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Abstract: Optimal asset allocation is a key topic in modern finance theory. To realize the optimal asset
allocation on investor’s risk aversion, various portfolio construction methods have been proposed.
Recently, the applications of machine learning are rapidly growing in the area of finance. In this
article, we propose the Student’s t-process latent variable model (TPLVM) to describe non-Gaussian
fluctuations of financial timeseries by lower dimensional latent variables. Subsequently, we apply
the TPLVM to portfolio construction as an alternative of existing nonlinear factor models. To test
the performance of the proposed method, we construct minimum-variance portfolios of global stock
market indices based on the TPLVM or Gaussian process latent variable model. By comparing these
portfolios, we confirm the proposed portfolio outperforms that of the existing Gaussian process latent
variable model.

Keywords: student’s t-process; latent variable model; factor model; Portfolio theory; global
stock markets

1. Introduction

Estimation of the covariance matrix of timeseries plays a dominant role in applications of modern
financial theory. The optimization of mean-variance portfolio, which is one of the pioneering works of
the modern finance theory [1], is based on the covariance matrix of the multi-dimensional timeseries
of return of assets. Since the return of assets are modelled by non-stationary stochastic processes,
the covariance matrix should be estimated as a time-dependent symmetric matrix. In practice, we often
estimate the covariance matrix by empirical time averaging, because of the lack of complete information
of the corresponding probabilistic space. It is, however, pointed out that time averaging often causes
serious estimation error of the covariance matrix in the case of larger assets [2,3]. To overcome
this problem, several inference methods are proposed from the point of view of the random matrix
theory [4,5].

With the aid of recently growing machine learning techniques, we can improve the accuracy
of the estimation of the covariance matrix [6,7]. Furthermore, the applications of the machine
learning techniques have been spreading in both theoretical and practical financial problems [8,9].
The prediction of the future price is implemented by the deep neural networks of various
modeling [10,11]. In particular, the application of the machine learning techniques for the portfolio
optimization has attracted the interest of both academia and industry [12,13]. The Gaussian process,
which is known as a method of nonparametric Bayesian learning, is used as a model of dynamics
of the covariance matrix of multi-dimensional timeseries. In the literature of option pricing theory,
the model of the volatility of a risky asset is given by the Gaussian process [14].
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In the field of mathematical finance, stochastic volatility models have been utilized in estimating
dynamic covariance matrix of the return of assets. One of the most popular conditional volatility
models is the generalized autoregressive conditional heteroscedasticity (GARCH) model [15], which
describes the volatility clustering of the return of assets. To introduce a time-varying correlation
structure to these conditional volatility models, the dynamic conditional correlation (DCC) GARCH
model has been proposed [16]. The parameters of the GARCH and DCC GARCH can be estimated by
the method of maximum-likelihood.

On the other hand, in the literature of the machine learning, some kinds of latent variable models
can be utilized to infer the dynamics of the covariance matrix. Recently, the Gaussian process latent
variable model (GPLVM) has been employed to the problem of the portfolio optimization, where latent
variables are introduced as factors of return of the assets. Namely, this model can be interpreted as a
latent variable factor model [17].

Despite these existing practical applications, we should reconsider the assumption and validation
of the use of the GPLVM for financial problems because the GPLVM assumes that observed data
follows the Gaussian distribution. In the most case of financial problems, the return of assets is
regarded as an observed variable. It is well known that the fluctuations of the return of assets follow
non-Gaussian distributions [18]. To describe such fluctuations, some fat-tailed distributions have been
presented and applied to the financial timeseries. Thus, the GPLVM should be extended to fat-tailed
distributions when we use it for the financial problems.

In this article, we propose Student’s-t process latent variable model (TPLVM) as an extension
of the GPLVM. This model is developed based on the Student’s t-distribution, which is a symmetric
fat-tailed distribution. Since the Student’s t-distribution converges to the Gaussian distribution with
the limit of a parameter, degree of freedom, the TPLVM includes the GPLVM as a special case. To use
the TPLVM in practice, as with the GPLVM, we derive its predictive distribution of closed form and an
estimator of hyper parameters by the variational inference in Bayesian sense.

The reminder of this article is organized as follows. Section 2 gives a brief introduction of the
GPLVM including the Gaussian process with the concept of kernel functions. In Section 3, we introduce
the formula of TPLVM, which consists of the kernel functions, predictive distribution and variational
inference for estimating hyper parameters. As a preliminary preparation of finance, we explain
the basis of factor model and portfolio optimization in Section 4. Section 5 implements portfolio
optimization, where we compare the performance of the GPLVM and TPLVM. Section 6 is dedicated
to conclusions and future works.

2. Short Review of Gaussian Process

2.1. Gaussian Process

The Gaussian process, a kind of stochastic processes, is a non-parametric method of machine
learning [19,20]. This has been firstly introduced to describe random dynamics such as a fluctuating
pollen on water surface known as Brownian motion [21]. Without loss of generality, the argument of
the Gaussian process can be extended from one-dimensional time to multi-dimensional feature space.
In this chapter, we provide a short review of the Gaussian process for multi-dimensional features as
the preliminary preparation of the proposed model.

For a sequence of input features {x1, x2, · · ·, xn}, a stochastic process f (·) is the Gaussian process
when the sequence of random variables { f (x1), f (x2), · · ·, f (xn)} is sampled from a multivariate
Gaussian distribution. In general, the form of the multivariate Gaussian distribution is determined
by the mean vector and covariance matrix. Likewise, the Gaussian process are specified by the mean
and covariance functions. Thus, the Gaussian process is regarded as a representation of the infinite
dimensional Gaussian distribution.



Mathematics 2020, 8, 449 3 of 10

The mean and covariance functions are defined as follows:

m(x) = E[ f (x)], (1)

k(x, x′) = E[( f (x)−m(x))( f (x′)−m(x′))], (2)

where the operator E[·] denotes expectation operator, m(·) and k(·, ·) are respective mean and
covariance functions. The mean vector and covariance matrix of the Gaussian process for given
dataset are represented by

mi = m(xi) (1≤i≤n), (3)

Ki,j = k(xi, xj) (1≤i, j≤n). (4)

On these settings, the stochastic process f (·) is sampled from the Gaussian distribution
N (m(·), K(·, ·)). In this situation, the stochastic process f (·) is the Gaussian process expressed as
f∼GP(m, K). The covariance function satisfies to be symmetric and positive definite, and thus is also
called as a kernel function. In the literature of the Gaussian process, the covariance matrix is often
called as a kernel matrix. The mathematical characteristics of the kernel functions are explained in [22].

Given an additional input dataset D∗ = {x∗1 , x∗2 , · · ·, x∗n∗}, the corresponding outputs
{y∗1 , y∗2 , · · ·, y∗n∗} can be predicted by the conditional Gaussian process with prior dataset D =

{(x1, y1), (x2, y2), · · ·, (xn, yn)}. With notations that X = [x1, x2, · · ·, xn]T , X∗ = [x∗1 , x∗2 , · · ·, xn∗ ]
T and

Y = [y1, y2, · · ·, yn], the predictive distribution of the conditional Gaussian process is also given by the
Gaussian process GP( f ∗, K∗), where

f ∗ = mX + KX∗ ,XK−1
X,XY, (5)

K∗ = KX∗ ,X∗ − KX∗ ,XK−1
X,XKX,X∗ . (6)

In Equations (5) and (6), it is seen that the covariance function propagates the information about
D to D∗. Hence, the covariance functions play the dominant role in the use of the Gaussian process.

2.2. Gaussian Process Latent Variable Model

In the literature of big data analysis, it is often expected that observed variables can be explained
by lower dimensional latent variables. For this purpose, various methods of dimension reduction
have been developed. One of the most popular methods is the principal component analysis (PCA),
which extracts latent variables by the singular value decomposition. To extend the PCA for nonlinear
and random data, the Gaussian process latent variable model (GPLVM) has been proposed [23].
The GPLVM expresses nonlinear relationships between observed and latent variables by the covariance
function. The randomness is assumed to be originate from the Gaussian distribution.

To describe an observed variable y∈RD, we introduce a latent variable x∈RQ (Q < D), and a
nonlinear map f : RQ→RD with a Q-dimensional noise ε∼N (0, σ0 I) as

y = f (x) + ε. (7)

For this latent variable model, we assume that the nonlinear map f (·) is sampled from the
Gaussian process as f∼GP(0, K). This model is known as the GPLVM. For the sake of brevity,
we introduce notations for the set of latent and observed variables as X = [x1, x2, · · ·, xN ]

T and
Y = [y1, y2, · · ·, yN ]

T . Assume that the columns of the observed matrix Y∈RN×D are samples from
the independently identical distributed Gaussian distributions which have the covariance functions
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with respect to the latent variable matrix X∈RN×Q, the probability density function of the GPLVM is
introduced as follows:

p(Y|X) =
1

(2π)ND/2|KX,X |D/2 exp
(
−1

2
YTK−1

X,XY
)

. (8)

In the GPLVM, latent variables and hyperparameters of the covariance functions are inferred by
several existing methods such as gradient methods, variational inference and Markov Chain Monte
Carlo methods.

3. Proposed Model: Student’s t-Process Latent Variable Model

3.1. Introduction of the Student’s t-Process

The Gaussian process has diverse applications in the fields of computer science, robotics and
others. However, it seems not to be applicable to financial problems because the fluctuations of the
financial data follow non-Gaussian distributions with fat-tails. It is thus necessary to extend the
existing methods of the Gaussian process to those of non-Gaussian stochastic processes with fat-tails.

For this purpose, the Student’s t-process has been proposed as a generalization of the Gaussian
process [24]. This stochastic process follows the Student’s t-distribution, of which tails show power-law
behaviours. As with the Gaussian process, the Student’s t-process is specified by the mean and
covariance functions. Given the mean and covariance functions, the probability density function of the
Student’s t-process is defined as

T (m, K, ν) =
Γ
(

ν+N
2

)
[(ν− 2)π]

N
2 Γ
(

ν
2
)
|K| 12

[
1 +

1
ν− 2

(y−m)TK−1(y−m)

]− ν+N
2

, (9)

where Γ(·) is the multivariate gamma function and the positive real parameter ν is degrees of freedom.
In this setting, the stochastic process f (·) is the Student’s t-process expressed as f∼T P(m, K; ν).
Note that the Student’s t-process converges to the Gaussian process at the limit of ν→∞.

The conditional distribution of the Student’s t-process can be also derived analytically and given
as the conditional Student’s t-distribution. Namely, we can update the mean and covariance functions
and the degrees of freedom from the conditional distribution. Through cumbersome calculations,
the update formulas of the mean and covariance functions and the degrees of freedom are derived
as follows:

m∗ = m + KX∗ ,XK−1
X,XY, (10)

K∗ =
ν− β− 2
ν− N − 2

[
KX∗ ,X∗ − KX∗ ,XK−1

X,XKX,X∗
]

, (11)

β = (Y−mX)
TK−1

X,X(Y−mX), (12)

ν∗ = ν + N. (13)

It is seen that the update formula of the covariance function in Equation (11) explicitly depends
on the number of observed variables, which property does not appear in the case of the Gaussian
process. Hence, the Student’s t-process is regarded to utilize prior information more effectively than
the Gaussian process.
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3.2. Student’s t-Process Latent Variable Model

To extend the GPLVM to stochastic processes following non-Gaussian distributions, we propose
the TPLVM. Suppose an observed variable y∈RD is explained by a lower dimensional latent variable
x∈RQ (Q < D) by a nonlinear map f : RD→RQ, f∼T P(m, K; ν), the TPLVM is introduced as follows:

p(Y|X) =
Γ
(

ν+D
2

)
[(ν− 2)π]

D
2 Γ
(

ν
2
)
|KX,X |

1
2

[
1 +

1
ν− 2

(Y−mX)
TK−1

X,X(Y−mX)

]− ν+D
2

. (14)

The nonlinear dependency of the latent variable matrix X∈RN×Q is given by the covariance
matrix. It is expected that the TPLVM provides a robust estimation especially for observed data
with large fluctuations because the Student’s t-distribution can capture large deviated data from the
Gaussian distribution in its sampling.

As with the GPLVM, the latent variables and hyperparameters of the TPLVM can be estimated
from its likelihood. The logarithmic likelihood of the TPLVM is given as

log p(Y|X) = log Γ
(

ν + D
2

)
− D

2
log [(ν− 2)π]− log Γ

(ν

2

)
− 1

2
log |KX,X |

− ν + D
2

log
[

1 +
1

ν− 2
(Y−mX)

TK−1
X,X(Y−mX)

]
, (15)

By means of existing optimization methods, we can estimate the latent variables and
hyperparameters of the covariance function and the degrees of freedom. However, it is known
that the optimization of the covariance function with respect to the latent variables often induces
numerical instability because of its complexity. Hence, we should carefully select the initial values
of optimization procedures and repeat with diverse seeds of the initial values to refuse dropping in
local minima.

3.3. Variational Inference

To overcome the shortcomings of the method of maximum-likelihood, we utilize the method
of variational inference [25]. Instead of optimizing the logarithmic likelihood in Equation (15),
we consider that of posterior p(X|Y) = p(Y|X)p(X)/p(Y) in the Bayesian sense. In solving the
optimization problem with respect to the posterior, we approximate p(X|Y) by q(X). As a measure
of the difference between two probability density functions, we introduce the Kullback-Leibler (KL)
divergence as follows:

KL[q(X)||p(X|Y)] =
∫

log
q(X)

p(X|Y) q(X)dX. (16)

With the use of the Bayes theorem, the KL divergence is alternatively represented as

KL[q(X)||p(X|Y)] = −
∫

log
p(Y|X)p(X)

q(X)
q(X)dX + log p(Y). (17)

Since the second term in the right hand side in Equation (17) does not depend on q(·), we just
have to maximize the first term in the right hand side, which is known as the evidence lower bound
(ELBO), to minimize the KL divergence. The ELBO provides the lower bound of the evidence log p(Y)
because the KL divergence is non-negative. Therefore, this procedure realizes the sufficient fitting of
the observed data at the same time. Indeed, the maximization of the ELBO serves the best explanation
of the reduced dimension Q of the latent variables.
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4. Problem Formulation in Finance

4.1. Factor Model

Arbitrage pricing theory [26] assumes that the D-days expected return of an asset rn∈RN is
explained by the factor model as

rn = αn + Fβn + ε, (18)

where αn∈RD is an excess return, βn∈RQ is weight coefficients, F∈RD×Q is a factor matrix, and ε∈RD

is an error term with zero mean and a finite covariance. The factor model manifests that the return of
the asset is originated from the returns of Q-factors. In fact, without the excess return αn, the expected
return of the factor model is derived as follows:

E[rn] = E[F]βn. (19)

The special case of this formula with only one factor is known as the model of the capital asset
pricing model, which is a cornerstone of the modern finance theory [27].

The weight coefficients βn in the factor model in Equation (18) can be interpreted as latent
variables which explain the return of the asset. Based on this idea, we introduce a nonlinear factor
model as

rn = f (βn). (20)

This model is regarded as a latent variable counterpart of nonlinear factor model [10]. Here,
we employ the Student’s t-process as the model of nonlinear mapping f : RQ→RD. In other words,
the nonlinear factor model in Equation (20) is given by the TPLVM. The nonlinear correlation of the
latent variable factors depends on the specific form of the covariance function of the TPLVM, and the
predicted return of the asset can be inferred by the predicted distribution. Furthermore, the nonlinear
factor model can be interpreted as a dimension reduction model when Q < D. Hence we can expect to
obtain the essential lower dimensional variable which explains the dynamics of the return of the asset.

4.2. Portfolio Theory

Markowitz established the modern portfolio theory on the mean-variance portfolio. In this theory,
a portfolio consists of multi assets classes such as stock, bond, currency and commodity with their
optimal allocations based on both individual and entangled risk of assets.

The mean-variance portfolio is designed by the constrained quadratic programming problem
with respect to the objective function as

wTKw− λ(E[r]− µ), (21)

where w∈RD is the weight coefficients of the portfolio, K∈RD×D is the covariance matrix of the
returns, λ is a Lagrangian multiplier, r is the return of the portfolio and µ is the expected return
of the portfolio. In practical use, the return of the portfolio is quite hard to be estimated, whereby,
without the constraint condition of the expected return, the mean-variance portfolio is often replaced
by the minimum-variance portfolio with empirically estimated covariance matrix.

5. Experiment

In this section, we test the performance of the minimum-variance portfolio with the TPLVM
by comparing with the counterpart of the GPLVM. Before proceeding, we explain the experimental
dataset of our performance test.

As the experimental data, we use the following global stock market indices: S&P 500 (US),
S&P/TSX 60 (Canada), FTSE 100 (UK), CAC 40 (France), DAX (Germany), IBEX 35 (Spain), FTSE MIB
(Italy), AEX (the Netherlands), OMX 30 (Sweden), SMI (Switzerland), Nikkei 225 (Japan), HKHSI
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(Hong Kong), ASX 200 (Australia), KOSPI (Korea), OBX (Norway), MSCI (Singapore). These stock
indices are sampled every month between Jun 1998 to Jun 2019 from the Bloomberg’s data platform.
The statistics of the return of the stock indices are shown in Table 1. In this table, mean (Mean),
standard deviation (Std.), the ratio of mean and standard deviation (R/R), skewness (Skew) and
kurtosis (Kurtosis) of returns of the stock indices are presented.

With the use of the historical returns of the stock indices, we construct the minimum-variance
portfolios based on the GPLVM (PortG) and TPLVM (Portt). The covariance matrix of each portfolio
is estimated by the covariance function with 120 past samples. As the kernel function, we utilize the
exponential kernel defined as

kExp(x, x′) = θ1 exp (−θ−2
2 ||x− x′||) (22)

with θl (l = 1, 2) being hyper parameters. For the sake of brevity, the dimension of the latent
variable are fixed Q = 1. Under these conditions, we compare the performance of the PortG and Portt

by annualized return (Return), annualized risk as the standard deviation of return (Risk), risk/return
(R/R) as return divided by risk, which are defined as follows:

Return =
12
T

T

∑
t=1

RP
t , (23)

Risk =

√
12

T − 1
× (RP

t − µP)2, (24)

R/R = Return/RISK. (25)

Here, RP
t indicates return of GPLVM or TPLVM portfolio at time t, and µP = (1/T)∑T

t=1 RP
t

denotes the average return of the GPLVM or TPLVM portfolio. All our experiments were implemented
by a laptop PC with Intel(R) Core(TM) i7-76660U CPU@2.50 GHz and 16GB RAM. We used PyStan in
variational inference procedures.

Table 2 shows the performances of the portfolios by comparing annual return, risk and return-risk
ratio. The sample period is separated into anterior half period (Jun 2008–Jun 2013) and posterior
half period (Jul 2013–Jun 2019). Note that the anterior half period contains the global financial
crisis 2007–2008. As is seen in this table, the Portt outperforms the PortG in the both half periods.
In particular, the difference of the annual return in the anterior half period is larger than that in the
posterior half period. It is said that the market volatility during the global financial crisis intensively
fluctuated whereby non-Gaussian nature clearly emerged in the global stock market. In such situation,
the TPLVM is a consistent model to describe the intermittent volatility fluctuations. As is well known,
the performance of the minimum-variance portfolio depends on the accuracy of estimated covariance
matrix. In other words, accurately estimated covariance matrix, which is given by the kernel matrix
with respect to the latent variable, is expected to make a better profit. Thus, we can construct a robust
portfolio by the TPLVM based minimum-variance portfolio.
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Table 1. Statistics of global stock indices.

US Canada UK France Germany Spain Italy Netherlands

Mean [%] 6.00 5.41 2.39 4.08 6.87 3.20 1.35 2.96

Std. [%] 14.93 14.92 13.62 18.12 21.13 20.66 21.71 19.13

R/R 0.40 0.36 0.18 0.23 0.33 0.15 0.06 0.15

Skew −0.66 −0.92 −0.55 −0.38 −0.50 −0.17 0.03 −0.74

Kurtosis 5.23 7.36 4.53 4.52 6.12 4.96 4.80 5.88

Sweden Switzerland Japan HongKong Australia Korea Norway Singapore

Mean [%] 6.32 2.80 3.35 7.27 4.70 12.98 10.72 5.05

Std. [%] 19.51 14.68 19.24 23.46 12.40 28.80 21.49 21.71

R/R 0.32 0.19 0.17 0.31 0.38 0.45 0.50 0.23

Skew −0.19 −0.73 −0.54 0.28 −0.69 1.39 −0.93 −0.26

Kurtosis 5.29 6.11 4.75 5.78 4.54 11.63 6.84 6.81

Table 2. Performance of PortG and Portt.

PortG Portt Difference

Anterior half (Jun 2008–Jun 2013)

Return −4.89% −2.63% 2.25%

Risk 19.57% 18.33% −1.24%

R/R −0.25 −0.14 0.11

Posterior half (Jul 2013–Jun 2019)

Return 6.08% 6.30% 0.22%

Risk 11.16% 10.56% −0.60%

R/R 0.54 0.60 0.05

Whole period (Jun 2008–Jun 2019)

Return 0.64% 1.87% 1.23%

Risk 15.92% 14.93% −0.99%

R/R 0.04 0.12 0.09

6. Conclusions

In the literature of Bayesian machine learning, the Gaussian process has been developed and
utilized to the diverse area including finance. It is, however, well known that the historical financial
data follows non-Gaussian distributions. The Student’s t-process is proposed, as the generalization
of the Gaussian process, to model the observed data following the non-Gaussian distributions
with fat-tails.

In this article, we proposed the TPLVM by incorporating the latent variables into the Student’s
t-process. The TPLVM can be used to reduce the number of explanation variable following the
non-Gaussian distributions with fat-tails. The nonlinear correlation of the TPLVM is modelled by
prescribed kernel functions. The hyperparameters of the TPLVM can be determined by the method of
maximum-likelihood. As a robust parameter optimization, we presented the method of variational
inference of the TPLVM, which utilize the information of prior distribution of latent variables.

The problem of the portfolio optimization has been studied in both academia and industry.
We applied the TPLVM into the portfolio optimization with the use of the minimum-variance portfolio.
To test the performance of the proposed portfolio, we implemented the empirical analysis for the
global stock market data and compared the PortG with Portt. It was shown that the Portt outperforms
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the PortG in the whole test periods because Portt can capture the non-Gaussian nature of the global
stock market especially in the period of the global financial crisis.

The TPLVM can be applied other risk-based portfolios such as risk parity [28], maximum risk
diversification [29], and complex valued risk diversification [30], in which Value at Risk (VaR), instead
of standard deviation, is often used as an appropriate risk measure. These applications are expected to
show higher performance compared with conventional ones. In addition, the TPLVM can be modified
to a latent variable dynamical model to catch the nature of historical volatility fluctuations. These ways
of research are our future works.
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