + λ)λ))

3628800

+ λ
25200 + 5λ(−7560 + λ(1050 + (−49 + λ)λ)) + 7λ(−1440 + λ(480 + (−36 + λ)λ))

151200

+ λ
5040 + λ(−9000 + λ(1050 + (−49 + λ)λ) + λ(480 + (−36 + λ)λ))

604800

Since the zeros of w̃(λ) correspond to the approximate eigenvalues, solving the equation
w̃(λ) = 0 by using Mathematica 8 and the transcendental equation, we can find the following
approximate eigenvalues.
λ1 = −1.00008, λ2 = 0.334608, λ3 = 5.41871, ...

Finally, we can illustrate the graphical simulation of approximate eigenfunctions

yn(x) = y(x, λn) =


yl(x, λn), f or x ∈ [−1, 0)

yr(x, λn), f or x ∈ (0, 1]

for the eigenvalues λ1, λ2 and λ3 as follows.
The graphs of the first three eigenfunctions y1(x), y2(x) and y3(x) are shown in Figure 8, Figure 9

and Figure 10, respectively.

Figure 8. Graph of the eigenfuction corresponding to the eigenvalue λ1 = −1.00008. (This graph was
sketched by using “Mathematica 8”).
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Figure 9. Graph of the eigenfuction corresponding to the eigenvalue λ2 = 0.334608. (This graph was
sketched by using “Mathematica 8”).

Figure 10. Graph of the eigenfuction corresponding to the eigenvalue λ3 = 5.41871. (This graph was
sketched by using “Mathematica 8”).

Discussion of Figures 8–10:
As it seems from Figures 8–10, the modified Adomian decomposition method used in this paper

proved to be very efficient for computing the eigenfunctions even of singular Sturm–Liouville problems
under additional transmission conditions at the interior point of discontinuity.

5. Conclusions

In this paper we have investigated a new type singular Sturm–Liouville problem.
First, by proposing new analytical approaches, we derived exact formulas for eigenvalues and
corresponding exact eigenfunctions. Then, we modified the Adomian decomposition method for
computing left and right side solutions. Moreover, some graphical illustrations are presented for
the first and second fundamental solutions, and for characteristic functions, the roots of which
coincide with the eigenvalues. In the final part of our study, we present a graphical illustration
of the corresponding eigenfunctions. The obtained results showed that the ADM can be adapted for
solving two-interval Sturm–Liouville problems with additional transmission conditions.

Author Contributions: Supervision O.S.M., investigation O.S.M. and M.Y., methodology O.S.M. and M.Y.,
writing-original draft M.Y., writing-review and editing O.S.M., both authors contributed to this work. Both
authors, have read and agreed to the published version of the manuscript. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are very grateful to the anonymous referees for their valuable comments
and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 415 14 of 14

References

1. Guenther, R.B.; Lee, S.W. Partial Differential Equations of Mathematical Physics and Integral Equations; Dover:
New York, NY, USA,1966.

2. Fulton, C.T. Two-point boundary value problems with eigenvalue parameter contained in the boundary
conditions. Proc. R. Soc. Edinb. Sect. A Math. 1977, 77, 293–308. [CrossRef]

3. Chen, C.K.; Ho, S.H. Application of Differential Transformation to Eigenvalue problems. Appl. Math. Comput.
1996, 79, 173–188. [CrossRef]

4. Golmankhaneh, A.K.; Khatuni, T.; Porghoveh, N.A.; Baleanu, D. Comparison of iterative methods by solving
nonlinear Sturm-Liouville, Burgers and Navier-Stokes equations. Cent. Eur. J. Phys. 2012, 10, 966–976.
[CrossRef]

5. Adomian, G. Stochastic Systems; Academic Press: New York, NY, USA, 1983.
6. Adomian, G. Nonlinear Stochastic Operator Equations; Academic Press: New York, NY, USA, 1986.
7. Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer Academic Publishers:

Dordrecht, The Netherlands, 1994.
8. Somali, S.; Gokmen, G. Adomian Decomposition Method for Nonlinear Sturm-Liouville Problems.

Surv. Math. Its Appl. 2007, 2, 11–20.
9. Malathi, V.; Suleiman, M.B.; Taib, B.B. Computing eigenvalues of periodic Sturm-Liouville problems using

Shooting technique and direct integration method. Int. Comput. Math. 1998, 68, 119–132. [CrossRef]
10. Attili, B.S. The Adomian decomposition method for computing eigenelements of Sturm-Liouville two point

boundary value problems. Appl. Math. Comput. 2005, 168, 1306–1316. [CrossRef]
11. Al-Hayani, W. An Efficient Advanced Adomian Decomposition Method to Solve Second-Order Boundary

Value Problems with Neumann Conditions. Int. Math. Forum 2015, 10, 13–23. [CrossRef]
12. Momani, S.; Noor, M. Numerical comparison of methods for solving a special fourth-order boundary value

problem. Appl. Math. Comput. 2007, 191, 218–224. [CrossRef]
13. Bibi, A.; Merahi, F. Adomian Decomposition Method Applied to Linear Stochastic Differential Equations.

Int. J. Pure Appl. Math. 2018, 118, 501–510.
14. Duran, U.; Acikgoz, M. On Degenerate Truncated Special Polynomials. Mathematics 2020, 8, 144. [CrossRef]
15. Gonzlez-Gaxiola, O.; Biswas, A.; Mallawi, F.; Belic, M.R. Cubic-quartic bright optical solitons with improved

Adomian decomposition method. J. Adv. Res. 2020, 21, 161–167. [CrossRef]
16. Gu, Y.; Zheng, X.; Meng, F. Painlevé analysis and abundant meromorphic solutions of a class of nonlinear

algebraic differential equations. Math. Probl. Eng. 2019, 2019, 9210725. [CrossRef]
17. Baskonus, H.M.; Bulut, H. On the numerical solutions of some fractional ordinary differential equations by

fractional Adams-Bashforth-Moulton method. Open Math. 2015, 13, 1. [CrossRef]
18. Erturk, V.S.; Momani, S. Comparing numerical methods for solving fourth-order boundary value problems.

Appl. Math. Comput. 2007, 188, 1963–1968. [CrossRef]
19. Mukhtarov, O.S.; Aydemir, K. Eigenfunction expansion for Sturm-Liouville problems with transmission

conditions at one interior point. Acta Math. 2015, 35, 639–649. [CrossRef]
20. Mukhtarov, O.S.; K.; emir, M. Asymptotic behaviour of eigenvalues for the discontinuous boundary-value

problem with functional-transmission conditions. Acta Math. Sci. 2002, 22, 335–345. [CrossRef]
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