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Abstract: In this paper, we propose a new method based on the dynamic mode decomposition
(DMD) to find a distinctive contrast between the ictal and interictal patterns in epileptic
electroencephalography (EEG) data. The features extracted from the method of DMD clearly
capture the phase transition of a specific frequency among the channels corresponding to the ictal
state and the channel corresponding to the interictal state, such as direct current shift (DC-shift
or ictal slow shifts) and high-frequency oscillation (HFO). By performing classification tests with
Electrocorticography (ECoG) recordings of one patient measured at different timings, it is shown that
the captured phenomenon is the unique pattern that occurs in the ictal onset zone of the patient. We
eventually explain how advantageously the DMD captures some specific characteristics to distinguish
the ictal state and the interictal state. The method presented in this study allows simultaneous
interpretation of changes in the channel correlation and particular information for activity related
to an epileptic seizure so that it can be applied to identification and prediction of the ictal state and
analysis of the mechanism on its dynamics.

Keywords: epileptic seizure; dynamic mode decomposition; EEG; ECoG; pattern recognition; DC
(direct current) shift; high-frequency oscillation

1. Introduction

Epilepsy is a neurological condition in which patients suffer spontaneous seizures. The seizure is
caused by disturbances in the electrical activity of the brain. As proposed in [1], an epileptic seizure
is a transient occurrence of signs and/or symptoms due to abnormal, excessive, and synchronous
neuronal activity in the brain. Correctly identifying the presence of epileptic activity, characterizing
the spatio-temporal patterns of the corresponding brain activity, and predicting the occurrence of
seizures are major challenges, and achieving this could significantly improve the quality of life for
patients with epilepsy.
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Electroencephalogram (EEG) including electrocorticogram (ECoG) is the prime signal that has
been widely used for the diagnosis of epilepsy (see, for example, [2]). It is an accurate tool for
the identification of various types of abnormalities in the brain. An epileptic seizure is one of those
complex abnormalities detected by EEG. A vast number of methods have been developed for automatic
detection of seizures from EEG recordings (see [3–5]). Extracting features that best describe the behavior
of EEGs is of great importance for automatic seizure detection systems’ performance.

It is reported that the epileptic zone may be localized by the abnormal signal pattern of
the high-frequency domain so-called persistent high-frequency oscillations (HFOs) [2,6,7]. However,
using conventional transformation algorithms to extract features from the EEG signals does not
guarantee a high accuracy being achieved [8,9].

Figure 1b,c exhibit the power spectrum of the signal from a specific channel in which DC shift and
HFO occur right before the seizure, and for comparison, Figure 1d shows the magnitude of the DMD
mode of the same signal. While the DMD mode can easily identify the singularity of the high-frequency
domain, most of the methods based on the power spectrum have some difficulty in making intuitive
judgments of the existence of the singularity because the measured energy is relatively small compared
to the low frequency. In other words, in the analysis using the power spectrum, it is difficult to visually
identify the HFO interval having a relatively small magnitude (or amplitude). However, the magnitude
of the DMD mode allows you to visually identify specific frequency bands with abnormal phase
transitions whether or not it is in the high frequency.
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three types of transformations. (b) The power spectrum information based on FFT. (c) Scalogram by 
CWT. It characterizes the periods of increased volatility, obtaining the CWT of the data using the 
analytic Morlet wavelet [10]. (d) The power spectrum information based on DMD. (e) The magnitudes 
of DMD modes. 
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corresponding to each frequency are approximated by the DMD as the form of ‘modes’ 
corresponding to the signals [15]. As shown in Figure 1, one of the main advantages of DMD is that 
these modes are provided in linearly independent normalized vectors so that patterns of the phase 
(i.e., imaginary of mode entries) and its magnitudes (i.e., absolute values of mode entries) in banded 
high frequencies can be clearly detected as patterns in low-frequency mode. 
Figure 2 shows that the ‘mode’ of DMD accurately detects two signals that differ in phase. Besides, 
since the signal of ‘Channel 3’ is not related to the phase difference, the magnitude of the mode 
corresponding to the frequency of the channel is calculated as zero. On the other hand, in FFT, the 
phase difference between these two channels cannot be confirmed. The first column in Figure 2 shows 
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consist of conjugate pairs, the phase angles are represented by negative and positive pairs with the 
same absolute value. The phase angle in the third column in Figure 2 for frequencies whose 
magnitude is zero is ignored because it is worthless. The absolute value of the phase angle over 7 Hz 
of the first signal is calculated to be approximately 2.8723 and that of the second signal is 

Figure 1. An ECoG signal for a specific channel including the DC shift and the HFO phenomena and
three different kinds of transformations. This illustrates that the DMD method provides much clearer
visibility for the HFO zone than the two other methods, fast Fourier transform (FFT) and continuous
wavelet transform (CWT) (a) The ECoG signal from the channel 47 with 2000 Hz of sampling rate and
one-second time lapse of window size. The red rectangle indicates the time frame to be used for the three
types of transformations. (b) The power spectrum information based on FFT. (c) Scalogram by CWT. It
characterizes the periods of increased volatility, obtaining the CWT of the data using the analytic Morlet
wavelet [10]. (d) The power spectrum information based on DMD. (e) The magnitudes of DMD modes.

The Kuramoto model, which explains the synchronization phenomena of the oscillation of coupled
signals, analyzes brain connectivity and dynamics [11]. This synchronization phenomenon can be
confirmed by comparing the phase difference of a specific frequency band between interacting signals.
According to recent research, oscillation amplitudes do not reveal the coordination or communication
of neuronal activity across brain regions. In contrast, the phase of an oscillation, which indicates
the position of the signal within a given oscillation cycle, has been shown to be critical in the coordination
of anatomically distributed processing [12]. Therefore, there has currently been an urgent need for
a new analysis tool that can detect the phase transition of high-frequency bands for each condition
appearing between the cerebral regions.

A newly developed method based on dynamic mode decomposition (DMD) has been proposed
in recent years to extract features from EEG data [13,14]. The phase differences between channels
corresponding to each frequency are approximated by the DMD as the form of ‘modes’ corresponding
to the signals [15]. As shown in Figure 1, one of the main advantages of DMD is that these modes are
provided in linearly independent normalized vectors so that patterns of the phase (i.e., imaginary of
mode entries) and its magnitudes (i.e., absolute values of mode entries) in banded high frequencies
can be clearly detected as patterns in low-frequency mode.

Figure 2 shows that the ‘mode’ of DMD accurately detects two signals that differ in phase. Besides,
since the signal of ‘Channel 3’ is not related to the phase difference, the magnitude of the mode
corresponding to the frequency of the channel is calculated as zero. On the other hand, in FFT, the phase
difference between these two channels cannot be confirmed. The first column in Figure 2 shows
the phase angle of the DMD mode obtained from the computation of =(log Φ), where Φ is the DMD
mode in Equation (11) and =(·) is the imaginary part of a complex number (Note that

x(t) = φ · eiθt = ei(θt+=(logφ))+<(logφ),

where <(·) is the real part of a complex number.). The second column (b) in Figure 2 displays
the magnitude of the mode computed by |Φ|. Since the complex eigenvalues calculated by DMD always
consist of conjugate pairs, the phase angles are represented by negative and positive pairs with the same
absolute value. The phase angle in the third column in Figure 2 for frequencies whose magnitude is
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zero is ignored because it is worthless. The absolute value of the phase angle over 7 Hz of the first
signal is calculated to be approximately 2.8723 and that of the second signal is approximately 2.0723,
so the phase transition from the original signal is exactly 0.8. It should be noted that the mode value of
the individual signal is obtained by projecting into a function space that is generated depending on
the data so that it may vary depending on how the data is generated. After all, the important value in
DMD mode is not the absolute value, but the difference or change of the relative value of magnitude
and angle corresponding to each channel and frequency.
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Figure 2. Comparison of analysis of the signals from three specific channels by FFT and by DMD.
(a) The shape of the signals and the functions defined for the signals. The first and second signals are
derived with the same eigenfunction, and there is a phase difference of 0.8 for the second eigenfunction
with period 7. (b) Power spectrum graphs by calculating each channel by fast Fourier transformation.
Phase transition for channels 1 and 2 cannot be determined. (c) Graphs of mode values calculated by
dynamic mode decomposition on the signals.

In this paper, we introduce a method of classification between the ictal and interictal states in
the EEG signals from an individual epileptic patient and examine whether it is effective to recognize
spatio-temporal patterns through DMD. In Section 2, we describe the structure of data and the DMD
method to be applied and then explain the process of feature extraction for classification. In Section 3,
we perform numerical computations and simulations to represent the results of the classification. In
Section 4, we interpret the numerical results and discuss how useful the method presented in this study
is, and how it differentiates in comparison with existing methods. Finally, in Section 5, we summarize
the study and discuss further research topics.
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2. Materials and Methods

In this work, ECoG data, a rare type of EEG data, was used. ECoG is an invasive method of
measuring the electrical signals with electrodes that are implanted directly on the exposed surface of
the brain while the normal EEG is a non-invasive method with electrodes that are placed on the surface
of the scalp. The signal-to-noise ratio (SNR) of brain signals in ECoG is relatively high and the impact
of artifacts caused by physical movements, electrical activities, and other electrical wearable is almost
negligible in ECoG signal. Even in patients with the same type of disease, each of their ECoG data
displays their inherent characteristics different from the others. Therefore, when statistically studying
ECoG data, instead of using data from multiple patients as a control group, we used one individual
patient’s data measured at two or more different timings.

The ECoG recordings were sampled at intervals of 0.2 s, and they were segmented with a one-second
duration. Each segmented signal was decomposed by the DMD into a dynamic mode, and the columns
of the mode were sorted in descending order of to their frequencies and then vectorized. Those
vectorized columns were projected to the approximated left singular vector space, which comes from
the subscribed learning process, and then the features were extracted. Finally, the extracted features
were regarded as an input variable into a support vector machine (SVM) and then those were classified
into ictal and interictal EEG signals. Figure 3 illustrates all the steps in the process described above.
In what follows, details of the used ECoG dataset, dynamic mode decomposition, feature extraction,
classification, and statistical assessment are described in order.
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2.1. Dataset

The ECoG dataset of an epileptic patient was provided by Ikeda laboratory at Kyoto University.
The recent works in Ikeda laboratory refer to [2,6,16,17] on high-frequency oscillations and other types
of oscillations with prominent DC components, which is the so-called DC-shift, in EEG data. The dataset
is composed of four distinct ECoG recordings measured through 49 channels; two recordings are in
the awake state and the other two are in the sleep state. Each recording is composed of only two types
of signals: An ictal signal and an interictal signal. Table 1 displays the detailed information of the four
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recordings and their settings, and Figure 4 illustrates how to sample the EEG data into signals to be
used in this work. Since the sampling rate of the original data provided was very large as 2000 Hz, it
was reduced to 250 Hz to match the rate used in most of the previous related studies.

Table 1. Details of four epileptic ECoG recordings used in the dataset. The entire dataset was obtained
from one patient. All of the recordings were resampled at 250 Hz (250 per second) and contain
the spatial information of 49 channels for each snapshot. Each EEG signal corresponds to a matrix of
one-second duration snapshots combined in the column direction, and it was collected every 0.2 s.

Record Name State No. of Snapshots
(Total/Ictal)

Time (sec)
(Total/Ictal)

No. of Signals
(Total/Ictal) Type

Pt1_ictal1 Awake 692,000/13,201 2768/52.8 11,835/264 Training
Pt1_ictal2 Sleep 735,000/16,234 2940/64.9 14,690/325 Training
Pt1_ictal3 Sleep 737,750/24,407 2951/97.6 14,750/489 Testing
Pt1_ictal4 Awake 734,750/11,545 2939/46.2 14,690/231 Testing
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Figure 4. Sampling process for training data. A total of k signals are presented above. Each EEG signal
was obtained for one second of time lapse, and it consists of a total of 250 uniformly chosen snapshots
from 2000 snapshots for each signal. Note that after the ith EEG signal is obtained, the next EEG signal,
the (i + 1)st EEG signal is then obtained with 0.2 s of waiting time. Therefore, the adjacent EEG signals
have data in common for 0.8 s, equivalently, 200 snapshots.

2.2. Dynamic Mode Decomposition

Assume that data is collected from a dynamical system of ordinary differential equations:

dx
dt

= f(x, t), (1)

where x(t) ∈ Rn is a vector representing the state of a dynamical system at time t and f(·) represent
the dynamics. In general, it is impossible to construct an analytic solution to the nonlinear Equation (1),
so numerical solutions are used to approximate the dynamics and predict the future states. The DMD
procedure constructs the proxy, approximate locally linear dynamical system:

dx
dt

= Ax, (2)

with initial condition x(0) and solution:

x(t) =
n∑

k=1

φk exp(ωkt)bk = Φ exp(Ωt)b,
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where φk and ωk are the eigenvectors and eigenvalues of the matrix A, and the coefficients bk are
the coordinates of x(0) in the eigenvector basis.

The continuous dynamics in Equation (2) can be described by an analogous discrete-time system
sampled every ∆t in time, such as:

xk+1 = Axk, k = 0, 1, 2, . . . , m,

where A = exp(A∆t) and m is the number of states. The solution to this system is simply expressed
by:

xk =
n∑

j=1

φ jλ
k
jb j = ΦΛkb, (3)

where λ j and φ j are the eigenvalues and eigenvectors of the discrete-time map A, respectively, and b is
the coefficient of the initial condition x0 = x(0) in the eigenvector basis so that x0 = Φb. The final goal
of the DMD algorithm is to produce a low-rank eigendecomposition (Equation (3)) of the matrix A that
optimally fits xk for k = 0, 1, · · · , m in a least-square sense so that:

‖ xk+1 −Axk ‖2, (4)

is minimized for k = 0, 1, · · · , m− 1.
Let xi ∈ Rn be a column vector containing measurements from n channels at the time instant i in

streamlined EEG signals and compose a data matrix:

X = [x0, x1, · · · , xm] ∈ Rn×(m+1),

which represents a segmented EEG signal. In order to minimize the approximation error (Equation (4)),
we define two data matrices as follows:

X1 = [x0, x1, · · · , xm−1] ∈ Rn×m,
X2 = [x1, x2, · · · , xm] ∈ Rn×m,

(5)

where X1 is the data matrix constructed by the measurement vectors for m consecutive time instances
from the beginning, and X2 is the data matrix temporally shifted by the time unit 1 from X1. Then,
the locally linear approximation (Equation (2)) can be written by:

X2 ≈ AX1,

and the best-fit A matrix is given by:
A = X2X†1, (6)

where X†1 denotes the Moore–Penrose pseudoinverse of X1. The solution of Equation (6) minimizes
the error:

‖ X2 −AX1 ‖F,

where ‖ · ‖F is the Frobenius norm given by:

‖M ‖F =

√√√√ p∑
j=1

q∑
k=1

M2
jk ,

for M ∈ Rp×q. Thus, the DMD of the pair (X1, X2) is the eigendecomposition of the matrix A.
Then, the modes and eigenvalues of the DMD correspond to the eigenvectors and eigenvalues of A,
respectively. In practice, if the state dimension n is large, the matrix A may be intractable to analyze
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directly. Instead, a low-rank approximation Ã is implemented by the following algorithm, which is
called the DMD algorithm [15,18]:

(a) Compute the reduced and appropriately truncated SVD [19] of the data matrix X1 in Equation (5):

X1 ≈ UΣV∗, (7)

where the columns of U ∈ Rn×r and V ∈ Rm×r are orthonormal eigenvectors of X1XT
1 and XT

1 X1,
respectively, the diagonal entries of Σ ∈ Rr×r are the square roots of the non-negative eigenvalues
of both X1XT

1 and XT
1 X1, and r (< min{n, m}) refers to the reduced rank of the approximated matrix

given in Equation (7). The columns of U are called the left singular vectors of X1.
(b) Define a low-rank approximation Ã of A in Equation (6):

Ã = U∗AU = U∗X2VΣ−1. (8)

(c) Compute the eigendecomposition of Ã in Equation (8):

ÃW = WΛ, Λ = diag(λ1, λ2, · · · , λr), (9)

where the columns of W ∈ Cr×r and the diagonal entries of Λ ∈ Cr×r are the eigenvectors and
the eigenvalues of Ã, respectively.

(d) Since the eigenvalues in Equation (9) are also the eigenvalues of A, the DMD mode (i.e.,
the eigenvector of A) corresponding to the DMD eigenvalue λi in Equation (9) is given by:

φi ≡ Uwi, (10)

where wi is the ith column of W in Equation (9).

Each snapshot xi is approximated by xi ≈ Axi−1, and so, this algorithm allows us to express an
approximation of the sample data as a composition of a coupled spatio-temporal model:

x̂(t) = Atx0 = ΦΛtc, (11)

where Φ ∈ Cn×r consists of the columns of φi, and c is a set of weights satisfying x0 = Φc. The phase
of eigenvalues can be converted to frequency (Hz) by:

fi =
=(log(λi)/∆t)

2π
, (12)

where =(·) is the imaginary part of a complex number. fi indicates the frequency of oscillation in
the mode φi, whose unit is in cycles per second. Since c in Equation (11) corresponds to the initial value
x0 in Equation (5), the ith entry of c in Equation (11) is accordingly defined to be the spectral amplitude
of the frequency fi in Equation (12). Since the size of the operator A in Equation (6) is determined
by the dimension of the vector xi in Equation (5), if the spatial resolution of a given signal is less
than its temporal resolution then the standard DMD algorithm represented above may fail to extract
full spectral information (for example, DMD gives only a scalar linear operator from one-dimension
signals).

The spatial resolution for neurological signals is usually less than the temporal resolution. For
example, we have 49 channels of electrodes sampling at 2000 Hz. Thus, the standard DMD algorithm
must be modified to capture the dynamics of the neurological activity properly. The modification is
adopted to augment the data matrix X by stacking h number of observation vectors xi to be given in
Equation (15), such that the number of rows in X becomes at least twice the number of columns. A recent
experiment has shown that the number of rows in X must be more than twice that of the columns to
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obtain adequate spectral information from brain signals [20]. Then, a scaled spectral amplitude for c in
Equation (11) is given by:

Pi =
2|ci|
√

h
, (13)

where ci is the ith entry of c given in Equation (11). Meanwhile, the DMD mode power is defined by
‖ φi ‖

2
2 [14,20].
Figure 5 illustrates the variation in the spectral information and DMD modes corresponding to

signals from different data regions of the EEG recordings, such as interictal in the sleep state, interictal in
awake, ictal in sleep, and ictal in awake. The signals used in this work were obtained from 49 channels
with one-second duration and they were resampled by a sampling rate of 250 Hz with 10 stacking
numbers, and hence, the data matrix X contains 240 columns and 490 rows (each original signal has
250 columns and 49 rows).
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Figure 5. Examples of the patterns of DMD modes (a) for interictal signals in the awake state,
(b) for interictal in sleep, (c) for ictal in awake, and (d) for ictal in sleep. This displays the truncated
DMD mode in Equation (10) and the spectral information in Equations (13) for a segmented signal.
The high-frequency pattern of the ictal signal appears more clearly than that of the interictal signal does.

In Figure 5, we see that the amplitudes at high frequencies are relatively much smaller than
the amplitudes at other frequencies, but the magnitude of the phase on some narrow-banded low or
high frequencies at the channels 33, 38, and 47 in the DMD mode are more significantly larger than
that of the others, except channel 41. The DMD mode is given in a complex number, and its magnitude
displays the relative influence of all channels on the corresponding frequency in a normalized state.
The DMD mode corresponding to the zero frequency indicates the overall shape or the tendency
of signals. Inspecting the magnitude of the DMD mode identifies channels with significant phase
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transition at some special banded frequencies in the signal, such as the channels in which DC shift
and HFO occur. Therefore, in order to focus on abnormal spatio-temporal phase patterns of high
frequencies from ictal and interictal signals, we do not consider the amplitudes defined in Equation
(13) to avoid a biased power spectrum information to low-frequency band.

2.3. Feature Extraction

Each DMD mode is reordered and vectorized for feature extraction. The left singular vectors are
obtained by decomposing the matrix constructed with modes computed from training signal set. Then,
the features are extracted by projecting the computed modes to the truncated left singular vector space,
which is prepared in the previous states.

The feature to be used in the proposed method is a vectorized and reordered DMD mode.
The dimension of the feature is reduced by a linear transformation mapped to the space of truncated
right-singular vectors, which come from a row-wise stacked feature matrix of modes for training data.
The detail of feature extraction is explained below.

For the simplicity of notation without a loss of generality, we define two sets of EEG signals used
in testing and learning processes from several regions of EEG recordings as follows:

Wtrain =
{
X( j)
∈ Rn×(m+1)

∣∣∣ j = 1, 2, · · · , IL
}

Wtest =
{
X( j)
∈ Rn×(m+1)

∣∣∣ j = IL + 1, IL + 2, · · · , IL + IT
} , (14)

where n and (m + 1) are the number of channels and that of snapshots within a fixed time duration
(one second in this work), respectively. Note that IL and IT are the numbers of sample signals in
the training and testing sets, respectively. The elements of each set are labeled into one of four cases:
Ictal in awake state, ictal in sleep, interictal in awake, and interictal in sleep for classification.

Let X( j) =
[
x( j)

0 , x( j)
1 , · · · , x( j)

m

]
∈Wtrain ∪ Wtest be a jth data matrix of signal sets in Equation (14).

Then, the augmented matrix for the decomposition is represented by:

X( j)
aug =


x( j)

0 x( j)
1 · · · x( j)

m−h+1

x( j)
1 x( j)

2 · · · x( j)
m−h+2

...
...

. . .
...

x( j)
h x( j)

h+1 · · · x( j)
m


∈ Rnh×(m−h+1), (15)

(see [13]). For each X( j)
aug, we calculate Φ( j)

∈ Cnh×r, f ( j), and P( j) given in Equations (11)–(13),
respectively. In this work, to extract optimal features, the low-rank approximation size r is fixed (in
this paper, r = 100). The discussion for choosing an optimal threshold on the singular values can be
found in [21]. Then, the modes can be aligned by frequency into the form:

Φ
( j)
align =

[
φ( j)
σ(1)

, φ( j)
σ(2)

, · · · , φ( j)
σ(r)

]
, (16)

where σ is a permutation of {1, 2, . . . , r}, satisfying:

f ( j)
σ(1)
≥ f ( j)

σ(2)
≥ . . . ≥ f ( j)

σ(r)
. (17)

A pair of consecutive columns in each Φ
( j)
align mostly consists of a complex conjugate except forφ( j)

1
and valid spatial information is contained in the first n-rows. Thus, in order to reduce the computational
cost in the featuring process without a loss of the information, one can extract submatrix by truncating
the columns and the rows by:

Φ
( j)
trunc = Φ

( j)
algin[1 : n, 1 : 2 : r],
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where Z[r, c] denotes a submatrix of Z indexed by sequences r and c, and i : k and i : j : k implies
the index sequences {i, i + 1, i + 2, . . . , k} and

{
i, i + j, i + 2 j, . . . , i + t j

}
, satisfying i+ t j ≤ k ≤ i+ (t + 1) j,

respectively. Note that in this paper, the size of each Φtrunc is given by 49× 50. It is remarkable that

most of the entries of Φ
( j)
trunc are close to zero (or almost sparse matrices) and can be clustered into

small groups. Therefore, it is naturally assumed that the dynamics of signals in EEG recordings can be
described by a few entries of the DMD mode and spectral information. This implies that it is possible
to apply low-rank reduction schemes to the modes, such as singular value decomposition (or principal
component analysis).

The truncated DMD mode in Equation (17) of every signal in the recordings is gathered to form
libraries of DMD mode patterns and supposes that elements of these libraries are labeled into distinct
states of regions. The construction of the libraries of DMD mode patterns is performed as follows:

L =
[
φ̃1 φ̃2 · · · φIL

]
∈ Cnr×IL

T =
[
ϕ̃1 ϕ̃2 · · · ϕ̃IT

]
∈ Cnr×IT ,

(18)

where:
φ̃i = vec

(
Φ

(i)
trunc

)
∈ Cnr×1 and ϕ̃i = vec

(
Φ

(IL+i)
trunc

)
∈ Cnr×1,

where Φ
( j)
trunc is a truncated DMD mode matrix in Equation (17) for the jth signal in WL∪ WT in Equation

(14), and vec(M) represents a column vector obtained by rearranging M =
[

m1 m2 . . . mk
]
∈

Cl×k by vertically stacking the column vectors mi of the matrix below in the order of the index, that is:

vec(M) =


m1

m2
...

mk

 ∈ C
lk×1.

For purposes of classification, we considered only the absolute value of DMD modes. Therefore,
in the featuring process, we use the absolute valued matrices of L and T in Equation (18) denoted by
|L| and |T |, respectively. The feature is determined in the d-dimensional left singular vector space,
using the transformation of each column of |L| and |T | in Equation (18) onto the first d left singular
vectors of |L| obtained by SVD, such as:

|L| = ULΣLVT
L

, aL = UT
d |L| ∈ R

d×IL , and aT = UT
d |T | ∈ R

d×IT , (19)

where UL ∈ Rn×n and VL ∈ RIL×IL are matrices orthogonal to each other, ΣL ∈ Rn×IL is a non-negative
diagonal matrix, UT

d is the transpose of the first d columns of UL, and columns of aL and aT are regarded
as the features of the training set and the testing set, respectively. Figure 6 exhibits the patterns of
the left singular vector space and the distribution of the features derived from the two distinct training
sets Wtrain in Equation (14), each of which is formed by a combination of one of the ictal and interictal
signals and one of the awake and sleep states. This provides visual identification of the components
contributing to the classification and their distribution. The pattern of the graph shows that the feature
components contributing to the classification of the ictal and interictal signals are associated with
the high-frequency pattern of the DMD mode, and the components contributing to the classification
of the awake and sleep states are associated with the low-frequency pattern. It is also found that
such components contain well recognizable unique characteristics for each state. In addition, the SVD
precisely detects the high-frequency patterns associated with ictal and interictal signals, and hence, it
is more distinct than the low-frequency patterns associated with awake and sleep states. This will be
confirmed by numerical simulation in Section 3.
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Figure 6. Patterns of left singular vector space and distribution of feature, which refer to the columns of
Ud and aL in Equation (19), respectively. The five images in the first column are obtained from reshaping
the magnitudes of the first five singular vectors into the form of the DMD mode. Here, the horizontal
axis represents frequency and the vertical one channel. In each image in the second column, all
the components of features associated with each singular vector are plotted. Here, each red circle
represents an ictal signal or awake state as implying positivity, while each blue rectangle represents an
interictal signal or sleep state as implying negativity. Here, the horizontal axis represents the index of
the signal, and the vertical one weight. The images in the third column represent the distribution of
features in three-dimensional space according to the components of the singular vector.
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2.4. Classification

The extracted features are to be classified into ictal or interictal signals and also into awake and
sleep states by employing a support vector machine (SVM) classifier. As shown in [4], the SVM is one
of the most effective classifiers for EEG signals and it can be applied to the signals flexibly in various
ways. The SVM algorithm seeks a linear classifier that minimizes the operational error and maximizes
the margin hyperplane, and hence, it boosts the performance of classification. In this experiment,
we used kernel-based SVM presented in [22], which is known to be useful to deal with nonlinear
classification based on a linear discriminant function in a high-dimensional space.

3. Results

Our goal was to use the SVM to classify epileptic EEG signals into ictal or interictal signals, and also
into signals in the awake state or those in the sleep state. Some particular properties of spatio-temporal
patterns involved in classification are distinctly captured by the algorithm of the DMD combined with
SVD as proposed in Section 2. For objective evaluation of the classification, the experimental datasets
used in the learning process were selected completely differently from the datasets used in testing
process. We constructed 10 training sets Wtrain’s in Equation (14) by randomly choosing ictal signals in
the awake state to 250 signals, ictal in sleep state to 250, interictal in awake state to 1000, and interictal
in sleep state to 1000, which were obtained from ‘Pt1_ictal1’ and ‘Pt1_ictal2’ recordings, respectively.
The testing set Wtest in Equation (14) was composed of ictal to 770, interictal with awake state to 14,750,
and interictal with sleep state to 14,690 from ‘Pt1_ictal3’ and ’Pt1_ictal4’. After obtaining trained
models by multiclass SVM for aL in Equation (19) from each Wtrain, we averaged the confusion matrix
values obtained by applying the feature library aT in Equation (19) from Wtest to each trained model.

In order to measure the accuracy of the classification, the statistical assessment method defined
in [23] was used. Since the patterns of interictal and sleep states are stable, the predictions of ictal
and awake states were set to positive and those of interictal and sleep states were set to negative.
The results show that only the magnitude of the phase can be also taken as a feature to classify the sleep
and awake states, yielding the same outcomes as the conventional power spectrum analysis (using
FFT and Wavelet).

Figure 7 displays the confusion matrices of the testing data by the classifier of ictal and interictal
signals and by that of awake and sleep states, and Table 2 reports the assessment of the confusion
matrices of Figure 7. The classifier of ictal and interictal signals operates properly, regardless of
whether the state of the testing data is awake or sleep. Similarly, the classifier for awake and sleep
states also operates properly, regardless of whether the signal of the testing data is ictal or interictal.
Since the high-frequency pattern of the DMD mode appears more clearly than other frequencies, it is
notable that the classifier for ictal and interictal signals yields remarkable accuracy in classification
even though the amount of the training data is insufficient. Consequently, the DMD can precisely
capture the patterns of the signals related to an epileptic seizure.
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Figure 7. The ensemble average of confusion matrices for classification. The values in each table
are averages of the confusion matrices obtained from 10 experiments. In this case, the values in
the parentheses are row-wise normalized.

Table 2. Statistics for the confusion matrices in Figure 7. The measurements in the table have
the following meanings: ‘Accuracy’ represents the overall effectiveness of a classifier, ‘Sensitivity’
represents the effectiveness of a classifier to identify positive labels, and ‘Specificity’ represents how
effectively a classifier identifies negative labels. In the formulas for these measurements, the values
TP, FN, TN, and FP are used, and they mean ‘true positive’, ‘false negative’, ‘true negative’, and ‘false
positive’, respectively. These values are obtained directly from the confusion matrix.

Statistics

Measurement

Accuracy Sensitivity Specificity
TP+TN

TP+TN+FP+FN
TP

TP+FN
TN

TN+FP

Ictal vs. Interictal 99.68% 93.99% 99.83%
Awake vs. Sleep 88.24% 85.41% 91.55%

4. Discussion

It is well known that aberrant changes in neural activity in brain neural circuits, such as a soaring
synchronization of neuronal firing, can cause epileptic seizures, and that such changes are captured
in the form of high-frequency EEG signals [24]. Recently, it has been revealed with valid pieces of
evidence through a variety of experiments that both ictal slow shifts and HFOs were located in the same
area and were useful to detect the ictal onset zone [25]. The method presented in this paper is to
capture such spatio-temporal patterns in the ictal state as they are, and the experimental results show
that such patterns are inherent characteristics that can be identified. The differences and advantages of
the work presented in this paper compared to the existing studies are as follows:

(a) Existing studies on the identification of the ictal onset zone mostly focus on increasing statistical
accuracy by finding the proper feature method for automatic seizure detection [26–29]. In
the extracted feature, it is difficult to directly understand the mechanisms and characteristics,
such as the ictal slow shift and HFO, of the ictal state for the individual patient. Figures 1 and 2
show the method presented in this paper directly interprets the dynamic mode of EEG signal to
locate the position of the specific channel and frequency in which the slow shift phenomenon and
HFO phenomenon occur and to track the state change over time of the pre-ictal and ictal state.
Therefore, it is expected that the method presented in this paper can contribute significantly to
further studies related to the prediction of the state of the ictal, which plays an important role in
the epilepsy study.

(b) A method of investigating the correlation between channels was recently proposed in [30] as
another way of studying the mechanism of ictal phenomena for the prediction of epilepsy. In
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the work, it was shown that the information about changes in the network correlation provides
insight for epileptic brain behavior, demonstrating that other locations of the brain are involved
in the seizure other than the focus, and that there might be early indications for the seizure.
The method that we present is to obtain left singular vectors that are clustered into correlated
channels through the dimension reduction process for the libraries of the dynamic mode with SVD
applied. Each of the left singular vectors is divided into channels that are simultaneously involved
in the ictal and interictal and channels that only respond to the ictal state (for example, the figures
in the third row of Figure 6a show the components of the channels and frequencies that react in
both ictal and interictal states, whereas the figures in its second row identify the components
that react in the ictal state only). In other words, the components of the dynamic mode contain
information on both the channel and frequency, so a more sophisticated analysis can be made.

(c) The outcome of machine learning algorithms, such as an artificial neural network (ANN) and
support vector machine (SVM) algorithms, can be effectively used as physiological feedback
to advanced implantable medical devices (IMDs), which will then expectantly operate in
a closed-loop fashion. As a result, the efficacy of the treatment will be improved by delivering
intense targeted stimulation [31]. However, due to the inherent uncertainty of the brain signals
and because EEG and ECoG vary a lot depending on age, environments, drug intake, etc., it
is extremely challenging [32]. In addition, in the case of epilepsy, seizure patterns for each
patient not only are unique but also vary with time [33]. As a result, a generic machine learning
algorithm will not efficiently work for the same patient as well as for large patient groups [34].
A more common way to approach this problem is to collect continuous EEG and ECoG data,
which captures unique ictal patterns and interictal patterns for individual patients. The collected
data is then used to train machine learning algorithms and to develop a patient-specific seizure
prediction algorithm. However, this approach is not scalable to large patient groups as developing
patient-specific machine learning models requires enormous efforts in collecting, labeling, and
training the machine learning algorithms. A number of studies are underway on the development
of an online seizure advisory system that automates this process [35]. However, due to the risk
and complexity involved in ECoG, it is strictly restricted to clinical use. There is no ECoG data
obtained from the measurement of healthy individuals’ epilepsy [30]. For this reason, from
a clinical point of view, tools for prediction and identification based on ECoG data should be able
to produce accurate results for subsequent observational data with the number of measurement
data from a patient being minimized. Moreover, the tools should train the ECoG dataset obtained
from an individual patient, considering the inherent specificities of the patient. The methodology
proposed in this work meets those requirements above. In order to avoid possible errors in
the derived results, these tools implement an intuitive configuration and fast calculation speed so
that the features created by the tools enable us to instantly interpret the attributes associated with
known ictal states and to judge whether and when the epileptic seizure occurs by monitoring
the changes of magnitudes (i.e., whether the value is meaningful or not) and imaginary (i.e., phase
angle) regarding the modes between channels in some special banded frequencies. Moreover,
the methodology allows real-time visual monitoring of the modes.

5. Conclusions

This paper showed that each DMD mode can be configured by calculating the phase per channel
for a specific frequency band of the ECoG signal, and the DMD mode allows near-accurate detection of
two separate phenomena with distinct dynamic states, such as ictal and interictal. Moreover, existing
studies analyzing sleep conditions have used power spectrum analysis to track changes in patterns at
specific low frequencies. This paper suggested the possibility that these findings can be induced solely
by comparing and analyzing the phase transition between channels.

Numerous studies have recently been conducted to classify epilepsy conditions and develop
predictive models using data-based artificial intelligence or machine learning. However, data-based
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research is bound to show weaknesses in learning using only a small amount of precise and special
data, such as ECoG. This is where the precise interpretation based on mathematical theory is needed.
From this point of view, we experimentally confirmed that the DMD fits the oscillology model that
describes the synchronization of cerebral signals, and if epilepsy can be represented as dynamic data
that can be described by mathematical models in complex systems, the research aimed to show that
even small amount of data can be interpreted correctly.

Based on the results of this study, we conclude that by analyzing the phase transition between
channels of signals measured by using the DMD mode from the cerebral signal, significant results on
the change of the dynamic state of the brain can be derived from the small size of data alone. However,
this study was limited to one patient, so there are certain limitations. There remains a question of how
inherent phase transition associated with sleep conditions or seizures present for each patient have
distinct commonalities for certain patterns, and if so, how to generalize them. In addition, since it is
necessary to be able to predict the next state from the existing state for practical use, we will develop
a model that can predict the state transition of epilepsy using the DMD mode.

In summary, this research deals with the numerical experiment for classification of EEG signals
by means of the DMD mode and it reveals that DMD helps visually understand the spatio-temporal
patterns corresponding to the low frequency in the sleep state and those corresponding to the high
frequency of the ictal state so that the DMD is one of the important tools for analyzing the dynamics
involved in the signals of the brain.
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