
mathematics

Article

A db-Scan Hybrid Algorithm: An Application to the
Multidimensional Knapsack Problem

José García *,† , Paola Moraga †, Matias Valenzuela † and Hernan Pinto †

Escuela de Ingeniería en Construcción, Pontificia Universidad Católica de Valparaíso, 2362807 Valparaíso, Chile;
paola.moraga@pucv.cl (P.M.); matias.valenzuela@pucv.cl (M.V.); hernan.pinto@pucv.cl (H.P.)
* Correspondence: jose.garcia@pucv.cl
† These authors contributed equally to this work.

Received: 3 March 2020; Accepted: 23 March 2020; Published: 2 April 2020
����������
�������

Abstract: This article proposes a hybrid algorithm that makes use of the db-scan unsupervised
learning technique to obtain binary versions of continuous swarm intelligence algorithms. These
binary versions are then applied to large instances of the well-known multidimensional knapsack
problem. The contribution of the db-scan operator to the binarization process is systematically studied.
For this, two random operators are built that serve as a baseline for comparison. Once the contribution
is established, the db-scan operator is compared with two other binarization methods that have
satisfactorily solved the multidimensional knapsack problem. The first method uses the unsupervised
learning technique k-means as a binarization method. The second makes use of transfer functions as a
mechanism to generate binary versions. The results show that the hybrid algorithm using db-scan
produces more consistent results compared to transfer function (TF) and random operators.

Keywords: combinatorial optimization; machine learning; metaheuristics; db-scan; knapsack

1. Introduction

With the incorporation of technologies such as big data and the Internet of Things, the concept
of real-time decisions has become relevant at the industrial level. Each of these decisions can be
modeled as an optimization problem or, in many cases, a combinatorial optimization problem (COP).
Examples of COPs are found in different areas: machine learning [1], transportation [2], facility layout
design [3], logistics [4], scheduling problems [2,5], resource allocation [6,7], routing problems [8],
robotics applications [9], image analysis [10], engineering design problems [11], fault diagnosis of
machinery [12], and manufacturing problems [13], among others. If the problem is large, metaheuristics
have been a good approximation to obtain adequate solutions. However, having a greater amount of
data and requiring solutions in close to real time for some cases motivates us to continue strengthening
the methods that address these problems.

One way to classify metaheuristics is according to the search space in which they work. In that
sense, we have metaheuristics that work in continuous spaces, discrete spaces, and mixed spaces [14].
An important line of inspiration for metaheuristic algorithms is natural phenomena, many of which
develop in a continuous space. Examples of metaheuristics inspired by natural phenomena in continuous
spaces include particle swarm optimization [15], black hole optimization [16], cuckoo search [17], the
bat algorithm [18], the firefly algorithm [19], the fruitfly algorithm [20], the artificial fish swarm [21],
and the gravitational search algorithm [22]. The design of binary versions of these algorithms entails
important challenges when preserving their intensification and diversification properties [14]. The details
of binarization methods are specified in Section 3.

A strategy that has strengthened the results of metaheuristic algorithms has been the hybridization
of these with techniques that come from the same or other areas. The main hybridization proposals

Mathematics 2020, 8, 507; doi:10.3390/math8040507 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-3126-8352
http://dx.doi.org/10.3390/math8040507
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/4/507?type=check_update&version=2


Mathematics 2020, 8, 507 2 of 22

found in the literature are the following: (i) matheuristics, which combine heuristics or metaheuristics
with mathematical programming [23]; (ii) hybrid heuristics, a combination between different heuristic
or metaheuristic methods [24]; (iii) simheuristics, where simulation and metaheuristics are combined
together to solve a problem [25]; and (iv) Integration between metaheuristic algorithms and machine
learning techniques. The last, hybridization between the areas of machine learning and metaheuristic
algorithms, is an emerging research line in the areas of computer science and operational research. We
find that hybridization occurs mainly with two intentions. The first is with the goal that metaheuristics
will help machine learning algorithms improve their results (for example, [26,27]). The second
intention is that machine learning techniques will be used to strengthen metaheuristic algorithms
(for example, [28,29]). The details of the hybridization forms are specified in Section 4.

This article is inspired by the research lines mentioned above. A hybrid algorithm is designed that
explores the application of a machine learning algorithm in a binarization operator to allow continuous
metaheuristics to address combinatorial optimization problems. The contributions of this work are
detailed below:

• A machine learning technique is used with the objective of obtaining binary versions of
metaheuristics defined and used in continuous optimization to tackle COPs in a simple and
effective way. To perform the binarization process, this algorithm uses db-scan, which corresponds
to an unsupervised learning algorithm. The selected metaheuristics are particle swarm optimization
(PSO) and cuckoo search (CS). Their selection is based on the fact that they have been frequently
used in solving continuous optimization problems and their parameterization is relatively simple,
which allows us to focus on the binarization process.

• The multidimensional knapsack problem (MKP) was used to check the performance of the
obtained binary versions. MKP was chosen because it is a problem extensively studied in the
literature therefore we have specific instances making it easy to evaluate our hybrid algorithm.
The details and applications of MKP are expanded on in Section 2.

• Two random operators are designed in order to define a baseline and quantify the contribution
of the hybrid algorithm that uses db-scan in the binarization process. Additionally, to make the
comparison more robust, the performance of our hybrid algorithm was evaluated with methods
that use k-means and transfer functions (TF) as binarization mechanisms.

This article is organized in the following sections. The definition of MKP is detailed in Section 2.
Subsequently, the state-of-the-art of the main binarization and hybridization techniques between
machine learning and metaheuristics are developed in Section 3. The detail of the proposed hybrid
binarization algorithm is described in Section 4. In Section 5, we study the contribution of the db-scan
operator to the binarization process. Additionally, in this same section, the proposed hybrid algorithm
is compared with the binarization techniques that use TF and k-means. Finally, the main conclusions
and future lines of investigation are detailed in Section 6.

2. Multidimensional Knapsack Problem

Due to having a large number of applications and NP-hard computational complexity, a major
research effort has been dedicated to the MKP. This optimization problem has been addressed by
different types of techniques. Examples of exact algorithms that have efficiently resolved the MKP are
found in [30,31]. There are also hybrid algorithms where exact algorithms are combined with depth-first
search [32] or with variable fixation [33]. However, exact algorithms are capable of producing optimal
solutions for small and medium-sized instances, usually with a number of variables n ≤ 250 and a
number of restrictions m ≤ 10 [32,33]. This makes MKP an interesting problem for metaheuristics
to address.

In the case of metaheuristics, there are several algorithms that have addressed the MKP.
A modification of the harmony search algorithm that redesigns the memory rule and improves
exploration capabilities was proposed in [34]. A binary artificial algae algorithm was designed in [35]



Mathematics 2020, 8, 507 3 of 22

that uses transfer functions to perform binarization in addition to incorporating a local search operator.
A hybrid algorithm based on the k-means technique was proposed in [29]. Additionally, this algorithm
incorporates local perturbation and search operators. In [36], a binary multiverse optimizer was designed
to address medium-sized problems. This multiverse algorithm uses a transfer function mechanism to
perform binarization. Finally, a two-phase tabu-evolutionary algorithm was developed by Lai et al. [37]
to address large instances of the MKP.

Let N = {1, 2, . . . , n} be a set of n elements and M = {1, 2, . . . , m} be a set of m resources with
capacity limit bi for each resource i ∈ M. Then, each element j has profit pj and consumes an amount
of resources cij. The MKP consists of selecting a subset of elements such that the limit capacity of each
resource is not exceeded while the profit of the selected elements is maximized. Formally, the problem
is defined as follows:

Maximize P(x1, . . . , xn) =
n

∑
j=1

pjxj, (1)

subject to:
n

∑
j=1

cijxj ≤ bi, i ∈ {1, . . . , m}. (2)

xij ∈ {0, 1}, (3)

where bi corresponds to the capacity limitation of resource i ∈ M. Each element j ∈ N has a
requirement of cij regarding resource i as well as a benefit pj. Moreover, xj ∈ {0, 1} indicates whether
the element j is in the knapsack, j ∈ {1, . . . , n}, cij ≥ 0, pj > 0, bj > 0, n corresponds to the number of
items, and m is the number of knapsack constraints.

As mentioned above, the MKP has numerous applications. MKP modeling has been used in
project selection and capital budgeting [38] applications as well as in the delivery of groceries in
vehicles with multiple compartments [39] and the daily photographic scheduling problem of an Earth
observation satellite [40]. Another interesting problem related to the MKP is the shelf space allocation
problem [41]. Additionally, we found applications in the allocation of databases and processors in
distributed data processing [42].

3. Related Work

3.1. Related Binarization Work

Because many processes of nature that are modeled in continuous spaces have inspired
metaheuristic algorithms, there are a large number of these that are designed to work in continuous
spaces. In particular, the metaheuristics cuckoo search (CS) and particle swarm optimization (PSO) have
been widely used in solving continuous problems. However, there are a large number of combinatorial
optimization problems, where a significant number of these areNP-hard type. This motivates the search
for robust methods that allow algorithms that operate in continuous spaces to tackle combinatorial
optimization problems.

When developing a classification of existing binarization techniques, two large groups [14] are
defined. The first group designs an adaptation of a continuous algorithm to work in binary environments.
This adaptation usually turns out to be specific to the metaheuristic algorithm and the problem that is
being solved. We call this group the specific binarizations. The second group separates the binarization
process from the metaheuristic algorithm. Therefore, the latter continues to work in a continuous search
space. Once the continuous solutions are obtained, they are binarized. We call this group the generic
binarizations. In Figure 1a,b, the generic and specific binarization diagrams are shown.



Mathematics 2020, 8, 507 4 of 22

Con�nuous 
algorithm

Con�nuous 
solu�ons(t+1)

Con�nuous 
solu�ons(t)

Binariza�on 
algorithm.

Binary 
solu�ons(t+1)

Binary 
solu�ons(t)

(a)

Binary algorithm Binary 
solu�ons(t+1)

(b)

Figure 1. (a) Generic binarization diagram; and (b) specific binarization diagram.

Examples of specific binarizations are frequently found in quantum binary approaches and in
set-based approaches [14]. In the case of a quantum approach, continuous algorithms are adapted
based on the uncertainty principle, where position and velocity cannot be determined simultaneously.
In [43], a quantum binary gray wolf optimizer is proposed to solve the unit commitment problem.
Using a quantum binary lightning search algorithm, in [44], the optimal placement of vehicle-to-grid
charging stations in the distribution power system was addressed. The short-term hydropower
generation scheduling problem was successfully addressed by [45] using a quantum-binary social
spider optimization algorithm. In the case of the set-based approach, in [46], this method succeeded in
solving the feature selection problem. Additionally, the vehicle routing problem with time windows
was addressed in [47] by a particle swarm optimization set-based approach. Other examples of specific
binarizations are found in [48], where a chaotic antlion algorithm was used to find a parameterization
of the support vector machine technique. In this case, a chaotic map and random walk operators
were used.

In the case of generic transformations, the simplest and most commonly used binarization method
corresponds to the transfer functions (TFs). In this method, the particle has a position given by a solution
in one iteration and a velocity corresponding to the vector obtained from the difference in the position
of the particle between two consecutive iterations. The TF is a very simple operator that relates the
velocities of the particles in PSO with a transition probability. The TF takes values of Rn and generates
transition probability values in [0, 1]n. Depending on the form of the function, they are generally
classified as S-shaped [49] and V-shaped functions [50]. However, in recent years, the study of transfer
functions has been extended by defining new families. In [51], a recurrence generated parametric
Fibonacci hyperbolic tangent activation function has been defined and applied to neural networks.
A Family of Functions Based on Half–Hyperbolic Tangent Activation Function was introduced in [52].
In this work, the authors demonstrated the existence of upper and lower estimates for the Hausdorff
approximation of the sign function.

When the function produces a value between 0 and 1, the next step is to use a rule that allows 0 or
1 to be obtained. For this, well-defined rules have been used that use the concepts of complements,
elites, and random functions, among others. In [53], a quadratic binary Harris hawk optimization,
which uses transfer functions, successfully addressed the feature selection problem. Additionally, a
feature selection problem in [54] was solved by a binary dragonfly optimization algorithm. In this case,
a time-varying transfer function was used. Finally, in [55], binary butterfly optimization was used to
solve the feature selection problem.

The main challenge a binarization framework has to tackle is associated with spatial
disconnection [56]. When two solutions that are close in continuous space are not close in binary
space when applying the binarization process, a spatial disconnection occurs. As a consequence of
the existence of a spatial disconnection, alterations are observed in the exploration and exploitation



Mathematics 2020, 8, 507 5 of 22

properties of the optimization algorithm. These alterations result in a decrease in precision and
an increase in the convergence times of the algorithms. In [57], we analyzed how TFs altered the
exploration and exploitation process. We also find an analysis of these properties in [56], for the angle
modulation technique.

3.2. Hybridizing Metaheuristics with Machine Learning

Metaheuristics form a wide family of algorithms. These algorithms are classified as incomplete
optimization techniques and are usually inspired by natural or social phenomena. The main objective
of these is to solve problems of high computational complexity, and they have the property of not
having to deeply alter their optimization mechanism when the problem to be solved is modified.
On the other hand, machine learning techniques correspond to algorithms capable of learning from
a dataset [58]. If we classify these algorithms according to the method of learning, there are three
main categories: supervised learning, unsupervised learning, and learning by reinforcement. Machine
learning algorithms are usually used to solve time series problems, anomaly detection, computational
vision, data transformation, dimensionality reduction, regression, and data classification, among
others [59].

Among state-of-the-art algorithms that integrate machine learning techniques with metaheuristic
algorithms, we have found two main approaches. In the first approach, machine learning techniques
are used to improve the quality of the solutions and convergence times obtained by the metaheuristic
algorithms. The second approach uses metaheuristic algorithms to improve the performance of machine
learning techniques. Usually, the metaheuristic is responsible for solving an optimization problem
related to the machine learning technique more efficiently than the machine learning technique alone.

When we analyze the integration mechanisms that take the first approach, we identify two lines
of research. In the first line, machine learning techniques are used as metamodels to select different
metaheuristics by choosing the most appropriate metaheuristic for each instance. The second line aims
to use specific operators that make use of machine learning algorithms, and, subsequently, to integrate
specific operators into a metaheuristic.

According to the articles found that use a general integration mechanism between machine learning
algorithms and metaheuristics, three main groups are defined: hyper-heuristics, cooperative strategies,
and algorithm selection. The approach through the algorithm selection method aims to select from a
group of algorithms, the most appropriate algorithm for the instance being solved. This selection is
made using a set of characteristics and associating the best algorithm that has solved similar instances.
In the case of the hyper-heuristic strategy, the approach is to automate the design of heuristic methods
in order to tackle a wide range of problems. Finally, in the case of cooperative strategies, they are aimed
at combining algorithms through a parallel or a sequential mechanism, assuming that this combination
will produce more robust methods. Examples of these approaches are found in [28], where the algorithm
selection strategy is used and applied to the berth scheduling problem. A hyper-heuristic algorithm
was used in [60] and was applied to the nurse training problem. A direct cooperation mechanism was
used in [61] to solve the permutation Flow stores problem.

A metaheuristic is determined by its evolution mechanism, together with different operators,
such as initialization solution operators, solution perturbation, population management, binarization,
parameter setting, and local search operators. Specific integrations explore machine learning applications
in some of these operators. In the design of binary versions of algorithms that work naturally in
continuous spaces, we find binarization operators in [2]. These binary operators use unsupervised
learning techniques to perform the binarization process. In [62], the concept of percentiles was explored
in the process of generating binary algorithms. In addition, in [5], the Apache spark big data framework
was applied to manage the population size of solutions to improve convergence times and the quality
of results. Another interesting line of research was found in the adjustment of metaheuristic parameters.
In [63], the parameter setting of a chess classification system was implemented. Based on decision trees
and using fuzzy logic, a semi-automatic parameter setting algorithm was designed in [64]. The initiation



Mathematics 2020, 8, 507 6 of 22

of solutions of a metaheuristic is frequently carried out in a random way. However, using machine
learning techniques, it has been possible to improve the performance of metaheuristic algorithms,
through the process of initiating solutions. In [65], the initiation of solutions of a genetic algorithm
through the case-based reasoning technique was applied to the problem of the design of a weighted
circle. Again, in the initiation of a genetic algorithm, in [66], Hopfield neural networks were used. The
genetic algorithm, together with the Hopfield networks, were applied to the economic dispatch problem.

In the other direction, where metaheuristics support the development of more robust machine
learning algorithms, there are many studies and applications. For example, we find applications in
feature selection, parameter settings, feature extraction. In [67], an integrated genetic algorithm with
SVM was applied to the recognition of breast cancer. The hybrid algorithm improved the classification
compared to the original SVM technique. In particular, the genetic algorithm was applied to the
extraction of characteristics from the images involved in the analysis. Again for feature extraction in [68]
a multiverse optimizer was used. Additionally, this optimizer was used to perform SVM tuning. In the
case of neural networks, depending on the type of network and its topology, obtaining the weights
properly can be a difficult and time-consuming task. In particular, in [69], the tuning of a feed-forward
neural network was addressed through an improved monarch butterfly algorithm. The integration
of a firefly algorithm with the least-squares support vector machine technique was developed in [70]
with the goal of solving a geotechnical problem efficiently. The prediction of the compressive strength
of high-performance concrete was modeled in [71] through a metaheuristic-optimized least-squares
support vector regression algorithm. In [72], a hybrid algorithm that integrates metaheuristics with
artificial neural networks was designed with the aim of improving the prediction of stock prices.
Another example of price prediction was developed in [26]. In this case, the improvement was achieved
using a sliding-window metaheuristic-optimized machine-learning regression and was applied to a
construction company in Taiwan. We also find in [73], an application of a firefly algorithm applied for
tuning parameters in the least-squares vector regression technique. In this case, the improved algorithm
was applied to predictions in engineering design. Applications of metaheuristics to unsupervised
machine learning techniques are also found in the literature. In particular, there are a large number of
studies applied to cluster techniques. In [74], an algorithm based on the combination of a metaheuristic
with a kernel intuitionistic fuzzy c-means method was designed and applied to different datasets.
Another interesting problem is the search for centroids because it requires a large computing capacity.
An artificial bee colony algorithm was used in [75], to find centroids in an energy efficiency problem of
a wireless sensor network. Planning for the transportation of employees from an oil platform through
helicopters was addressed in [76] through cluster search using a metaheuristic.

4. Binary db-Scan Algorithm

To efficiently solve the MKP, the binary db-scan algorithm is composed of five operators. The first
operator corresponds to the initialization of the solutions. This operator is detailed in Section 4.1. After
the population of solutions is initialized, the next step is to verify whether the maximum iteration
criterion is met. If the criterion is not satisfied, then the binary db-scan operator is used. In this
operator, the metaheuristic is executed in the continuous space to later group the solutions considering
the absolute value of the velocity and using the db-scan technique. The details of this operator are
described in Section 4.2. Subsequently, with the clusters generated by the db-scan operator, the
transition operator is used, which aims to binarize the solutions grouped by db-scan. The transition
operator is described in Section 4.3. Then, if the solutions obtained do not satisfy all the constraints, the
repair operator described in Section 4.5 is applied. Finally, a random perturbation operator is used that
is associated with the criterion of the number of iterations that are performed without the best value
being modified; this operator is detailed in Section 4.4. The general flow chart of the binary db-scan
algorithm is shown in Figure 2.



Mathematics 2020, 8, 507 7 of 22

begin
Execute initial 

solutions
operator

Stopping criteria is 
completed? End

Execute db-
scan operator

yes

no

no
The perturbation  

criteria is satisfied?
Execute 

transition 
operator

Execute 
repair 

operator

no

Execute 
perturbation 

operator

yes

Figure 2. A general flow chart of the binary db-scan algorithm.

4.1. Initialization Operator

Each solution is generated as follows. First, we select an item randomly. Then, we consult the
constraints of our problem to see whether there are other elements that can be incorporated. The list of
possible elements to be incorporated is obtained, the weight for each of these elements is calculated,
and one of the three best elements is selected. The procedure continues until no more elements can be
incorporated. The pseudocode is shown in Algorithm 1.

Algorithm 1 Initialization algorithm.

1: Function initAlgo(lElements)
2: Input The list of elements (lElements)
3: Output The solution (p)
4: p← []
5: element← RandElement(lElements)
6: p.append(element)
7: while (There exist elements that satisfy the constraints:) do

8: lPosibleElements← PosibleElements(lElements)
9: element← BestElement(lPosibleElements)

10: p.append(element)
11: end while
12: return p

Several techniques have been proposed in the literature to calculate the weight of each
element. For example, in [77], the pseudoutility in the surrogate duality approach was introduced.
The pseudoutility of each variable is given in Equation (4).

δi =
pi

∑m
j=1 wjcij

(4)

Another more intuitive measure was proposed in [78]. This measure focuses on the average
occupancy of resources. Its equation is shown in Equation (5).



Mathematics 2020, 8, 507 8 of 22

δi =
∑m

j=1
cij

mbj

pi
(5)

In this article, we use a variation of this last measure focused on the average occupation shown
in Equation (6). In this equation, ckj represents the cost of object k in knapsack j, bj corresponds to
the capacity constraint of knapsack j, and pi corresponds to the profit of element i. This heuristic was
proposed in [29], and its objective is to select the elements that enter the knapsack.

δi =
∑m

j=1
cij

m(bj−∑k∈S ckj)

pi
(6)

4.2. Binary db-Scan Operator

Continuous metaheuristic solutions are clustered through the binary db-scan operator. If we
make the analogy of solutions with particles, the position of the particle represents the location of the
particle in the search space. Velocity is interpreted as a transition vector between a state t and a state
t + 1.

The density-based spatial clustering of applications with noise (db-scan) is used as a technique
to obtain clusters. Db-scan works with the concept of density to find clusters. The algorithm was
proposed in 1996 by Ester et al. [79]. Let us consider a set S within a metric space, then the db-scan
algorithm will group the points that meet a minimum density criterion and the others are labeled as
outliers. To achieve this task, db-scan requires two parameters: a radius ε and a minimum number of
neighbors δ. The main steps of the algorithm are shown below:

• Find the points in the ε neighborhood of every point and identify the core points with more than
δ neighbors.

• Find the connected components of core points on the neighbor graph, ignoring all noncore points.
• Assign each noncore point to a nearby cluster if the cluster is an ε neighbor; otherwise, assign it to

noise.

Let us define lp(t) as the position list given by a MH metaheuristic in the t iteration. Then, the
binary operator db - scan will have MH and lp(t) as input objects. The operator’s goal is to generate
the clusters of the solutions delivered by MH. As a first step, the operator must iterate lp(t) using
MH, which will obtain another list lp(t + 1) with the positions of the solutions in the iteration t + 1.
Finally, with lp(t + 1) and lp(t), we obtain a list of velocities lV(t + 1).

Let vp(t+ 1) ∈ lV(t+ 1) be the velocity vector in the transition between t and t+ 1 corresponding
to particle p. The dimension of the vector is n and is basically determined by the number of columns
that the problem has. Let vp

i (t + 1) ∈ vp(t + 1) be the value for dimension i of the vector vp(t + 1).
Then, lVi(t + 1) corresponds to the list of absolute values of vp

i (t + 1), ∀vp(t + 1) ∈ lV(t + 1). Then,
we apply db-scan to the list lVi(t + 1), thereby obtaining the number of clusters nClusters(t + 1) and
the cluster to which each vi(t + 1) belongs, lViClusters(t + 1), where abs(vi(t + 1)) ∈ lVi(t + 1)).
The mechanism for the binary db-scan operator is shown in Algorithm 2.

Algorithm 2 Binary db-scan operator.

1: Function BinaryDbscan(MH,lp(t))
2: Input MH, lp(t)
3: Output nClusters(t + 1), lViClusters(t + 1)
4: lp(t + 1), lV(t + 1)← applyMH(MH(lp(t)))
5: lVi(t + 1)← ClusterList(lV(t + 1))
6: nClusters(t + 1), lViClusters(t + 1)← applyDbscan(lVi(t + 1))
7: return nClusters(t + 1), lViClusters(t + 1)



Mathematics 2020, 8, 507 9 of 22

4.3. Transition operator

The number of clusters and the list with the identifier of the membership of each element in
the cluster is returned by the db-scan operator. Using these objects, the transition operator returns
binarized solutions. To execute this binarization the identifier Id(J) ∈ Z that identifies the cluster, is
assigned in an orderly manner. The value 0 is assigned to the cluster that has the absolute value of the
centroid with the smallest value. As an example, let vj ∈ J and vi ∈ I be elements of Groups J and I,
respectively, and abs(vj) > abs(vi); then, Id(J) > Id(I). Additionally, in the case that db-scan labels
some element as an outlier, Equation (7) is used to assign the probability of transition. In Equation (7), α

represents a minimum transition coefficient and β models the separation between the different clusters.

Ptr(J) = α + β
Id(J)

T
, where T is the total number of clusters, not considering outliers (7)

Finally, to execute the binarization process, consider p(t) as the position of a particle in iteration
t. Let pi(t) be the value of dimension i for particle p(t), and let vp

i (t + 1) be the velocity of particle
p(t) in the ith dimension to transform p(t) from iteration t to iteration t + 1. Additionally, let there be
vp

i (t + 1) ∈ J, where J is one of the clusters identified by the binary db-scan operator. Then, we use
Equation (8) to generate the binary positions of the particles in iteration t + 1.

pi(t + 1) :=

{
p̂i(t), if rand < Ptr(J) where vp

i (t + 1) ∈ J,
pi(t), otherwise

(8)

When vp
i (t + 1) ∈ outliers, a transition probability is assigned randomly. Finally, after the

transition operator is applied, a repair operator is used, as described in Section 4.5, for solutions that
do not satisfy some of the restrictions. The details of the transition operator are shown in Algorithm 3.

Algorithm 3 Transition algorithm.

1: Function Transition(lp(t),lViClusters(t + 1),nClusters(t + 1))
2: Input lp(t),lViClusters(t + 1),nClusters(t + 1)
3: Output lBinaryP(t + 1)
4: for pi(t),v

p
i (t + 1) in (lp(t),lVi(t + 1)) do

5: if vx
i (t + 1) not in outliers then

6: Ptr(pi)← TransitionProbability(lViClusters(t + 1),nClusters(t + 1)) –Equation (7)
7: else

8: Ptr(pi)← randomTransitionProbability(lViClusters(t + 1),nClusters(t + 1))
9: end if

10: lBinaryP(t + 1).append(pi(t + 1))← BinaryPosition(Ptr(pi(t)),ListViClusters(t + 1)) –Equation (8)
11: end for
12: for p(t + 1) in lBinaryP(t + 1) do

13: lBinaryP(t + 1)[p(t + 1)]← Repair(p(t + 1))
14: end for
15: return lBinaryP(t + 1)

4.4. Random Perturbation Operator

Because the MKP is a difficult problem to solve, there is a condition that the algorithm is confined
to local optimums. To address this situation, optimization is complemented by a perturbation operator.
Once the condition that the solution does not improve is met, the perturbation operator performs a set
of random deletions defined by the value ην, where ν is a parameter to estimate, which multiplies the
total length of the solution to obtain the value ην. The procedure is outlined in Algorithm 4.



Mathematics 2020, 8, 507 10 of 22

Algorithm 4 Perturbation algorithm.

1: Function Perturbation(pin, ην)
2: Input Input solution pin, strength of perturbation ην

3: Output The perturbed solution pout
4: p← pin
5: for i=1 to ην do

6: Randomly remove an element of p
7: end for
8: pout ← RepairOperator(p)
9: return pout

4.5. Repair Operator

Because the transition operator makes modifications to the solution, it may happen that the new
solution does not respect any of the constraints of the optimization problem. This article solves this
difficulty through a repair operator. The operator considers the solution to be repaired as input and
returns a repaired solution as output. The operator first asks if the solution needs repair. If it is true,
the repair procedure uses Equation (6) with the goal of ranking the elements that are eliminated. This
elimination procedure runs until the solution obtained meets all the constraints. Subsequently, the
possibility of incorporating new elements should be verified. To rank the elements to incorporate,
Equation (6) is used again. After completing this procedure, the repair operator returns the repaired
solution. The pseudocode of this process is given in Algorithm 5.

Algorithm 5 Repair algorithm.

1: Function Repair(p)
2: Input Input solution p
3: Output The Repair solution p
4: bRepair ← Repair(p)
5: while (bRepair == True) do

6: pmax ←MaxWeight(p)
7: p← removeElement(p, pmax)
8: bRepair ← Repair(p)
9: end while

10: state← False
11: while (state == False) do

12: pmin ←MinWeight(p)
13: if (pmin == ∅) then

14: state← True
15: else

16: p← addElement(p, pmin)
17: end if
18: end while
19: return p

5. Results and Discussion

To determine the importance of the db-scan operator in the binarization, three groups of
experiments were defined. The first group of experiments aimed to define a comparison baseline.
This baseline is determined through random operators. The results and comparisons of db-scan with
the random operators are developed in Section 5.2. The second group of experiments compared db-scan
with k-means. K-means is another clustering technique frequently used in data analysis. The comparison



Mathematics 2020, 8, 507 11 of 22

and its results are described in Section 5.3. The design of the binarization framework using k-means is
found in [50]. Finally, the third group of experiments developed the comparison between db-scan and
TF, which is detailed in section 5.4. In this last case, state-of-the-art algorithms were used to make the
comparison. Additionally, the methodology to determine the parameters involved in the algorithms
used in the binarization process is detailed in Section 5.1. To carry out the different experiments, the PSO
and CS algorithms were used. They were chosen mainly because they are simple to parameterize, both
have successfully solved a large number of optimization problems [2,5,80–82], and there are simplified
convergence models for CS [83] and PSO [56].

The cb.5, 500, cb.10, 500, and cb.30, 500 instances that correspond to the most difficult instances of
the Beasley OR-library (http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html) were selected
to carry out the experiments. In the execution, a laptop with Windows 10 and Python 2.7 was used as
the programming language. The laptop has an Intel Core i7-8550U processor with 16 GB of RAM. As a
statistical test to measure significance, the Wilcoxon signed-rank non-parametric test was used.

5.1. Parameter Settings

The methodology used in determining the parameters is based on the evaluation of four measures.
These measurements are defined in Equations (9)–(12) and through the use of radar plots determine
which is the appropriate parameterization. More detail on the methodology used can be found in [29,50].

Definition 1 ([29]). Measure definitions:

1. The percentage deviation of the best value obtained in the ten executions compared with the best known
value (see Equation (9)):

bSolution = 1− KnownBestValue− BestValue
KnownBestValue

(9)

2. The percentage deviation of the worst value obtained in the ten executions compared with the best known
value (see Equation (10)):

wSolution = 1− KnownBestValue−WorstValue
KnownBestValue

(10)

3. The percentage deviation of the average value obtained in the ten executions compared with the best known
value (see Equation (11)):

aSolution = 1− KnownBestValue− AverageValue
KnownBestValue

(11)

4. The convergence time for the best value in each experiment normalized (see Equation (12)):

nTime = 1− convergenceTime−minTime
maxTime−minTime

(12)

For PSO, the coefficients c1 and c2 were set to 2. The parameter ω linearly decreased from 0.9 to
0.4. For the parameters used by db-scan, the minimum number of neighbors (minPts) was estimated
as a percentage of the number of particles (N). Specifically, N = 30 and minPts = 10. To select the
parameters, problems cb.5.250 were chosen. The parameter settings are shown in Tables 1 and 2.
In both tables, the column labeled “Value” represents the selected value, and the column labeled
“Range” corresponds to the set of scanned values.

http://www.brunel.ac.uk/mastjjb/jeb/orlib/mknapinfo.html


Mathematics 2020, 8, 507 12 of 22

Table 1. Parameter setting for the PSO algorithm.

Parameters Description Value Range

α Initial transition coefficient 0.1 [0.08, 0.1, 0.12]
β Transition probability coefficient 0.6 [0.5, 0.6, 0.7]
N Number of particles 30 [30, 40, 50]
ε ε db-scan parameter 0.3 [0.3,0.4,0.5]

minPts Point db-scan parameter 10% [10,12,14]
Iteration Number Maximum iterations 900 [800,900,1000]

Table 2. Parameter setting for the CS algorithm.

Parameters Description Value Range

α Transition probability coefficient 0.1 [0.08, 0.1, 0.12]
β Transition probability coefficient 0.5 [0.5, 0.6, 0.7]
N Number of particles 30 [30, 40, 50]
ε ε db-scan parameter 0.3 [0.3,0.4,0.5]

minPts Point db-scan parameter 12% [10,12,14]
γ Step length 0.01 [0.009,0.01,0.011]
κ Levy distribution parameter 1.5 [1.4,1.5,1.6]

Iteration Number Maximum iterations 900 [800,900,1000]

5.2. The Contribution of the db-Scan Binary Operator

This section aims to determine the contribution of the db-scan operator to the MKP results.
For this purpose, two random operators are designed that serve as a baseline for the comparison.
The first random operator uses a fixed transition probability regardless of the velocity of the particle.
We denote this operator with B-rand, and we use the two transition probability values 0.3 (B-rand3)
and 0.5 (B-rand5). The second operator additionally incorporates the cluster concept. Three clusters
are defined, and each is assigned a transition probability value among the values {0.1, 0.3, 0.5}. This
operator is denoted as BC - rand3. To develop comparisons between the different algorithms, CS is
used as the optimization algorithm, and all implementations use the same initiation, perturbation, and
repair operators.

To make the comparisons, the set of problems cb.5.500 of the OR-library was used and divided
into three groups: Group 0, Problems 0–9; Group 1, Problems 10–19; and Group 2, Problems 20–29. The
results obtained from the comparison of the db-scan algorithm with the B-rand and CB-rand operators
are shown in Table 3 and in Figure 3.

When comparing the best values in Table 3, we observe that db-scan has the same or better
performance than random algorithms in all instances. When applying the Wilcoxon test, we see that
the difference is significant. However, when we analyze the average, we see that the difference is small.
In the case of the avg indicator, again, db-scan is higher in all cases. However, when comparing the
average, we see that the difference is much larger. The Wilcoxon test again indicates that this difference
is statistically significant. We must emphasize that, in this experiment, the only operator that was
replaced was db-scan. Observing the shape of the distributions with the violin plots, we see that the
median, the interquartile range, and the dispersion are much more robust in db-scan than in the rest of
the algorithms.



Mathematics 2020, 8, 507 13 of 22

Table 3. Comparison of db-scan, B-rand, and BC-rand operators for the cb.5.500 MKP dataset.

Instance Best db-scan-CS B-rand3-CS B-rand5-CS BC-rand3-CS

Known Best Avg Best Avg Best Avg Best Avg

0 120,148 120,096 120,029.9 120,066 119,012.1 120,066 118,983.5 120,066 119,001.3
1 117,879 117,730 117,617.5 117,702 116,316.1 117,730 116,375.2 117,702 116,421.8
2 121,131 121,039 120,937.9 120,951 118,921.4 120,951 118,902.2 120,951 118,981.7
3 120,804 120,683 120,522.8 120,583 119,162.6 120,572 118,901.6 120,572 118,971.4
4 122,319 122,280 122,165.2 122,231 120,742.6 122,231 120,931.4 122,231 121,065.9
5 122,024 121,982 121,868.7 121,957 120,164.3 121,957 120,189.1 121,957 120,217.5
6 119,127 119,070 118,950.0 119,068 116,839.4 119,068 116,821.3 119,068 116,897.1
7 120,568 120,472 120,336.6 120,463 118,963.9 120,463 118,967.2 120,463 119,054.5
8 121,586 121,377 121,161.9 121,077 120,243.1 121,052 120,241.5 121,052 120,295.2
9 120,717 120,524 120,362.9 120,499 118,841.4 120,499 118,889.1 120,499 118,977.2

10 218,428 218,296 218,163.7 218,185 217,085.2 218,196 217,023.1 218,185 217,115.4
11 221,202 220,951 220,813.9 220,852 219,156.1 220,852 219,198.7 220,852 219,277.2
12 217,542 217,349 217,254.3 217,258 215,732.1 217,258 215,738.4 217,258 215,812.8
13 223,560 223,518 223,455.2 223,510 221,984.7 223,510 221,962.3 223,510 222,054.2
14 218,966 218,848 218,771.5 218,811 216,873.9 218,811 216,822.1 218,811 216,999.7
15 220,530 220,441 220,342.2 220,429 219,012.8 220,441 219,084.3 220,429 219,175.2
16 219,989 219,858 219,717.9 219,785 217,983.1 219,785 217,961.2 219,785 218,096.8
17 218,215 218,032 217,890.1 218,010 216,321.5 218,010 216,338.1 218,010 216,479.2
18 216,976 216,866 216,798.8 216,940 214,547.2 216,940 214,579.6 216,940 214,654.2
19 219,719 219,631 219,520.0 219,602 217,946.2 219,602 217,955.6 219,602 218,086.2

20 295,828 295,717 295,628.4 295,652 294,269.6 295,652 294,281.3 295,652 294,376.1
21 308,086 307,924 307,860.6 307,783 305,754.9 307,783 305,701.2 307,783 305,874.6
22 299,796 299,796 299,717.8 299,727 298,158.9 299,727 298,126.6 299,727 298,279.5
23 306,480 306,480 306,445.2 306,469 304,841.3 306,469 304,891.5 306,469 305,056.2
24 300,342 300,245 300,202.5 300,240 298,814.7 300,240 298,799.1 300,240 298,941.6
25 302,571 302,492 302,442.3 302,481 300,769.8 302,481 300,732.6 302,481 300,926.9
26 301,339 301,284 301,238.3 301,272 300,126.1 301,272 300,121.8 301,272 300,312.2
27 306,454 306,325 306,264.2 306,325 304,467.8 306,290 304,503.2 306,290 304,701.8
28 302,828 302,769 302,721.4 302,749 300,891.8 302,749 300,825.3 302,749 300,912.8
29 299,910 299,774 299,722.7 299,774 298,947.1 299,757 298,964.7 299,757 299,147.3

Average 214,168.8 214,061.63 213,964.15 214,015.03 212,429.72 214,013.8 212,427.09 214,012.1 212,538.78
Wilcoxon p-value 3.40×10−5 1.73×10−6 3.4031×10−5 1.73×10−6 1.64×10−5 1.73×10−6



Mathematics 2020, 8, 507 14 of 22

Figure 3. Gap comparison of db-scan, B-rand, and BC-rand algorithms for the cb.5.500 MKP dataset.

5.3. K-means Algorithm Comparison

In this section, we develop a comparison between the db-scan and k-means clustering techniques.
The k-means technique has been used to obtain binary versions of swarm intelligence algorithms.
This technique has been successfully applied to the set-covering problem [50] and to the knapsack
problem [29]. Unlike db-scan, k-means needs to set the number of clusters; therefore, this number is
a parameter to estimate. In this experiment, the initiation, repair, and perturbation operators were
exactly the same, and we only modified the binarization mechanism by replacing db-scan with k-means.
In the case of k-means, and guided by the results obtained in [29], the number of clusters k = 5 was
used, and we worked with the set of problems cb.30.500 to make comparisons. As in the previous
experiments, we used three groups: Problems 0–9 as Group 0, 10–19 as Group 1 and 20–29 as Group 2.
The results are shown in Table 4 and Figure 4. When we analyze the best known and average indicators,
we see that there is very little difference between the results obtained by both techniques. However,
when we perform a group analysis, we see that db-scan performs better than k-means in Group 0.
The Wilcoxon test indicates that the performance is statistically significant. On the other hand, k-means
has a better performance than db-scan in Groups 1 and 2. For Group 1, the difference is not significant,
and, in the case of Group 2, it is significant in favor of the algorithm that uses k-means. The violin plot
distributions do not show a relevant difference between the algorithms. Visually, it is observed that the
interquartile range of the algorithm that uses db-scan obtains better values in Group 0. However, in
Group 2, k-means obtains better values. The dispersion is similar in the different groups, and, in Group
0, a greater dispersion is observed for the algorithms that use db-scan.



Mathematics 2020, 8, 507 15 of 22

Table 4. Comparison between the db-scan and k-means operators for the cb.30.500 MKP dataset.

Instance Best Known db-scan-CS db-scan-PSO k-means-PSO k-means-CS

Best Avg Best Avg Best Avg Best Avg

0 116,056 115,526 115,371.4 115,526 115,362.9 115,526 115,239.2 115,526 115,232.3
1 114,810 114,405 114,325.1 114,684 114,327.2 114,352 114,174.1 114,405 114,165.1
2 116,741 116,256 116,137.6 116,583 116,301.4 116,158 116,061.3 116,256 116,052.9
3 115,354 114,782 114,699.3 114,782 114,687.3 114,739 114,581.3 114,782 114,545.7
4 116,525 116,353 115,921.8 116,353 115,924.6 115,994 115,880.4 115,995 115,876.8
5 115,741 115,594 115,172.4 115,244 115,177.8 115,342 115,146.2 115,342 115,140.1
6 114,181 113,952 113,549.8 113,712 113,535.4 113,712 113,429.6 113,712 113,438.2
7 114,348 113,626 113,527.3 113,626 113,525.1 113,610 113,531.4 113,626 113,519.5
8 115,419 114,822 114,666.2 114,822 114,638.5 114,822 114,697.6 114,822 114,673.1
9 117,116 116,467 116,351.5 116,467 116,344.3 116,382 116,379.8 116,467 116,370.6

Group 0 average 115,629.1 115,178.3 114,972.24 115,179.9 114,982.45 115,093.3 114,912.09 115,063.7 114,901.43
Wilcoxon p-value 0.02 0.01

10 218,104 217,776 217,561.1 217,607 217,541.2 217,776 217,620.3 217,776 217,618.7
11 214,648 214,110 214,082.2 214,110 214,070.4 214,110 213,998.4 214,110 214,001.3
12 215,978 215,580 215,500.1 215,580 215,504.3 215,580 215,498.1 215,638 215,497.6
13 217,910 217,201 217,119.8 217,301 217,109.3 217,301 217,217.3 217,301 217,211.8
14 215,689 215,036 214,951.2 215,036 214,961.2 215,036 214,991.2 215,116 214,997.2
15 215,919 215,326 215,204.5 215,408 215,104.5 215,408 215,221.4 215,408 215,167.2
16 215,907 215,576 215,426.4 215,576 215,407.6 215,576 215,488.8 215,576 215,491.4
17 216,542 215,999 215,942.8 215,999 215,987.4 216,057 216,012.6 216,057 215,977.2
18 217,340 217,013 216,839.3 216,882 216,860.2 217,013 216,878.7 217,013 216,821.5
19 214,739 214,194 214,104.3 214,194 214,133.7 214,332 214,129.1 214,332 214,121.1
20 301,675 301,343 301,201.3 301,343 301,187.4 301,343 301,249.2 301,343 301,240.3

Group 1 average 216,277.6 215,781.1 215,673.17 215,769.3 215,667.98 215,832.7 215,705.59 215,818.9 215,690.5
Wilcoxon p-value 0.11 0.26

21 300,055 299,636 299,564.2 299,636 299,551.2 299,636 299,584.5 299,720 299,577.2
22 305,087 304,850 304,741.9 304,850 304,769.8 304,995 304,752.4 304,995 304,749.1
23 302,032 301,658 301,572.4 301,658 301,531.4 301,658 301,586.1 301,645 301,585.8
24 304,462 304,186 304,081.4 304,186 304,080.9 304,186 304,109.9 304,186 304,100.6
25 297,012 296,450 296,404.9 296,450 296,411.5 296,450 296,422.1 296,521 296,411.4
26 303,364 302,917 302,832.6 302,917 302,839.1 302,917 302,841.3 302,941 302,841.8
27 307,007 306,616 306,448.9 306,616 306,446.5 306,616 306,453.8 306,616 306,449.2
28 303,199 302,636 302,541.2 302,636 302,549.6 302,791 302,567.3 302,791 302,561.9
29 300,596 300,170 300,037.3 300,170 300,042.5 300,170 300,072.4 300,170 300,062.4

Group 2 average 302,446.5 302,044.9 301,942.61 302,046.2 301,940.99 302,092.8 301,963.9 302,076.2 301,957.97
Wilcoxon p-value 0.007 0.04

Total average 211,451.9 211,001.4 210,862.7 210,998.5 210,863.8 211,006.3 210,860.5 210,986.3 210,850.0

Figure 4. Gap comparison between the db-scan and k-means algorithms for the cb.30.500 dataset.

5.4. Transfer Function Comparison

In this section, we compare the algorithm that uses db-scan with another general binarization
mechanism, which uses transfer functions. As described in Section 3.1 and in [14], this binarization



Mathematics 2020, 8, 507 16 of 22

uses a transfer function T : R→ [0, 1] to transform the particle velocity into a value in [0,1]; this value
intuitively represents a probability. Subsequently, through a binarization mechanism, this probability
becomes 0 or 1. In this comparison, we use the two best algorithms, to the best of our knowledge, that
have resolved the MKP and that use transfer functions as a binarization mechanism.

The first algorithm used in the comparison, the binary artificial algae algorithm (BAAA), was
developed in [35]. The BAAA uses the function tanh = eτ|x|−1

eτ|x|+1
as a transfer function, setting the

parameter tau to a fixed value of 1.5. Additionally, the BAAA incorporates an elitist local search
operator with the aim of improving the quality of solutions. For the execution of the algorithm, an
Intel Core (TM) 2 dual-CPU Q9300@2.5 GHz, with 4 GB RAM and the 64-bit Windows 7 operating
system, was used. The maximum number of BAAA iterations was 35,000.

In Table 5, the results of the comparison are shown. The best result is marked in bold. When
analyzing the best indicator, it is observed that db-scan-CS obtains 25 best values, 21 for db-scan-PSO
and 6 for the BAAA. The sum is greater than 30 because some values are repeated. In the case of the
average db-scan-CS indicator, 16 best values were obtained, 13 for db-scan-PSO and 1 for the BAAA.
The Wilcoxon test indicates that the difference is significant.

Table 5. Comparison between the db-scan and BAAA algorithms for the cb.5.500 MKP dataset (The
best result is marked in bold).

Instance Best db-scan-CS db-scan-PSO BAAA

Known Best Avg Std Best Avg Std Best Avg Std

0 120,148 120,096 120,029.9 35.50 120,096 120,025.8 33.75 120,066 120,013.7 21.57
1 117,879 117,730 117,617.5 66.99 117,837 117,617.8 83.42 117,702 117,560.5 11.4
2 121,131 121,039 120,937.9 62.11 120,951 120,933.5 65.31 120,951 120,782.9 87.96
3 120,804 120,683 120,522.8 77.17 120,752 120,520.1 78.8 120,572 120,340.6 106.01
4 122,319 122,280 122,165.2 69.27 122,280 122,164.4 68.37 122,231 122,101.8 56.95
5 122,024 121,982 121,868.7 73.17 121,982 121,871.9 71.09 121,957 121,741.8 84.33
6 119,127 119,070 118,950 77.24 119,070 118,950.6 72.32 119,070 118,913.4 63.01
7 120,568 120,472 120,336.6 77.56 120,472 120,336 82.25 120,472 120,331.2 69.09
8 121,586 121,377 121,161.9 107.14 121,185 121,162.5 10.14 121,052 120,683.6 834.88
9 120,717 120,524 120,362.9 88.39 120,499 120,331.9 84.21 120,499 120,296.3 110.06
10 218,428 218,296 218,163.7 77.55 218,296 218,160.4 81.85 218,185 217,984.7 123.94
11 221,202 220,951 220,813.9 70.66 220,951 220,810.8 67.52 220,852 220,527.5 169.16
12 217,542 217,349 217,254.3 51.88 217,349 217,250 51.04 217,258 217,056.7 104.95
13 223,560 223,518 223,455.2 38.96 223,518 223,459.4 42.03 223,510 223,450.9 26.02
14 218,966 218,848 218,771.5 46.90 218,962 218,775 48.66 218,811 218,634.3 97.52
15 220,530 220,441 220,342.2 57.51 220,428 220,346 38.48 220,429 220,375.9 31.86
16 219,989 219,858 219,717.9 72.25 219,858 219,721 71.26 219,785 219,619.3 93.01
17 218,215 218,032 217,890.1 75.96 218,010 217,889 76.21 218,032 217,813.2 115.37
18 216,976 216,866 216,798.8 41.18 216,940 216,803.2 45.86 216,940 216,862 32.51
19 219,719 219,631 219,520 72.39 219,631 219,521.9 75.27 219,602 219,435.1 54.45
20 295,828 295,717 295,628.4 47.69 295,717 295,627.8 51.28 295,652 295,505 76.3
21 308,086 307,924 307,860.6 32.56 307,924 307,861.8 35.38 307,783 307,577.5 135.94
22 299,796 299,796 299,717.8 46.31 299,796 299,720.6 44.25 299,727 299,664.1 28.81
23 306,480 306,480 306,445.2 21.01 306,480 306,448.5 19.94 306,469 306,385 31.64
24 300,342 300,245 300,202.5 25.23 300,240 300,199.4 25.8 300,240 300,136.7 51.84
25 302,571 302,492 302,442.3 26.69 302,481 302,441.2 30.64 302,492 302,376 53.94
26 301,339 301,284 301,238.3 27.53 301,272 301,240.7 19.06 301,272 301,158 44.3
27 306,454 306,325 306,264.2 37.49 306,325 306,259.7 38.91 306,290 306,138.4 84.56
28 302,828 302,769 302,721.4 28.90 302,749 302,720.1 26.28 302,769 302,690.1 34.11
29 299,910 299,774 299,722.7 33.20 299,774 299,718.9 35.82 299,757 299,702.3 31.66

Average 214,168.8 214,061.6 213,964.1 55.5 214,060.8 213,964.0 51.8 214,014.2 213,862.0 95.6
Wilcoxon p-value 9.31 × 10−6 7.69 × 10−6

The second algorithm corresponds to the binary differential search (BDS) algorithm designed
in [84]. This algorithm uses tanh = eπ|x|−1

eπ|x|+1
as a transfer function; as a binarization mechanism, it uses a

random procedure (TR-BDS) and an elitist procedure (TE-BDS). In the transfer function, the parameter
τ was set to a value of 2.5. As a maximum number of iterations, each BDS variant used 10,000 iterations.
The BDS experiments were developed with MATLAB 7.5 using a PC with a Pentium dual core i7-4770
processor, 16 GB RAM and the Windows operating system. cb.10.500 was used as a dataset in the
comparison. In Table 6, the results obtained by the different algorithms are shown. When we analyze
the best indicator, we find that TR-BDS obtains 5 best values, and TE-BDS obtains 22. In the case



Mathematics 2020, 8, 507 17 of 22

of db-scan-PSO and db-scan-CS, the results are three and seven best values, respectively. When we
compare the average of the best value indicator, we observe that db-scan-CS obtains the best result,
followed by db-scan-PSO. This indicates that, although TE-BDS obtains the greatest number of best
values, there are cases where its results have worse performance than db-scan-CS and db-scan-PSO.
The Wilcoxon statistical test indicates that this difference is not significant for the case of TE-BDS.
When analyzing the average indicator, the TR-BDS algorithm obtained the best value, TE-BDS 5 times,
and db-scan-PSO and db-scan-CS 12 times each. This result confirms that db-scan-PSO and db-scan-CS
consistently obtain better values than the BDS variants. The Wilcoxon test indicates that the difference
is significant.

Table 6. Comparison between the db-scan and BDS algorithms for the cb.10.500 MKP dataset (The best
result is marked in bold).

Instance Best TR-DBS TE-DBS db-scan-PSO db-scan-CS

Known Best Avg Best Avg Best Avg Best Avg

0 117,821 114,716 114,425.4 117,811 117,801.2 117,558 117,299.9 117,726 117,502.5
1 119,249 119,232 119,223.0 119,249 118,024 119,232 118,987.7 119,139 118,942.7
2 119,215 119,215 117,625.6 119,215 117,801.4 119,039 118,836.8 119,039 118,719.0
3 118,829 118,813 117,625.8 118,813 117,801.2 118,598 118,517.5 118,586 118,428.9
4 116,530 114,687 114,312.4 116,509 114,357.2 116,434 116,093.4 116,312 116,009.9
5 119,504 119,504 112,503.7 119,504 117,612.8 119,257 119,112.8 119,402 119,162.7
6 119,827 116,094 115,629.1 119,827 119,427.4 119,691 119,556.1 119,663 119,507.9
7 118,344 116,642 115,531.9 118,301 117,653.3 118,016 117,909.8 118,058 117,756.6
8 117,815 114,654 114,204 117,815 115,236.4 117,550 117,370.1 117,550 117,238.3
9 119,251 114,016 113,622.8 119,231 118,295.1 118,896 118,733.0 118,896 118,517.1

10 217,377 209,191 208,710.2 217,377 212,570.3 217,010 216,890.5 217,126 216,889.8
11 219,077 219,077 217,277.2 219,077 218,570.2 218,872 218,594.2 218,872 218,588.9
12 217,847 210,282 210,172.3 217,377 212,570.4 217,573 217,553.9 217,447 217,342.0
13 216,868 209,242 206,178.6 216,868 216,468.9 216,570 216,481.5 216,570 216,465.3
14 213,873 207,017 206,656 207,017 206,455 213,474 213,373.2 213,474 213,361.8
15 215,086 204,643 203,989.5 215,086 215,086 215,013 214,945.4 214,829 214,700.2
16 217,940 205,439 204,828.9 217,940 217,440.5 217,583 217,479.3 217,629 217,560.6
17 219,990 208,712 207,881.6 219,984 209,990.2 219,675 219,520.3 219,675 219,548.9
18 214,382 210,503 209,787.6 210,735 211,038.2 214,015 213,865.8 214,045 213,939.4
19 220,899 205,020 204,435.7 220,899 219,986.8 220,582 220,395.8 220,582 220,522.2
20 304,387 304,387 302,658.8 304,387 304,264.5 304,102 303,954.8 304,102 304,016.2
21 302,379 302,379 301,658.6 302,379 302,164.4 302,263 302,081.9 302,263 302,155.5
22 302,417 290,931 290,859.9 302,416 302,014.6 302,103 301,966.5 302,118 302,066.8
23 300,784 290,859 290,021.4 291,295 291,170.6 300,542 300,481.7 300,566 300,493.7
24 304,374 289,365 288,950.1 304,374 304,374.0 304,267 304,168.4 304,267 304,192.6
25 301,836 292,411 292,061.8 301,836 301,836.0 301,730 301,465.9 301,730 301,327.3
26 304,952 291,446 290,516.2 291,446 291,446 304,833 304,780.4 304,905 304,811.2
27 296,478 293,662 293,125.5 295,342 294,125.5 296,263 296,191.5 296,363 296,285.6
28 301,359 285,907 285,293.4 288,907 287,923.4 301,085 301,027.6 301,085 301,032.0
29 307,089 290,300 289,552.4 295,358 290,525.2 306,881 306,781 306,881 306,782.5

Average 212,859.3 206,278.2 205,310.6 210,879.2 209,511.0 212,623.6 212,480.6 212,630.0 212,462.3
Wilcoxon p-value TR 2.15 × 10−5 1.9 × 10−6 2.60 × 10−6 1.88 × 10−6

Wilcoxon p-value TE 0.48 0.001 0.38 0.001

6. Conclusions

In this work, an algorithm is proposed that uses the clustering db-scan technique to enable swarm
intelligence continuous metaheuristics to solve COPs. Additionally, the algorithm uses a perturbation
operator in case the solutions fall into a deep local optimum. For the experiments, the 90 largest
instances commonly used in the literature were used. In comparison with random operators, we see
that binarization with db-scan allows more robust binary versions to be obtained, enabling consistently
better results to be obtained and reducing the dispersion of these versions with respect to random
operators. In the experiments that used TFs, according to the best of our knowledge, the best algorithms
that have resolved the MKP and that use TFs as a binarization method were chosen. In the case of the
BAAA, the results of binarizations with db-scan were better for both the best and the average indicators.
In the case of TE-BDS, the difference was significant on average. In the case of k-means, the results
were similar, showing that db-scan performed significantly higher in Group 0 and k-means in Group 2.

There are several possible directions for further extensions and improvements of the present
work. The first line arises from observing the configuration parameters presented in Tables 1 and 2.
The configuration procedure can be simplified and improved by incorporating adaptive mechanisms



Mathematics 2020, 8, 507 18 of 22

that allow the parameters to be modified in accordance with the feedback obtained from the candidate
solutions. The second line is related to what was observed in the comparison between the k-means and
db-scan techniques developed in Section 5.3. None of these algorithms can perform significantly better
than the others on all problems. Then, by incorporating an intelligent agent that uses value-action or
policy gradient methods frequently used in reinforcement learning, a more robust algorithm is obtained
that allows the identification of the appropriate technique or parameterization for the problem or the
stage of the problem that is being solved. Another possible line of research is to explore the population
management of solutions dynamically. Through analyzing the history of exploration and exploitation
of the search space, one can identify regions where it is necessary to increase the population and others
where it is appropriate to decrease it. Finally, an interesting line of research is to use new transfer
functions, such as those defined in [52,85], and evaluate their performance on a problem such as MKP.
Additionally, and suggested by the research carried out in the previously cited articles, a procedure
can be explored to make the optimal estimation of the parameter τ.

Author Contributions: Conceptualization, J.G. and P.M.; methodology, J.G.; software, M.V.; validation, J.G., H.P.
and P.M.; formal analysis, J.G.; investigation, J.G. and P.M; resources, H.P.; data curation, M.V.; writing—original
draft preparation, J.G and M.V.; writing—review and editing, J.G.; visualization, J.G.; supervision, H.P.; project
administration, H.P.; funding acquisition, J.G. All authors have read and agreed to the published version of the
manuscript.

Funding: José García was supported by the Grant CONICYT/FONDECYT/INICIACION/11180056.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Al-Madi, N.; Faris, H.; Mirjalili, S. Binary multi-verse optimization algorithm for global optimization and
discrete problems. Int. J. Mach. Learn. Cybern. 2019, 10, 3445–3465. [CrossRef]

2. García, J.; Moraga, P.; Valenzuela, M.; Crawford, B.; Soto, R.; Pinto, H.; Pe na, A.; Altimiras, F.; Astorga, G. A
Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Comput. Intell. Neurosci. 2019, 2019,
3238574. [CrossRef] [PubMed]

3. Kim, M.; Chae, J. Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material
Handling Path. Mathematics 2019, 7, 154. [CrossRef]

4. Korkmaz, S.; Babalik, A.; Kiran, M.S. An artificial algae algorithm for solving binary optimization problems.
Int. J. Mach. Learn. Cybern. 2018, 9, 1233–1247. [CrossRef]

5. García, J.; Altimiras, F.; Pe na, A.; Astorga, G.; Peredo, O. A binary cuckoo search big data algorithm applied
to large-scale crew scheduling problems. Complexity 2018, 2018, 8395193. [CrossRef]

6. Abdel-Basset, M.; Zhou, Y. An elite opposition-flower pollination algorithm for a 0-1 knapsack problem. Int.
J. Bio-Inspired Comput. 2018, 11, 46–53. [CrossRef]

7. García, J.; Lalla-Ruiz, E.; Voß, S.; Droguett, E.L. Enhancing a machine learning binarization framework by
perturbation operators: Analysis on the multidimensional knapsack problem. Int. J. Mach. Learn. Cybern.
2020, 1–20. [CrossRef]

8. Saeheaw, T.; Charoenchai, N. A comparative study among different parallel hybrid artificial intelligent
approaches to solve the capacitated vehicle routing problem. Int. J. Bio-Inspired Comput. 2018, 11, 171–191.
[CrossRef]

9. Valdez, F.; Castillo, O.; Jain, A.; Jana, D.K. Nature-inspired optimization algorithms for neuro-fuzzy models
in real-world control and robotics applications. Comput. Intell. Neurosci. 2019, 2019, 9128451. [CrossRef]

10. Adeli, A.; Broumandnia, A. Image steganalysis using improved particle swarm optimization based feature
selection. Appl. Intell. 2018, 48, 1609–1622. [CrossRef]

11. Balande, U.; Shrimankar, D. SRIFA: Stochastic Ranking with Improved-Firefly-Algorithm for Constrained
Optimization Engineering Design Problems. Mathematics 2019, 7, 250. [CrossRef]

12. Fu, W.; Tan, J.; Zhang, X.; Chen, T.; Wang, K. Blind parameter identification of MAR model and mutation
hybrid GWO-SCA optimized SVM for fault diagnosis of rotating machinery. Complexity 2019, 2019, 3264969.
[CrossRef]

http://dx.doi.org/10.1007/s13042-019-00931-8
http://dx.doi.org/10.1155/2019/3238574
http://www.ncbi.nlm.nih.gov/pubmed/31636660
http://dx.doi.org/10.3390/math7020154
http://dx.doi.org/10.1007/s13042-017-0772-7
http://dx.doi.org/10.1155/2018/8395193
http://dx.doi.org/10.1504/IJBIC.2018.090080
http://dx.doi.org/10.1007/s13042-020-01085-8
http://dx.doi.org/10.1504/IJBIC.2018.091704
http://dx.doi.org/10.1155/2019/9128451
http://dx.doi.org/10.1007/s10489-017-0989-x
http://dx.doi.org/10.3390/math7030250
http://dx.doi.org/10.1155/2019/3264969


Mathematics 2020, 8, 507 19 of 22

13. Soto, R.; Crawford, B.; Aste Toledo, A.; Castro, C.; Paredes, F.; Olivares, R. Solving the manufacturing
cell design problem through binary cat swarm optimization with dynamic mixture ratios. Comput. Intell.
Neurosci. 2019, 2019, 4787856. [CrossRef] [PubMed]

14. Crawford, B.; Soto, R.; Astorga, G.; García, J.; Castro, C.; Paredes, F. Putting continuous metaheuristics to
work in binary search spaces. Complexity 2017, 2017, 8404231. [CrossRef]

15. Shi, Y.; Eberhart, R.C. Particle swarm optimization: Developments, applications and resources. In
Proceedings of the 2001 congress on evolutionary computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp.
81–86.

16. Hatamlou, A. Black hole: A new heuristic optimization approach for data clustering. Inf. Sci. 2013, 222, 175–184.
[CrossRef]

17. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of 2009 World Congress on Nature &
Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

18. Yang, X.S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization
(NICSO 2010); Springer: Berlin, Germany, 2010; pp. 65–74.

19. Yang, X.S. Firefly algorithms for multimodal optimization. In International Symposium on Stochastic Algorithms;
Springer: Berlin, Germany, 2009; pp. 169–178.

20. Pan, W.T. A new fruit fly optimization algorithm: Taking the financial distress model as an example.
Knowl.-Based Syst. 2012, 26, 69–74. [CrossRef]

21. Li, X.l.; Shao, Z.j.; Qian, J.x. An optimizing method based on autonomous animats: Fish-swarm algorithm.
Syst. Eng. Theory Pract. 2002, 22, 32–38.

22. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A gravitational search algorithm. Inf. Sci. 2009, 179,
2232–2248. [CrossRef]

23. Caserta, M.; Voß, S. Matheuristics: Hybridizing Metaheuristics and Mathematical Programming. In Metaheuristics:
Intelligent Problem Solving; Springer: Berlin, Germany, 2009; pp. 1–38.

24. Talbi, E.G. Combining metaheuristics with mathematical programming, constraint programming and
machine learning. Ann. Oper. Res. 2016, 240, 171–215. [CrossRef]

25. Juan, A.A.; Faulin, J.; Grasman, S.E.; Rabe, M.; Figueira, G. A review of simheuristics: Extending metaheuristics
to deal with stochastic combinatorial optimization problems. Oper. Res. Perspect. 2015, 2, 62–72. [CrossRef]

26. Chou, J.S.; Nguyen, T.K. Forward Forecast of Stock Price Using Sliding-Window Metaheuristic-Optimized
Machine-Learning Regression. IEEE Trans. Ind. Inf. 2018, 14, 3132–3142. [CrossRef]

27. Sayed, G.I.; Tharwat, A.; Hassanien, A.E. Chaotic dragonfly algorithm: An improved metaheuristic algorithm
for feature selection. Appl. Intell. 2019, 49, 188–205. [CrossRef]

28. de León, A.D.; Lalla-Ruiz, E.; Melián-Batista, B.; Moreno-Vega, J.M. A Machine Learning-based system for
berth scheduling at bulk terminals. Expert Syst. Appl. 2017, 87, 170–182. [CrossRef]

29. García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to
multidimensional knapsack problem. Appl. Intell. 2018, 48, 357–380. [CrossRef]

30. Gavish, B.; Pirkul, H. Efficient algorithms for solving multiconstraint zero-one knapsack problems to
optimality. Math. Program. 1985, 31, 78–105. [CrossRef]

31. Vimont, Y.; Boussier, S.; Vasquez, M. Reduced costs propagation in an efficient implicit enumeration for the
01 multidimensional knapsack problem. J. Comb. Optim. 2008, 15, 165–178. [CrossRef]

32. Boussier, S.; Vasquez, M.; Vimont, Y.; Hanafi, S.; Michelon, P. A multi-level search strategy for the 0–1
multidimensional knapsack problem. Discret. Appl. Math. 2010, 158, 97–109. [CrossRef]

33. Mansini, R.; Speranza, M.G. Coral: An exact algorithm for the multidimensional knapsack problem.
INFORMS J. Comput. 2012, 24, 399–415. [CrossRef]

34. Zhang, B.; Pan, Q.K.; Zhang, X.L.; Duan, P.Y. An effective hybrid harmony search-based algorithm for
solving multidimensional knapsack problems. Appl. Soft Comput. 2015, 29, 288–297. [CrossRef]

35. Zhang, X.; Wu, C.; Li, J.; Wang, X.; Yang, Z.; Lee, J.M.; Jung, K.H. Binary artificial algae algorithm for
multidimensional knapsack problems. Appl. Soft Comput. 2016, 43, 583–595. [CrossRef]

36. Abdel-Basset, M.; El-Shahat, D.; Faris, H.; Mirjalili, S. A binary multi-verse optimizer for 0-1 multidimensional
knapsack problems with application in interactive multimedia systems. Comput. Ind. Eng. 2019, 132, 187–206.
[CrossRef]

http://dx.doi.org/10.1155/2019/4787856
http://www.ncbi.nlm.nih.gov/pubmed/30906316
http://dx.doi.org/10.1155/2017/8404231
http://dx.doi.org/10.1016/j.ins.2012.08.023
http://dx.doi.org/10.1016/j.knosys.2011.07.001
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1007/s10479-015-2034-y
http://dx.doi.org/10.1016/j.orp.2015.03.001
http://dx.doi.org/10.1109/TII.2018.2794389
http://dx.doi.org/10.1007/s10489-018-1261-8
http://dx.doi.org/10.1016/j.eswa.2017.06.010
http://dx.doi.org/10.1007/s10489-017-0972-6
http://dx.doi.org/10.1007/BF02591863
http://dx.doi.org/10.1007/s10878-007-9074-4
http://dx.doi.org/10.1016/j.dam.2009.08.007
http://dx.doi.org/10.1287/ijoc.1110.0460
http://dx.doi.org/10.1016/j.asoc.2015.01.022
http://dx.doi.org/10.1016/j.asoc.2016.02.027
http://dx.doi.org/10.1016/j.cie.2019.04.025


Mathematics 2020, 8, 507 20 of 22

37. Lai, X.; Hao, J.K.; Glover, F.; Lü, Z. A two-phase tabu-evolutionary algorithm for the 0–1 multidimensional
knapsack problem. Inf. Sci. 2018, 436, 282–301. [CrossRef]

38. Petersen, C.C. Computational experience with variants of the Balas algorithm applied to the selection of
R&D projects. Manag. Sci. 1967, 13, 736–750.

39. Chajakis, E.; Guignard, M. A model for delivery of groceries in vehicle with multiple compartments
and Lagrangean approximation schemes. In Proceedings of the Congreso Latino Ibero-Americano de
Investigación de Operaciones e Ingeniería de Sistemas, México city, Mexico, 9 October 1992.

40. Vasquez, M.; Hao, J.K. A logic-constrained knapsack formulation and a tabu algorithm for the daily
photograph scheduling of an earth observation satellite. Comput. Optim. Appl. 2001, 20, 137–157. [CrossRef]

41. Yang, M.H. An efficient algorithm to allocate shelf space. Eur. J. Oper. Res. 2001, 131, 107–118. [CrossRef]
42. Gavish, B.; Pirkul, H. Allocation of databases and processors in a distributed data processing. Manag. Distrib.

Data Process. 1982, 32, 215–231.
43. Srikanth, K.; Panwar, L.K.; Panigrahi, B.K.; Herrera-Viedma, E.; Sangaiah, A.K.; Wang, G.G. Meta-heuristic

framework: Quantum inspired binary grey wolf optimizer for unit commitment problem. Comput. Electr. Eng.
2018, 70, 243–260. [CrossRef]

44. Aljanad, A.; Mohamed, A.; Shareef, H.; Khatib, T. A novel method for optimal placement of vehicle-to-grid
charging stations in distribution power system using a quantum binary lightning search algorithm.
Sustain. Cities Soc. 2018, 38, 174–183. [CrossRef]

45. Hu, H.; Yang, K.; Liu, L.; Su, L.; Yang, Z. Short-Term Hydropower Generation Scheduling Using an Improved
Cloud Adaptive Quantum-Inspired Binary Social Spider Optimization Algorithm. Water Resour. Manag.
2019, 33, 2357–2379. [CrossRef]

46. Hamedmoghadam, H.; Jalili, M.; Yu, X. An opinion formation based binary optimization approach for
feature selection. Phys. A: Stat. Mech. Its Appl. 2018, 491, 142–152. [CrossRef]

47. Gong, Y.J.; Zhang, J.; Liu, O.; Huang, R.Z.; Chung, H.S.H.; Shi, Y.H. Optimizing the vehicle routing problem
with time windows: A discrete particle swarm optimization approach. IEEE Trans. Syst. Man, Cybern. Part C
(Appl. Rev.) 2011, 42, 254–267. [CrossRef]

48. Tharwat, A.; Hassanien, A.E. Chaotic antlion algorithm for parameter optimization of support vector
machine. Appl. Intell. 2018, 48, 670–686. [CrossRef]

49. Yang, Y.; Mao, Y.; Yang, P.; Jiang, Y. The unit commitment problem based on an improved firefly and particle
swarm optimization hybrid algorithm. In Proceedings of the IEEE Chinese Automation Congress (CAC),
Changsha, China, 7–8 November 2013; pp. 718–722.

50. García, J.; Crawford, B.; Soto, R.; Astorga, G. A clustering algorithm applied to the binarization of Swarm
intelligence continuous metaheuristics. Swarm Evol. Comput. 2019, 44, 646–664. [CrossRef]

51. Kyurkchiev, N.; Iliev, A. A note on the new Fibonacci hyperbolic tangent activation function. Int. J. Innov.
Sci. Eng. Technol. 2017, 4, 364–368.

52. Kyurkchiev, V.; Kyurkchiev, N. A family of recurrence generated functions based on the “half-hyperbolic
tangent activation function”. Biomed. Stat. Inf. 2017, 2, 87–94.

53. Too, J.; Abdullah, A.R.; Mohd Saad, N. A New Quadratic Binary Harris Hawk Optimization for Feature
Selection. Electronics 2019, 8, 1130. [CrossRef]

54. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly
optimization for feature selection using time-varying transfer functions. Knowl.-Based Syst. 2018, 161, 185–204.
[CrossRef]

55. Arora, S.; Anand, P. Binary butterfly optimization approaches for feature selection. Expert Syst. Appl. 2019,
116, 147–160. [CrossRef]

56. Leonard, B.J.; Engelbrecht, A.P.; Cleghorn, C.W. Critical considerations on angle modulated particle swarm
optimisers. Swarm Intell. 2015, 9, 291–314. [CrossRef]

57. Saremi, S.; Mirjalili, S.; Lewis, A. How important is a transfer function in discrete heuristic algorithms.
Neural Comput. Appl. 2015, 26, 625–640. [CrossRef]

58. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin, Germany, 2006.
59. García, J.; Pope, C.; Altimiras, F. A Distributed-Means Segmentation Algorithm Applied to Lobesia botrana

Recognition. Complexity 2017, 2017. [CrossRef]

http://dx.doi.org/10.1016/j.ins.2018.01.026
http://dx.doi.org/10.1023/A:1011203002719
http://dx.doi.org/10.1016/S0377-2217(99)00448-8
http://dx.doi.org/10.1016/j.compeleceng.2017.07.023
http://dx.doi.org/10.1016/j.scs.2017.12.035
http://dx.doi.org/10.1007/s11269-018-2138-7
http://dx.doi.org/10.1016/j.physa.2017.08.048
http://dx.doi.org/10.1109/TSMCC.2011.2148712
http://dx.doi.org/10.1007/s10489-017-0994-0
http://dx.doi.org/10.1016/j.swevo.2018.08.006
http://dx.doi.org/10.3390/electronics8101130
http://dx.doi.org/10.1016/j.knosys.2018.08.003
http://dx.doi.org/10.1016/j.eswa.2018.08.051
http://dx.doi.org/10.1007/s11721-015-0114-x
http://dx.doi.org/10.1007/s00521-014-1743-5
http://dx.doi.org/10.1155/2017/5137317


Mathematics 2020, 8, 507 21 of 22

60. Asta, S.; Özcan, E.; Curtois, T. A tensor based hyper-heuristic for nurse rostering. Knowl.-Based Syst. 2016,
98, 185–199. [CrossRef]

61. Martin, S.; Ouelhadj, D.; Beullens, P.; Ozcan, E.; Juan, A.A.; Burke, E.K. A multi-agent based cooperative
approach to scheduling and routing. Eur. J. Oper. Res. 2016, 254, 169–178. [CrossRef]

62. García, J.; Crawford, B.; Soto, R.; Astorga, G. A percentile transition ranking algorithm applied to binarization
of continuous swarm intelligence metaheuristics. In International Conference on Soft Computing and Data
Mining; Springer: Berlin, Germany, 2018; pp. 3–13.

63. Vecek, N.; Mernik, M.; Filipic, B.; Xrepinsek, M. Parameter tuning with Chess Rating System (CRS-Tuning)
for meta-heuristic algorithms. Inf. Sci. 2016, 372, 446–469. [CrossRef]

64. Ries, J.; Beullens, P. A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics
based on decision tree induction. J. Oper. Res. Soc. 2015, 66, 782–793. [CrossRef]

65. Li, Z.Q.; Zhang, H.L.; Zheng, J.H.; Dong, M.J.; Xie, Y.F.; Tian, Z.J. Heuristic evolutionary approach for
weighted circles layout. In International Symposium on Information and Automation; Springer: Berlin, Germany,
2010; pp. 324–331.

66. Yalcinoz, T.; Altun, H. Power economic dispatch using a hybrid genetic algorithm. IEEE Power Eng. Rev.
2001, 21, 59–60. [CrossRef]

67. Kaur, H.; Virmani, J.; Thakur, S. Chapter 10 - A genetic algorithm-based metaheuristic approach to customize
a computer-aided classification system for enhanced screen film mammograms. In U-Healthcare Monitoring
Systems; Dey, N., Ashour, A.S., Fong, S.J., Borra, S., Eds.; Advances in Ubiquitous Sensing Applications for
Healthcare; Academic Press: Cambridge, MA, USA, 2019; pp. 217–259.

68. Faris, H.; Hassonah, M.A.; Ala M, A.Z.; Mirjalili, S.; Aljarah, I. A multi-verse optimizer approach for feature
selection and optimizing SVM parameters based on a robust system architecture. Neural Comput. Appl. 2018,
30, 2355–2369. [CrossRef]

69. Faris, H.; Aljarah, I.; Mirjalili, S. Improved monarch butterfly optimization for unconstrained global search
and neural network training. Appl. Intell. 2018, 48, 445–464. [CrossRef]

70. Chou, J.S.; Thedja, J.P.P. Metaheuristic optimization within machine learning-based classification system for
early warnings related to geotechnical problems. Autom. Constr. 2016, 68, 65–80. [CrossRef]

71. Pham, A.D.; Hoang, N.D.; Nguyen, Q.T. Predicting compressive strength of high-performance concrete using
metaheuristic-optimized least squares support vector regression. J. Comput. Civ. Eng. 2015, 30, 06015002.
[CrossRef]

72. Göçken, M.; Özçalıcı, M.; Boru, A.; Dosdoğru, A.T. Integrating metaheuristics and artificial neural networks
for improved stock price prediction. Expert Syst. Appl. 2016, 44, 320–331. [CrossRef]

73. Chou, J.S.; Pham, A.D. Nature-inspired metaheuristic optimization in least squares support vector regression
for obtaining bridge scour information. Inf. Sci. 2017, 399, 64–80. [CrossRef]

74. Kuo, R.; Lin, T.; Zulvia, F.; Tsai, C. A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm
for cluster analysis. Appl. Soft Comput. 2018, 67, 299–308. [CrossRef]

75. Mann, P.S.; Singh, S. Energy efficient clustering protocol based on improved metaheuristic in wireless sensor
networks. J. Netw. Comput. Appl. 2017, 83, 40–52. [CrossRef]

76. de Alvarenga Rosa, R.; Machado, A.M.; Ribeiro, G.M.; Mauri, G.R. A mathematical model and a Clustering
Search metaheuristic for planning the helicopter transportation of employees to the production platforms of
oil and gas. Comput. Ind. Eng. 2016, 101, 303 –312. [CrossRef]

77. Pirkul, H. A heuristic solution procedure for the multiconstraint zero? one knapsack problem. Nav. Res.
Logist. 1987, 34, 161–172. [CrossRef]

78. Kong, X.; Gao, L.; Ouyang, H.; Li, S. Solving large-scale multidimensional knapsack problems with a new
binary harmony search algorithm. Comput. Oper. Res. 2015, 63, 7–22. [CrossRef]

79. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial
databases with noise. Kdd 1996, 96, 226–231.

80. Jiang, M.; Luo, J.; Jiang, D.; Xiong, J.; Song, H.; Shen, J. A cuckoo search-support vector machine model for
predicting dynamic measurement errors of sensors. IEEE Access 2016, 4, 5030–5037. [CrossRef]

81. Zhou, Y.; Wang, N.; Xiang, W. Clustering hierarchy protocol in wireless sensor networks using an improved
PSO algorithm. IEEE Access 2017, 5, 2241–2253. [CrossRef]

http://dx.doi.org/10.1016/j.knosys.2016.01.031
http://dx.doi.org/10.1016/j.ejor.2016.02.045
http://dx.doi.org/10.1016/j.ins.2016.08.066
http://dx.doi.org/10.1057/jors.2014.46
http://dx.doi.org/10.1109/39.911360
http://dx.doi.org/10.1007/s00521-016-2818-2
http://dx.doi.org/10.1007/s10489-017-0967-3
http://dx.doi.org/10.1016/j.autcon.2016.03.015
http://dx.doi.org/10.1061/(ASCE)CP.1943-5487.0000506
http://dx.doi.org/10.1016/j.eswa.2015.09.029
http://dx.doi.org/10.1016/j.ins.2017.02.051
http://dx.doi.org/10.1016/j.asoc.2018.02.039
http://dx.doi.org/10.1016/j.jnca.2017.01.031
http://dx.doi.org/10.1016/j.cie.2016.09.006
http://dx.doi.org/10.1002/1520-6750(198704)34:2<161::AID-NAV3220340203>3.0.CO;2-A
http://dx.doi.org/10.1016/j.cor.2015.04.018
http://dx.doi.org/10.1109/ACCESS.2016.2605041
http://dx.doi.org/10.1109/ACCESS.2016.2633826


Mathematics 2020, 8, 507 22 of 22

82. Mao, C.; Lin, R.; Xu, C.; He, Q. Towards a trust prediction framework for cloud services based on PSO-driven
neural network. IEEE Access 2017, 5, 2187–2199. [CrossRef]

83. He, X.S.; Wang, F.; Wang, Y.; Yang, X.S. Global Convergence Analysis of Cuckoo Search Using Markov
Theory. In Nature-Inspired Algorithms and Applied Optimization; Springer: Berlin, Germany, 2018; pp. 53–67.

84. Liu, J.; Wu, C.; Cao, J.; Wang, X.; Teo, K.L. A binary differential search algorithm for the 0–1 multidimensional
knapsack problem. Appl. Math. Model. 2016, 40, 9788–9805. [CrossRef]

85. Golev, A.; Iliev, A.; Kyurkchiev, N. A Note on the Soboleva’Modified Hyperbolic Tangent Activation
Function. Int. J. Innov. Sci. Eng. Technol. 2017, 4, 177–182.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/ACCESS.2017.2654378
http://dx.doi.org/10.1016/j.apm.2016.06.002
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Multidimensional Knapsack Problem
	Related Work
	Related Binarization Work
	Hybridizing Metaheuristics with Machine Learning

	Binary db-Scan Algorithm
	Initialization Operator
	Binary db-Scan Operator
	Transition operator
	Random Perturbation Operator
	Repair Operator

	Results and Discussion
	Parameter Settings
	The Contribution of the db-Scan Binary Operator
	K-means Algorithm Comparison
	Transfer Function Comparison

	Conclusions
	References

