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1. Introduction

Numerous mathematicians including Kim and Ryoo [1], Kim and Kim [2], Kim et al. [3-5],
Khan [6,7] have concentrated their study on polynomials and its combination with Bernoulli,
Genocchi, Euler, and tangent numbers. One of the essential classes of these sequences is the class of
Appell polynomials. Various numerical problem of functional equations associated with pure and
applied mathematics in the theory of approximation, differential equations, summation techniques,
interpolation problems, quadrature rules, and their multidimensional extensions (see [8,9]). The Appell
polynomials A, (z) are defined by means of the following generating function

t t2 " = "
zt —
A(t)e” = Ao(z) + Al(Z)ﬁ + Az(z)i ot An(z)a t= EA"(Z)H' (1)
where
t t2 t
A(t) :A0+A1ﬁ+A25+"'+Anm+"' , Ag #0.
Differentiating generating function (1) with respect z and equating the coefficients of ;—n!, we have

d

gAn(z) =nA,_1(z), Ao(z)#0,z=x+iyeC, neN

The special cases of Appell polynomials are the poly-Bernoulli and poly-Genocchi polynomials,
(see [4,10]).

The poly-Bernoulli polynomials are defined by, (see [2-7,11])

Lig(1—e™) o _ i BY (x) 2)
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where
. = zM
Lig(z) = ) —, (keZ)
m=1 m

is called the classical polylogarithm function, (see [1-7,10,11]).

For k = 11in (2), we have

Lij(1—et)
et —1

t ad "
t_ t_
et = et_lex —HXZ:OBn(x)mf (3)
where By, (x) are called the Bernoulli polynomials, (see [1-16]).

In (2015), Kim et al. [10] introduced the poly-Genocchi polynomials are defined by means of the
following generating function

2Lip(1—e 1) N
Wﬁ'm‘ = Z G,gl )(.X)E (4)
n=0
For k = 1, we have
2Li(1—et) vt 4 & t"
dFr1 ¢ T d-1° —%Gn(x)a, (5)

where G, (x) are called the Genocchi polynomials, (see [3,14]).

The Stirling numbers of the first kind are defined by the coefficients in the expansion of (x), in
terms of power of x as follows, (see [1,2,7])

(x)n:x(x—l)--'<X—Tl+1):isl(n/l)xlr (n=0). (6)
=0

Subsequently, the Stirling numbers of the second kind are defined by, (see [2,4,5])

0 tl
(et —1)" = n! 12 Sz(l,n)ﬁ, (n>0). (7)
=n
Recently, Jamei et al. [13,14] introduced and investigated the new type of Bernoulli and Genocchi
polynomials defined by means of the following generating function

! e cosyt = i B(C)(x y)ﬁ (8)
el —1 =
Eovtg o v g
ef—le smyt—r;)Bn (x,y)n!, 9)
and
tou _ v @ A
1 cosyt—n;oGn (X,y)n!, (10)
2t . & A(8) t"
7@’54—16 smyt—rg)Gn (x,y)n!, (11)
respectively.

They have also considered the two functions e* cos yt and e*! sin yt as follows (see [12-16]):



Mathematics 2020, 8, 417 30f18

) i’k
eeosyt =) Ce(x, )75 (12)
k=0 :
and
00 tk
eMsinyt =) Se(x,y) (13)
k=0 :
where
5 .
Culxy) = L1 (o | ¥, (14)
j=0
and

5] k
S , — -1 jk—2j—1 2]'+1. 15
() ];;(2].“)( Ay (15)
In (2018), Kim and Ryoo [1] introduced the cosine Bernoulli polynomials of a complex variable,
the sine Bernoulli polynomials of a complex variable and the cosine Euler polynomials of a complex
variable, the sine Euler polynomials of a complex variable, respectively are defined as follows

t ; > N 2
- 1E(X+ly)t = r;)Bn(x + 1y)m, (]6)
and .
2 ; > t
(x+iy)t — ) —. 17
1 n;)En(vazy)n! (17)
From (16) and (17), we get
® B,(x+iy) + Ba(x —iy) ' & p
Aetcosyt = 3 DT EBEEW D 3 g0
o n=0 L) n
e B+ iy) — Bu(x —iy) 1" ;
t . e Bulx+iy) = Bu(x—iy) t" (s t
ef—lex smyt—y;) o pl —y;)Bn (X/]/)E/
2 _ v Enlxt+iy) +Ea(x —iy) 1" & (o) "
e +1° Cosyt—ngo 2 n! _rgE" (x,y)n',
e (x +iy) ~ Es(x—iy) "
. = En(x+1iy) —En(x —iy) t o (5) t
_Z ot - n i -
et—l—le sin yt ng%) o l n;)En (xiy)n!~

This article is organized as follows. In Section 2, we introduce the cosine poly-Bernoulli and sine
poly-Bernoulli polynomials and derive some identities of these polynomials. In Section 3, we establish
the cosine poly-Genocchi and sine poly-Genocchi polynomials and derive some identities of these
polynomials. Finally Section 4, we investigated some relationships for Stirling numbers of the second
kind related to poly-Bernoulli and poly-Genocchi polynomials.

2. Poly-Bernoulli Polynomials of Complex Variable

This section presents sine and cosine variant of poly-Bernoulli polynomials. These variants are
processed by separating the real ;# and imaginary J parts of the complex poly-Bernoulli polynomials
and study on their basic properties are expressed. Now, we consider the poly-Bernoulli polynomials
that are given by the generating function
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Lig(1—e™") vipyt _ v p(k) £
g1 ¢ —n;)Bn (x—i—zy)—‘ (18)
On the other hand, we observe that, (see [1])
(19)

eI — ¥l — o (cos yt + isinyt),

Thus, by (18) and (19), we have

o (k) T Lig(1—e”") (xtiy)t _ Lik(1 —e) u -
n;)Bn (x+zy)n! =g ¢ =7 ¢ (cosyt +isinyt), (20)
e (1-c) (1)
- tn le 1 - e_ (x—iy)t _ le 1 - 6_ xt el
Z BY (x — iy n! ¢ == ¢ (cosyt —isinyt). (21)
From (20) and (21), we get
Lig(1—et) , © (BY(x+iy) + B (x—iy) | "
ﬁe cosyt ; ( 5 P (22)
(23)

and
o (B +iy) — B (x—iy) | ¢
2i n!’

Lig(1—e) o
ﬁex Slnyt = nE:O

Definition 1. The two bivariate kinds of cosine poly-Bernoulli polynomials B} )(x y) and sine poly-Bernoulli

polynomials B,(qk’s) (x,y), for non negative integer n are defined by
Lig(1 —e! (k, t"
%eﬂ’ Cosyt Z B 2 x y *' (k S Z) (24)
and ( t)
Lig(1—e™ , ks) n
etflext sinyt = Z;OB( s) (x, y)—| (keZ) (25)
n=|
respectively.
Note that B (x,0) = B%) (x), B (x,0) = 0, (n > 0).
For instance, we have
(2.¢) (2.) _3 (20) _17 8% o
By (vy) =1, B (xy)=—5+x B(ny)=gp -5 Hat -y
B(Z'C)(x >__i &_%4_ 34_%_33(2
3 WY T T T T g
2,0) 7  5x  17x? 17y ) o 4
B A —3%° —
T N R S +x* o Toxy -6’y 4y,
7 | 7x 25x%  85x® 15x% 25y>  85xy? | 45x%y> 15y
B(%©) _ L X _ 5 v Yy Y in.3,2 Y 4
s @ =pte 2 ts s TN T2 e I A S
85x%  9x° L 7y* | 25xy*  85x%y’
2

38  7x  7x%2  25%3
B(Z/C) — TS =
o Y =—pwEtnT 6 T 12 2 30 2
85 45xy*
1452312 — 156492 + 115' S;Cy 1524 — 1,
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and
B (x,y) =0, BP(xy) =y,

s 3
Béz’ )(x,y) = —7‘1/ + 2xy,

s 9x
B?’ )(x,y) =T T}/ +3x%y — v,

5
B () = — 2 4+ L 9x?y 4y 137 — dxy?,

85
. 3 4 y
15x7y + 5x7y — 13

7y 25 85x2
B2 (xy) = - 2 | 85

2.3 4 5
90 6 6 +15xy — 10x%y° +1°,

7y | 7xy 25x%y  85x%y _ 45xty + 6x5y + 2543 _ 85xy°

20 15 2 3 2 6 3

B (x,y) =

+45x%y° — 20x3y° — 9y + 6xy°.

From (22)-(25), we have

BY (x +iy) + B (x — iy)

B (x,y) = >

(k) i) — BHR) (v
Bk (x, y) = By’ (x +iy) - By’ (x —iy) ‘
Remark 1. For x = 0in (24) and (25), we get new type polynomials as follows

Liy(1—e"
et —1

cosyt ZBkC t—' (kez) (28)

and _ t
lefji:fsmyt ZB’” —,(keZ) (29)
respectively.

It is clear that
B (0) = B, B (y) = 0,(n > 0)

From (28) and (29), we can derive the following equations

i B;(ch t” Lik(l —e )

" cos yt

S k0 Sy am £
n=0 " n=0

and
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o (0, ’
k t
- ;0 ( ;0 < 2m+1 ) ( 1)my2m+1B()2ml) E (31)
Therefore, by (30) and (31), we get
(] o (k)
< > )m]/ mBn 2m’ (32>
m=0
and
[n1]
3 m. 2m+1p (k)
Z 2m+1 (D)"Y ™8y a1 (33)

Now, we start some basic properties of these polynomials.

Theorem 1. For n > 0, we have

B,gk)(x—i— iy) =Y (7) (x + iy)”*lBl(k)

1=0
v (M (iyn-1R0)
=3 (7)o, (34
and .
B (x—iy) =Y (") (x — iy)"~'B¥
(i) =3 () -
_ 3 n n—I nle(k) x). 35
% () e (35)

Proof. By using (20) and (21), we can easily get. So we omit the proof. [

Theorem 2. B,Sk’c) (x,y) and B,(f’s) (x,y) can be represented in terms of poly-Bernoulli numbers as follows

2( ) 5 Col, ), (36)

and
B (x,y) = ( . ) B Sm(x,y). (37)

3
gM“

Proof. By noting the general identity, we have

[ee] tn o] tm o0 n t}’l
Z anﬁ Z bn% - Z Z an,mbm E
n=0 : m=0 : n=0 \m=0 :

[’} n . _ ,—t [’}
EB,(IkC ; Lix(1—e™) : ) (e cosyt) = (2 B(k ) (E Cu(x,y) )

[
n=0 e

:i (i <n )B(k) (w)) -
n=0 \m=0 m

which proves (36). The proof of (37) is similar. [

Now
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Theorem 3. For every n € Z7, the following formula holds true

ngrc)(l B x,y) _ (_ ) (kc)(x y) (38)
and
B (1= ) = (—1) 1B (1, ). (#9)

Proof. From (24), we have

00 ko) m _ le(l . e—t)e(l—x)t
n;) B, (1 - x,y)a = I cos yt,
as well as ( t) ,
ad k " Lig(1 —et)e™™
Y (1" By (xy) o = o cos(—yt)
n=0 '
Lij(1 — e t)el-0)t
= at o _i cos(yt).

Similarly Equation (39) can be proved. [

Corollary 1. For every n € Z™, we have

K, 1
Bénj-)l <2 y) = 0/

B Gy) =0.

Theorem 4. For every n € Z™, the following formula holds true

and

B (x +1,y) = Z ( ) 5 (x, ) (40)
and
B (x4ry) = Y ( . )Bﬁi‘%y)r" " (41)
m=0

Proof. Replacing x by x 4 r in (24), we have

e n : _ )\ pxt
Y. Br(zk'c>(x+1”,y)% = (le(l e )e cosyt) et

t_
=0 et —1

9] c M =) ntn
() (£7)
[e0) n , tn

:B<EO<Z>B(k)(xy> >n,

which proves (40). The result (41) can be similarly proved. [
Theorem 5. For every n € N, the following formula holds true

BB,Sk’C) (x, y)

o nBY ) (x,y), (42)
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aB(k'C) X, k
. ay( e —nB{ (x,y),
and .
oB,"” X, k
; ax( Y = B (),
aB(k’C) X, k
- ay( . - an—,Cl) (x,y)
Proof. Equation (24) yields
® 9B (x,y) " HLig(1—e et R
Y = ey = LB
[ee] k tn (e} K tn
= ¥ B 0w gy = LB (o)
n=0 ' n=1

proving (42). Other (43), (44) and (45) can be similarly derived. O

Theorem 6. For n > 0, the following formula holds true

and

© M Lig(1—e )
Z B,S C)(x,y)—' = " et cos yt
n=0
xt t t t
_e cosyt/ 1 11 I
et—1 Joer—1Jp ez —1 ez—1Jop e —1
(k—1)—times

In particular for k = 2, we have

m=0

[ & Bum!t" o (c) "
(L) (£ o).

m=0

n=0

Replacing n by n — m in RH.S. of above equation, we have

&, (20) t eMcosyt [tz [ & t"By, t ;
L B (x’y)ﬁ_ et —1 oez—ldz_ Z"m—i—l et_lexcosyt

8 of 18

On comparing the coefficients of ;—n, on both sides of the above equation, we get the result (46).

The proof of (47) is similar. O
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3. Poly-Genocchi Polynomials of Complex Variable

This section presents sine and cosine variant of poly-Genocchi polynomials. These variants are
processed by separating the real 3 and imaginary < parts of the complex poly-Genocchi polynomials
and study on their basic properties are expressed. Now, we consider the poly-Genocchi polynomials
that are given by the generating function

2Lig(1—e”") | e t"

= Y 6 i) (48)
n=0 .

By using (48) and (19), we have

c- (k) ; ﬁ _ 2Lik(l — eit) (x+iy)t _ 2Lik(1 — eit) xt F 4 isinyt 4
ngbGn (x—i—zy)n! . 1 ¢ (cosyt +isinyt), (49)
" " 2Li(1-e ) (1-¢
o k) 2Lig(T—e') gy 2Lig(1—e7) o
ngoGn (x zy)n! S Srie =7 (cosyt —isinyt). (50)
From (49) and (50), we get
2Lig(1— e ) © (G (x+iy)+ P —iy)\
We"t cosyt= Y | — > g porl (51)
n=0
and (0 (0
2Lig(1—et) o . & (G (x+iy) — Gy (x—iy) | t"
Definition 2. The two bivariate kinds of cosine poly-Genocchi polynomials G,S"'C) (x,y) and sine poly-Genocchi
polynomials G,sk's) (x,y), for non negative integer n are defined by
2Lig(1—e") o (k) £
e cosyt = Y Gy (x,y) =, (k€ Z) (53)
et+1 = n!
and ( t) .
2Lig(1—e7t) o . o~ (ks) t
————>eMsinyt= ) G, (xy)—,(k€Z) (54)
et +1 ngb " n!
respectively.

From (51)-(54), we have

G,(qk) (x+iy) + Gr(zk) (x —iy)
2 7

G (x,y) =

G (x+iy) — G (x — iy)
2i

G (x,y) =

Note that
G (x,0) = G (x), G (x,0) = 0, (n > 0).

The cosine poly-Genocchi and sine poly-Genocchi polynomials can be determined explicitly.
A few of them are

c 3
Gf’ )(x,y) =3 + 2x,
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G(zc)(xy) Ef97+3x — 317,

11
G2 (x,y) = 7+79C79x + 423 + 9% — 12317,
20 55y 2 2.2 4
G (x,y) = @_,_7_4_ c T+45xy —30x°y” + 5y,
45y

2 55xy? + 135x%y% — 60x°y> — -+ 30xy*,

77 10 55 2
x 5500 53 s

3 4
8L 77x 00, B 4

2,
Gy =~ gy H10E T
and
G (xy) = 2y,
9
G (x,y) = =5 +6xy,
1y 18xy + 12x2y - 4y3,

2,
GA(L s)(x’y) =73~
G (x,y) = % + 55% — 45x%y + 20x%y + 15> — 20xy°,
3
553}/ +90xy> — 60x%y> + 6y°.

G x,9) = =T 420y + 553y — 9027y + 302y —

Remark 2. For x = 0in (53) and (54), we get new type polynomials as follows
t

2Li(1—e ) (k,
Wcosyt ZG C *' kGZ)
and ( ,
2L, (1 — €_ ks
W sinyt = Z G\ ,(keZ)
respectively.
It is clear that
%90y = 6, 6l (y) = 0, (n > 0).
From (55) and (56), we can derive the following equations
o (ko) FT 2L (1—e7h)
ngbGn (y)n! = o1 cos yt
— - k)ﬁ - m, 2m ¢
B n;)G" n! n:0( D% 2m!

k t"

Il
ngk:
3
)=
/
N =
3
N——

S (ks) A 2Li(1—eh)
n;)Gn (y)n! =1 sin yt

. [%] n m, 2m+1 ~(k) ¢
:,EO m§) om+1 ) TV Gt |

Therefore, by (57) and (58), we get

and
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110f18
(kc) 1 n m, 2m ~(k)
=3 (4 ) umel,, (59)
m=0
and )
("]
(k;s) n _ym, 2m+1 ~(k)
Theorem 7. For n > 0, we have
n
W (x+ i)=Y (7) (x+ z'y)"*lGl(k)
1=0
= (Y n—1 (k)
=Y ()G (), (61)
=0
and .
k . n ] ~(k
6= =% (1) - wricl
1=0
n e \n—I~(k
=% (1) 06, (62)
=0
Proof. By using (50) and (51), we can easily get. So we omit the proof. [
Theorem 8. G,gk’c) (x,y) and G,(lk ) (x,y) can be represented in terms of poly-Genocchi numbers as follows
Z n
G oy = 1 ( ) Galn (). (63)
m=0 m
and

n
Gy =Y ( . )c,S"’msm<x,y>-
m=0

(64)
Proof. By noting the general identity, we have
[e] tn (o] tm 00 n tn
ay— bp— | = ﬂnmbm> -
<nZO " Tl!) (mZO ! m!> n;() (mO n!
Now
2 (k t"  Lig(1—e7f) 2 ) t" d m
2 Gl C)(x, )ﬁ = == (e¥ cosyt) = G, )ﬁ 2 Cin(%,y)—
n=0 n=0 : m=0
_y(y (" )e® £
SE(E (5 )etcnn) 5
which proves (63). The proof of (64) is similar. []
Theorem 9. For every n € Z™, the following formula holds true
G (1= xy) = (1) (x,y), (65)
and

G (1 —xy) = (~1)"168) (x,1).
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Proof. From (53), we have

# 2Lig(1— e el

(e} k,

nZéGn )1 — x,y)n! 1 cos yt,
as well as . . ' -

Y (—1)7G) (x ) B = BT ooy

= n! et 41

Lig(1 — e t)el-2)t
= it et—i cos(yt).

Similarly Equation (66) can be proved. O

Theorem 10. For every n € Z*, the following formula holds true

m=0

G (x4 1,y) = ) ( :1 ) G (2, y)rmm,

G (x+r,y) = Y ( ; ) G (x, ).,

m=0

Proof. Replacing x by x + r in (53). we have

which proves (67). The result (68) can be similarly proved. O

Theorem 11. For every n € N, the following formula holds true

Gy (vy)
nT — nGn_Cl) (x,y)’
(kc)
3G, " (x,y) k,
”T = _nGn,Sf (x,y),
and ks)
G, * (X,y) k,s
= nanl)(x,y),
3Gy (x,y) K,
=y =G ).

Proof. Equation (53) yields

> aG,(qk’C)(x,y) 1 2tLig(1 — e~ F)et gt

=y 6% (x,
n‘;l ox n! ol +1 cosy n;) n (%, y)

n!

12 0f 18

(67)

(68)
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_ v gko) AR - B (2 VN
= nX%)GW1 (x,y)( 0 = Z;”Gn—l (x,y)a,
= n=
proving (69). Other (70), (71) and (72) can be similarly derived. O
Theorem 12. For n > 0, the following formula holds true
2, 1 n B,,m!
6 (xy) = ) ( m ) TG (), (73)
m=0
and
2, 1 n \ Bpm!
AT D B e et ) (74)
m=0
Proof. From Equation (53), we have
d t" 2Lip(1—et)
G(krc> Y)— = k xt ¢
L Gy dr1 Y
2t cosyt [t 1 | 1 t oz
= . dz .- dz.
e+ 1 /0 e—1Joe—1 1)y e—17"""%
(k—1)—times
In particular for k = 2, we have
> t" ~ 2e*cosyt [tz & tM"By \ 2t
EOG R /er—1d‘Z_<Z 1) a1t o
2 B,m! t" C) t
B (mzo’"+1m!> <ZG o) n!

Replacing n by n — m in RH.S. of above equation, we have

n

- n Bum! _(c
=) ) ( m ) m+1G”7’"(x’y)E‘

~

On comparing the coefficients of ;—”, on both sides of the above equation, we get the result (73).
The proof of (74) is similar. O

4. Relationship between Stirling Numbers of the Second Kind

In this section, we prove some relationships for Stirling numbers of the second kind related to
poly-Bernoulli polynomials of complex variable and poly-Genocchi polynomials of complex variable.
We start a following theorem.

Theorem 13. For every n € Z, the following formula holds true

n _1\! n
(kC)(1+x y) — (kc)(x,y) _ 2 i ( %Z + 11S5(p, 1) ( ) Cup(x,y), (75)
p=1i=1 P
and ) l
n _ +p n
B4y~ B ey = 1 Y T s, ( ) Sup(x,y) (76)
p=1i=1 P
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Proof. Using (24), we have

1 B\ X (pf
ZB(kC 14 ,y)i, Lip(1—e He(ef —1+1)

= cos yt
= ef —1
Lig(1— et)ex
= Lig(1 —e e cosyt + % cos yt

n

[ee] t [ee]
Z B,(zk'c)(l _’_x’y)ﬁ _ 2 B,(zk'C)(x,y)
n=0 : n=0

) l+p 4
Z (Z ) l'Sz(p,l)> ﬁe”cosyt,

() ) (Seeos)

Replacing 1 by n — p in the above equation and comparing the coefficients of £ o1 on either side,
we get the result (75). The proof of (76) is similar. O

Corollary 2. For k = 1 in Theorem 4.1, we get

B,(f)(l +x,y) — B,(lc)(x,y) =nCy_1(x,y),
and

BY (14 x,y) — BY (x,y) = nS,_1(x,y).

Theorem 14. For n > 0, the following formula holds true
ZZ( > 1521, 1)BY) (), (77)
0i=l

and

B ) = 13- () s gl 78)

1=0i=I

k (i}: (i) st <y>> 5

By comparing the coefficients of " on both sides , we get (77). The proof of (78) is similar. [
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Theorem 15. For n > 0, the following formula holds true

+1 I+p+1
(k) LIS (G S (p+ LD [ n )\ Lo
By (x, B,” ,(x,y), 79
x) = 1 3 ) o) By (79)
and
n ptl I+p+1
(ks) (DTS (p+ LD [ n ) o)
B, (x, B (x,v). 80
()= 1 2 ) ) B ) (50)
Proof. From Equation (24), we have
o o (koc) o Lig(1 — e~ 1) E
1;)3,1 (x,y)n!—< ; g7¢ cosyt). (81)
o P N e PR
*le(l—e ):?Z lk _?Z lk (l_e )/
=1 =1
1& (-1 & tP
S C s,
I=1 p=I p
1 & P (71)l+ t
— 1oy B s,
p=11=1
:i P+1(71)1+P+1l'52(p+1,l) tr (82)
o \ i Ik T op+1 p!

Thus, by (81) and (82), we obtain

0 n 0 +1 I+p+1 I #h
ngE)Bn (x,y)n!—p (Z i I p-i—l ZB )

=0 \I=1

Now replacing n by n — p in the above equation and comparing the coefficients of ;—n, on either
side, we get the result (79). The proof of (80) is similar. [

Theorem 16. For d € Nwithd = 1( mod 2), we have

n p+ld— 1 l+p+ll|s +1,1 a+x
B(kc)(x y> Z ( y )d” p—1 Z Z Z(P )( 1)HB<EIC_)p< d /y)/ (83)

p=0

and

s u pHlad HWHG +1,1 o [a+x
Bﬁk'><x,y>—z<p>d" - 122( LD Caen), (). s

p=0

Proof. From Equation (24) can be written as
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oo [p+1 (_1)l+p+1 So(p+1,0)\ t 00 d—1 a4+ x n
— | 4 - m—1 _1 a (C) ( ) _ .

p=0

Replacing n by n — p in the above equation and comparing the coefficients of ;—n, on either side,
we get the result (83). The proof of (84) is similar. [

Theorem 17. For every n € Z™, the following formula holds true

n P (_1\l n
61+ x9) + G ny) = 13 S nsalp) ( ' )cn_pmy), (85)
p=1i=
and , l
n 1)+ n
G(ks)(1+x y) + G(ks)< x,y) = Z:“Z: ( 112 I'Sy(p,1) ( . ) Sn—p(x,y) (86)
p=1I=1

Proof. Using (53), we have

S (ks) t" 2Lig(1 —e t)e(ef —1+1)
HZBGn (1+x ,y)n' g cos yt
: _ xt
= 2Lix(1 — e ")e* cosyt 2L (zf +61 ) cos yt
k) (k
ZBT(IC 1+x]/ —i—ZB ) (x n'
n=0
00 Po_1\l+ P
=2)" (Z (=™ 1Sy (p,1 )) t—e cos yt,
e e B P!

(8 (£ i) 2) (£

Replacing 1 by 1 — p in the above equation and comparing the coefficients of £, o1 on either side,
we get the result (85). The proof of (86) is similar. [

Theorem 18. For n > 0, the following formula holds true

n P“( )I+P+11'52(p+1 h(n
and .
n pt I+p+1
(k,s) _ (=1)"PTHIS (p+1,1) n (s)
Gy (x,]/)—pg;()lzl 1 1) ) Gy p(x,y). (88)

Proof. From Equation (53), we have

oo n
Y B (xy) =

n=0

‘H-
|
N

—
-
=
—
—_
=~
(3
N
N~~~
7N
N‘*ﬁ
+|R
—_
3
o)
o]
@
<
=8
~~_
—
o
\O
N—

Now
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18 (-1 &
5 C T s,
1=1 p=I
13 & (—1)Hr tP
:;ZZ( l) 1S (p, 1) —,
p=11=1
o [Pt q\l+p+l p
o\ K p+1 p!

Thus (89) and (90), we obtain

i i L]

I=1

Now replacing n by n — p in the above equation and comparing the coefficients of ;—n, on either
side, we get the result (87). The proof of (88) is similar. [

Theorem 19. For d € Nwithd = 1( mod 2), we have

n ptld—1 I+p+1
k n i —1)FPS (p+ 1,1 a a+x
G y) =Y ( )d SDIDY = Ik 2= LD ) G’(f—)”( d ’y>' 1)

p=0

and

n p+ld—1 (_ 1\l 179
(ks)(x =Y ( n >d”i’1 Yy (—1)l+rt ll,lcsz(erl,l)(_l)aGﬁls_)p <a;x,y>. (92)

=0 \ P 1=0 a=0
Proof. Now Equation (53) can be written as

" 2Lig(1—et) o
TR B

Lik(l—ef))( 2t 4l (@t
- (—1)%e @)t cosyt |,
( t elt +1 a;‘]

oo [ptl I+p+1 00 n
B (=D Sa(p+1,1) ; ©(atx
(B (5 ) ) (B g (50) )

Replacing n by n — p in the above equation and comparing the coefficients of ;—n, on either side,
we get the result (91). The proof of (92) is similar. [J

5. Conclusions

In this paper, we introduced the bivariate kind of poly-Bernoulli and poly-Genocchi polynomials
by defining the two specific generating functions. We also investigate some analytical properties (for
example, summation formulae, differential formulae and relations with other well-known polynomials
and numbers) for our introduced polynomials in a systematic way. We also derived new identities and
relations involving the Stirling numbers of the second kind. The results of this article may potentially
be used in mathematics, in mathematical physics, and engineering.
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