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Abstract: In this paper, properties and algorithms of q-Bézier curves and surfaces are analyzed. It is
proven that the only q-Bézier and rational q-Bézier curves satisfying the boundary tangent property
are the Bézier and rational Bézier curves, respectively. Evaluation algorithms formed by steps in
barycentric form for rational q-Bézier curves and surfaces are provided.
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1. Introduction

The q-Bernstein basis of polynomials for some 0 < q ≤ 1 (see [1]) plays an important role in
several areas, such as Approximation Theory and Computer Aided Design. Its impact is shown by
many recent publications (see [2,3] and references in there). When q = 1, the basis is the Bernstein basis.

Let us now introduce some notations and definitions. Let U be a vector space of real functions
defined on a real interval I = [a, b] and U = (u0(t), . . . , un(t)) (t ∈ I) a basis of U . If a sequence
P0, . . . , Pn of points in Rk is given then we define a curve γ(t) = ∑n

i=0 Piui(t), t ∈ I. The points
P0, . . . , Pn are called control points and the corresponding polygon P0 · · · Pn is called the control polygon
of γ. In Computer-Aided Geometric Design (CAGD), it is desirable that a basis U satisfies the endpoint
interpolation property and also the boundary tangent property. When the curve γ starts at P0 and
ends at Pn for any control polygon, it is said that the basis U satisfies the endpoint interpolation property:
γ(a) = P0, γ(b) = Pn. When the first segment of the control polygon, P0P1, and the last segment of
the control polygon, Pn−1Pn, are tangent to the curve γ at the endpoints a and b, respectively, then
the basis U is said to satisfy the boundary tangent property.

For curve design purposes, a basis U has to be normalized (i.e., it forms a partition of the unity:
∑n

i=0 ui(t) = 1 for all t ∈ I) and nonnegative (i.e., ui(t) ≥ 0 for all t ∈ I and i = 0, . . . , n). It is
well known in CAGD that a curve representation presents nice properties when the corresponding
normalized basis is totally positive, that is, when all its collocation matrices have nonnegative minors
(see [4,5]).

The Bernstein polynomials bn
i (x), i = 0, 1, . . . , n, of degree n are defined as

bn
i (x) =

(
n
i

)
xi(1− x)n−i, x ∈ [0, 1].
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The Bernstein polynomials (bn
0 , . . . , bn

n) form a normalized totally positive basis of the space of
polynomials of degree at most n, Πn. From the Bernstein polynomials we can construct a Bézier
curve as

γ(x) =
n

∑
i=0

Pibn
i (x), x ∈ [0, 1]. (1)

In [1] Phillips introduced a generalization of the Bernstein polynomials based on q-integers. Given
a positive real number q we define a q-integer [r] as

[r] =

{
1 + q + · · ·+ qr−1 = 1−qr

1−q , if q 6= 1,
r, if q = 1.

Then we define a q-factorial [r]! (see [6]) as

[r]! =

{
[r] · [r− 1] · · · [1], if r ∈ N,
1, if r = 0

and finally, we define the q-binomial coefficient as

[n
r

]
=

[n][n− 1] · · · [n− r + 1]
[r]!

=
[n]!

[r]![n− r]!

for integers n ≥ r ≥ 0 and as zero otherwise. The q-Bernstein polynomials of degree n for 0 < q ≤ 1 are
defined as

bn
i,q(x) =

[n
i

]
xi

n−i−1

∏
s=0

(1− qs x), x ∈ [0, 1], i = 0, 1, . . . , n. (2)

These polynomials Bq = (bn
0,q, bn

1,q, . . . , bn
n,q), as the usual Bernstein polynomials, also form a basis of

Πn. Let us observe that for the case q = 1 the q-Bernstein polynomials coincide with the Bernstein
polynomials. In [7] algorithms with high relative accuracy for solving some algebraic problems for
the collocation matrices of q-Bernstein polynomials were devised.

It is well known that Bézier curves satisfy the endpoint interpolation property and also
the boundary tangent property. In [8] it was shown that all rational q-Bernstein bases also satisfy the
endpoint interpolation property. Section 2 recalls basic properties and algorithms of q-Bézier curves.
In Section 3 we prove that the Bernstein basis is the unique basis among all q-Bernstein bases satisfying
the geometric boundary tangent property. In Section 4 we recall some basic properties and algorithms
of rational q-Bézier curves, analyzing and providing some new properties and algorithms. We prove
that the Bernstein basis is the unique basis among all q-Bernstein bases satisfying the geometric
boundary tangent property.

Algorithms formed by steps in barycentric form (that is, with real coefficients that sum up to 1) are
very important in CAGD. In Section 4 we provide an algorithm with this property for rational q-Bézier
curves and, in Theorem 4, we relate it with the algorithm provided in [8], which does not satisfy
the property. Section 5 presents an evaluation algorithm also formed by steps in barycentric form for
rational q-Bézier surfaces. Finally, in Section 6 we summarize the main conclusions of the paper.

2. q-Bézier Curves

Analogously to the case of Bézier curves we can define a q-Bézier curve as

γ(x) =
n

∑
i=0

Pibn
i,q(x), x ∈ [0, 1], (3)

where the q-Bernstein polynomials are given by (2). Observe that for q = 1 we have the usual
Bézier curve.
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2.1. Properties of q-Bézier Curves

In this subsection we summarize some basic properties satisfied by q–Bézier curves either recalling
where they were announced or mentioning a sketch of the proof.

• The q-Bernstein polynomials form a partition of unity:

n

∑
i=0

bn
i,q(x) = 1 for all x ∈ [0, 1].

This property can be proved by induction by evaluating ∑n
i=0 bn

i,q(x) through Algorithm 2.
• The q-Bernstein polynomials are nonnegative: bn

i,q(x) ≥ 0 for all x ∈ [0, 1].
• Convex hull property: A q-Bézier curve is always contained inside the convex hull of its control

points (see Section 2 of [8] for the case of rational q-Bézier curves; q-Bézier curves are a particular
case of these curves).

• Affine invariance.
• Endpoint interpolation property: This is a consequence of the identities

bn
0,q(0) = 1, bn

i,q(0) = 0 i = 1, . . . , n,

bn
i,q(1) = 0 i = 0, 1, . . . , n− 1, bn

n,q(1) = 1.

• Invariance under barycentric combinations:

n

∑
i=0

(α Pi + β Qi)bn
i,q(x) = α

n

∑
i=0

Pi bn
i,q(x) + β

n

∑
i=0

Qi bn
i,q(x), α + β = 1.

• Linear precision:
n

∑
i=0

[i]
[n]

bn
i,q(x) = x.

See Proposition 5.2 of [9].
• The q-Bernstein polynomials of degree n, (bn

0,q, . . . , bn
n,q), form a normalized totally positive basis

(see Section 2 of [10]).
• q-Bézier curves satisfy the variation diminishing property: the q-Bézier curve has no more

intersections with any line than its control polygon (see Section 2 of [10]).

2.2. q-Casteljau Algorithms

Given a sequence of control points (Pi)0≤i≤n in R2 or R3, the q-Bézier curve (3) can be evaluated
by Algorithm 1 as pointed out in [11].

The previous algorithm is not formed by steps in barycentric form. In Section 2 of [12], a second
de Casteljau type algorithm for computing the q-Bézier curves was given. We call it Algorithm 2.

We can observe that the previous algorithm is formed by steps in barycentric form. Although
both algorithms, Algorithms 1 and 2, evaluate the same q-Bézier curve, the intermediate points are

different and are related in the following form: f
(r)
i = q−r i f (r)i (see Section 2 of [12]).
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Algorithm 1 Evaluation of a q-Bézier curve

Require: (Pi)0≤i≤n, q ∈ (0, 1], x ∈ [0, 1]

Ensure: f (n)0 (x) = γ(x)
for i = 0 to n do

f (0)i (x) = Pi
end for
for r = 1 to n do

for i = 0 to n− r do
f (r)i (x) = (qi − qr−1x) f (r−1)

i (x) + x f (r−1)
i+1 (x)

end for
end for

An important property of the de Casteljau algorithm in CAGD is subdivision. From Theorem 3.2

of [8] with wi = 1 for all i and since f (i)0 = f
(i)
0 for i = 0, 1, . . . , n, we derive the following result on

subdivision of q-Bézier curves.

Algorithm 2 Evaluation of a q-Bézier curve

Require: (Pi)0≤i≤m, q ∈ (0, 1], x ∈ [0, 1]

Ensure: f
(n)
0 (x) = γ(x)

for i = 0 to n do
f
(0)
i (x) = Pi

end for
for r = 1 to n do

for i = 0 to n− r do
f
(r)
i (x) = (1− qr−i−1x) f

(r−1)
i (x) + x qr−i−1 f

(r−1)
i+1 (x)

end for
end for

Theorem 1. Let γ(x) be a q-Bézier curve of degree n given by (3) and let c ∈ (0, 1). Then the part of the curve
that corresponds to the interval [0, c], denoted by γ[0,c](x), is given by

γ[0,c](x) =
n

∑
i=0

f (i)0 (c)bn
i,q(x) =

n

∑
i=0

f
(i)
0 (c)bn

i,q(x), x ∈ [0, 1],

where quantities f (i)0 (c) and f
(i)
0 (c) are computed from Algorithm 1 and Algorithm 2, respectively.

2.3. Degree Elevation of q-Bézier Curves

The q-Bézier curve (3) is a polynomial curve of degree n. If the curve does not possess sufficient
flexibility to model the desired shape, the degree of the curve must be elevated. So, in [10] the following
result was presented.

Theorem 2. (cf. Theorem 3.1 of [10]) Let γ(x) be the q-Bézier curve (3) with (Pi)0≤i≤n a sequence of control
points in R2 or R3. Then

γ(x) =
n+r

∑
i=0

Pr
i bn+r

i,q (x),

where, for n ≥ 3 and i = 0, 1, . . . , n + r,

Pr
i =

n

∑
j=0

q(i−j)(n−j)
[

n
j

] [ r
i−j

]

[ n+r
i
]Pj.
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Remark 1. Control points Pr
i in the previous theorem can also be computed by applying the following recursive

algorithm

Pk
i =

(
1− [n + r− i]

[n + r]

)
Pk−1

i−1 +
[n + r− i]
[n + r]

Pk−1
i

{
k = 1, 2, . . . , r,
i = 0, 1, . . . , n + r,

where P0
i = Pi for i = 0, 1, . . . , n.

3. Boundary Tangent Property for q-Bézier Curves

In this subsection we prove that the boundary tangent property holds for q-Bézier curves if and
only if q = 1, that is, for Bézier curves.

In order to study the boundary tangent property for q-Bézier curves we first need to compute
(bn

i,q)
′(0) and (bn

i,q)
′(1) for i = 0, 1, . . . , n.

Proposition 1. Given the q-Bernstein basis (bn
0,q, . . . , bn

n,q) we have

− (bn
0,q)
′(0) = (bn

1,q)
′(0) = [n], (bn

i,q)
′(0) = 0 for i = 2, . . . , n,

(bn
i,q)
′(1) = −

[n
i

] n−i−1

∏
s=1

(1− qs) for i = 0, 1, . . . , n− 1, (bn
n,q)
′(1) = n.

Proof. Differentiating the i-th q-Bernstein polynomial (2) we have

(bn
i,q)
′(x) = i

[n
i

]
xi−1

n−i−1

∏
s=0

(1− qsx)−
[n

i

]
xi

n−i−1

∑
s=0

qs
n−i−1

∏
j=0;j 6=s

(1− qjx). (4)

Evaluating the previous expression at x = 0 we have for i = 0 and 1 that

(bn
0,q)
′(0) = −

[n
0

] n−i−1

∑
s=0

qs
n−i−1

∏
j=0;j 6=s

(1− qj · 0) = −
[n

0

] n−i−1

∑
s=0

qs = −1− qn

1− q
= −[n],

(bn
1,q)
′(0) =

[n
1

] n−i−1

∏
s=0

(1− qs · 0) =
[n

1

]
= [n],

and for i ∈ {2, . . . , n} that (bn
i,q)
′(0) = 0. Analogously, evaluating (4) at x = 1 we have for i = 0 that

(bn
0,q)
′(1) = −

[n
0

] n−1

∑
s=0

qs
n−1

∏
j=0;j 6=s

(1− qj) = −
[n

0

] n−1

∏
j=1

(1− qj),

for i ∈ {1, . . . , n− 1} that

(bn
i,q)
′(1) = i

[n
i

] n−i−1

∏
s=0

(1− qs)−
[n

i

] n−i−1

∑
s=0

qs
n−i−1

∏
j=0;j 6=s

(1− qj) = −
[n

i

] n−i−1

∏
j=1

(1− qj).

and for i = n that
(bn

n,q)
′(1) = n

[n
n

]
= n

and the result follows.

Then, as a consequence of the previous result we have the following expressions for the derivatives
of a q-Bézier curve at the endpoints.
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Corollary 1. Given the q-Bézier curve γ(x) defined by (3) we have

γ′(0) = [n](P1 − P0)

γ′(1) = −
n−1

∑
i=0

[n
i

]
·
(

n−i−1

∏
s=1

(1− qs)

)
· Pi + n · Pn.

From the previous result we can conclude that the first segment of the control polygon of any
q-Bézier curve, P0P1, is tangent to the curve at x = 0 but, in general, the last segment, Pn−1Pn, is
not tangent to the curve at x = 1. In the following result we determine the values of q such that
the corresponding q-Bernstein bases satisfy the boundary tangent property.

Corollary 2. The q-Bernstein basis (bn
0,q, . . . , bn

n,q) satisfies the boundary tangent property if and only if q = 1,
that is, if and only if it is the Bernstein basis.

Proof. By Corollary 1 a q-Bézier curve will satisfy the boundary tangent property if and only if the last
segment of the control polygon, Pn−1Pn is tangent to the curve γ at x = 1, that is, if there exists a value
k such that γ′(1) = k(Pn − Pn−1) for any control polygon. From Corollary 1 we deduce that a q-Bézier
curve satisfies the boundary tangent property if and only if

[n
i

]
·
(

n−i−1

∏
s=1

(1− qs)

)
= 0 for i = 0, 1, . . . , n− 2

and [
n

n− 1

]
= [n] = n.

These last two expressions hold if and only if q = 1 and the result follows.

Figure 1 illustrates the boundary tangent property of q-Bernstein bases. We can observe that the
theoretical results are confirmed: P0P1 is tangent to all the q-Bézier curves at x = 0, whereas Pn−1Pn is
only tangent to the Bézier curve at the other endpoint x = 1.
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4. Rational q-Bézier Curves

In [8] rational q-Bézier curves were presented as a generalization of rational Bézier curves. Given
a sequence (wi)

n
i=0 of strictly positive weights, a rational q-Bernstein basis (rn

0 , . . . , rn
n) was defined as

rn
i,q(x) =

wi bn
i,q(x)

∑n
i=0 wi bn

i,q(x)
, x ∈ [0, 1], for i = 0, 1, . . . , n, (5)

and a rational q-Bézier curve as

γ(x) =
n

∑
i=0

Pi rn
i,q(x) =

n

∑
i=0

Pi
wi bn

i,q(x)

∑n
i=0 wi bn

i,q(x)
, x ∈ [0, 1]. (6)

where Pi ∈ Rk (k = 2 or 3) are the control points of the curve.

4.1. Properties of Rational q-Bézier Curves

We now summarize some basic properties of rational q-Bézier curves.

• The functions rn
i,q(x) form a partition of unity:

n

∑
i=0

rn
i,q(x) =

n

∑
i=0

wi bn
i,q(x)

∑n
i=0 wi bn

i,q(x)
= 1 for all x ∈ [0, 1].

• The functions
wi bn

i,q(x)

∑n
i=0 wi bn

i,q(x) are nonnegative:
wi bn

i,q(x)

∑n
i=0 wi bn

i,q(x) ≥ 0 for all x ∈ [0, 1].

• Convex hull property: A rational q-Bézier curve is always contained inside the convex hull of its
control points (see Section 2 of [8]).

• Affine invariance.
• Endpoint interpolation property: This is a consequence of the identities

rn
0,q(0) = 1, rn

i,q(0) = 0 i = 1, . . . , n,

rn
i,q(1) = 0 i = 0, 1, . . . , n− 1, rn

n,q(1) = 1.

• Invariance under barycentric combinations:

n

∑
i=0

(α Pi + β Qi)rn
i,q(x) = α

n

∑
i=0

Pi rn
i,q(x) + β

n

∑
i=0

Qi rn
i,q(x), α + β = 1.

• The rational functions (rn
0,q, . . . , rn

n,q) form a normalized totally positive basis of the corresponding
space of functions since any collocation matrix of this system of functions can be expressed as
the product of three totally positive matrices and so it is totally positive. In fact, if we consider
a collocation matrix of the system (5), it can be expressed as the product of the corresponding
collocation matrix of the system (bn

0,q, . . . , bn
n,q) premultiplied and post multiplied by diagonal

matrices with positive diagonal entries.
• Rational q-Bézier curves satisfy the variation diminishing property: the rational q-Bézier curve

has no more intersections with any line than its control polygon. This property is a consequence
of the previous one.

4.2. q-Casteljau Algorithms for Rational q-Bézier Curves

In Algorithm 2.1 of [8] an algorithm for the evaluation of rational q-Bézier curves was also
presented. We call it Algorithm 3.
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Algorithm 3 Evaluation of a rational q-Bézier curve

Require: (Pi)0≤i≤n, (wi)0≤i≤n, q ∈ (0, 1], x ∈ [0, 1]

Ensure: f (n)0 (x) = γ(x)
for i = 0 to n do

f (0)i (x) = Pi

w(0)
i (x) = wi

end for
for r = 1 to n do

for i = 0 to n− r do
w(r)

i (x) = (qi − qr−1x)w(r−1)
i (x) + x w(r−1)

i+1 (x)

f (r)i (x) =
(qi−qr−1x)w(r−1)

i (x) f (r−1)
i (x)+x w(r−1)

i+1 (x) f (r−1)
i+1 (x)

w(r)
i (x)end for

end for

Algorithm 3 arose as a generalization of Algorithm 1 for rational q-Bézier curves. In particular,
in [8] the following result was provided.

Theorem 3. Each intermediate point f (r)i (x) of Algorithm 3 can be expressed as

f (r)i (x) =
∑r

j=0 wi+j Pi+j

[
r
j

]
xj ∏

r−j−1
s=0 (qi − qsx)

∑r
j=0 wi+j

[
r
j

]
xj ∏

r−j−1
s=0 (qi − qsx)

Analogously, we can generalize Algorithm 2 obtaining Algorithm 4.

Algorithm 4 Evaluation of a rational q-Bézier curve

Require: (Pi)0≤i≤n, (wi)0≤i≤n, q ∈ (0, 1]

Ensure: f (n)0 (x) = γ(x)
for i = 0 to n do

f
(0)
i (x) = Pi

w(0)
i (x) = wi

end for
for r = 1 to n do

for i = 0 to n− r do
w(r)

i (x) = (1− qr−i−1x)w(r−1)
i (x) + x qr−i−1w(r−1)

i+1 (x)

f
(r)
i (x) =

(1−qr−i−1x)w(r−1)
i (x) f

(r−1)
i (x)+x qr−i−1 w(r−1)

i+1 (x) f
(r−1)
i+1 (x)

w(r)
i (x)end for

end for

We can observe that Algorithm 4 is an algorithm formed by steps in barycentric form in contrast
to Algorithm 3. The following result relates both algorithms.

Theorem 4. The intermediate values w(r)
i (x), f (r)i (x), w(r)

i (x) and f
(r)
i (x) of Algorithms 3 and 4 satisfy

w(r)
i (x) = q−ir w(r)

i (x) and f
(r)
i (x) = f (r)i (x). (7)

Proof. Let us prove it by induction on r ∈ {1, . . . , n}. For r = 1 we have by Algortihm 4

w(1)
i (x) = (1− q−ix)w(0)

i (x) + xq−iw(0)
i+1(x) = q−i

[
(qi − x)w(0)

i (x) + xw(0)
i+1(x)

]
.
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From the previous expression, by Algorithm 3 and taking into account that w(0)
i (x) = w(0)

i (x) we have

w(1)
i (x) = q−iw(1)

i (x), (8)

that is, the first equation in (7) for r = 1. Again by Algortihm 4 for r = 1 we have

f
(1)
i (x) =

(1− q−ix)w(0)
i (x) f

(0)
i (x) + xq−iw(0)

i+1(x) f
(0)
i+1(x)

w(1)
i

=
q−i
[
(qi − x)w(0)

i (x) f
(0)
i (x) + xw(0)

i+1(x) f
(0)
i+1(x)

]

w(1)
i

.

Substituting (8) in the previous formula, by Algorithm 3 and taking into account that w(0)
i (x) = w(0)

i (x)

and f
(0)
i (x) = f (0)i (x) we deduce that

f
(1)
i (x) =

q−i
[
(qi − x)w(0)

i (x) f (0)i (x) + xw(0)
i+1(x) f (0)i+1(x)

]

q−iw(1)
i (x)

=
(qi − x)w(0)

i (x) f (0)i (x) + xw(0)
i+1(x) f (0)i+1(x)

w(1)
i (x)

= f (1)i (x),

that is, the second equation in (7) for r = 1. Now let us assume that formulas in (7) hold for some
r ∈ {1, . . . , n− 1} and let us prove them for r + 1. For r + 1 we have, by Algorithm 4, that

w(r+1)
i (x) = (1− qr−ix)w(r)

i (x) + xqr−iw(r)
i+1(x)

= q−i
[
(qi − qrx)w(r)

i (x) + qrxw(r)
i+1(x)

]
.

By the induction hypothesis we have that w(r)
i (x) = q−riw(r)

i (x). Applying this fact in the previous
formula we have

w(r+1)
i (x) = q−i

[
(qi − qrx)q−riw(r)

i (x) + qrxq−r(i+1)w(r)
i+1(x)

]

= q−i(r+1)
[
(qi − qrx)w(r)

i (x) + xw(r)
i+1(x)

]
,

and, by Algorithm 3, we conclude

w(r+1)
i (x) = q−i(r+1)w(r+1)

i (x), (9)

that is, the first formula in (7) for r + 1. Again by Algortihm 4 for r + 1 we have

f
(r+1)
i (x) =

(1− qr−ix)w(r)
i (x) f

(r)
i (x) + xqr−iw(r)

i+1(x) f
(r)
i+1(x)

w(r+1)
i

=
q−i
[
(qi − qrx)w(r)

i (x) f
(r)
i (x) + qrxw(r)

i+1(x) f
(r)
i+1(x)

]

w(r+1)
i (x)

.
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Substituting (9) in the previous formula, taking into account that w(r)
i (x) = q−irw(r)

i (x) and f
(r)
i (x) =

f (r)i (x) and by Algorithm 3 we deduce that

f
(r+1)
i (x) =

q−i
[
(qi − qrx)q−irw(r)

i (x) f (r)i (x) + qrxq−(i+1)rw(r)
i+1(x) f (r)i+1(x)

]

q−i(r+1)w(r+1)
i (x)

=
(qi − qrx)w(r)

i (x) f (r)i (x) + xw(r)
i+1(x) f (r)i+1(x)

w(r+1)
i (x)

= f (r+1)
i (x),

that is, the second equation in (7) for r + 1 and the theorem holds.

As a consequence of the previous theorem and Theorem 3, the following result follows.

Corollary 3. Each intermediate point f
(r)
i (x) of Algorithm 4 can be expressed as

f
(r)
i (x) =

∑r
j=0 wi+j Pi+j

[
r
j

]
xj ∏

r−j−1
s=0 (qi − qsx)

∑r
j=0 wi+j

[
r
j

]
xj ∏

r−j−1
s=0 (qi − qsx)

In Theorem 3.2 of [8] a result on subdivision of rational q-Bézier curves was stated. So, taking
into account that result and (7) we have the following result.

Theorem 5. Let γ(x) be a rational q-Bézier curve of degree n given by (6) and let c ∈ (0, 1). Then the part of
the curve that corresponds to the interval [0, c] denoted by γ[0,c](x) is given by

γ[0,c](x) =
n

∑
i=0

f (i)0 (c)
w(i)

0 (c)bn
i,q(x)

∑n
i=0 w(i)

0 (c)bn
i,q(x)

=
n

∑
i=0

f
(i)
0 (c)

w(i)
0 (c)bn

i,q(x)

∑n
i=0 w(i)

0 (c)bn
i,q(x)

, x ∈ [0, 1],

where quantities w(i)
0 (c) and f (i)0 (c), and w(i)

0 (c) and f
(i)
0 (c) are computed from Algorithm 3 and Algorithm 4,

respectively.

4.3. Boundary Tangent Property for Rational q-Bézier Curves

At the beginning of this section, it was recalled that rational q-Bernstein bases satisfy the endpoint
interpolation property. Now let us analyze the boundary tangent property. The following result
provides the derivatives of a rational q-Bézier curve at the endpoints.

Proposition 2. Given the rational q-Bézier curve γ(x) defined by (6) we have

γ′(0) = [n] · w1

w0
· (P1 − P0),

γ′(1) =
∑n−1

i=0

[ n
i
] (

∏n−i−1
s=1 (1− qs)

)
wi(Pn − Pi)

wn
.

Proof. Differentiating (6) we get

γ′(x) =

(
∑n

i=0 Piwi(bn
i,q)
′(x)

) (
∑n

i=0 wibn
i,q(x)

)
−
(

∑n
i=0 Piwibn

i,q(x)
) (

∑n
i=0 wi(bn

i,q)
′(x)

)

(
∑n

i=0 wibn
i,q(x)

)2 .
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Evaluating the previous expression at x = 0 and x = 1 and applying Proposition 1 and that

bn
0,q(0) = 1, bn

1,q(0) = · · · = bn
n,q(0) = 0,

bn
0,q(1) = · · · = bn

n−1,q(1) = 0, bn
n,q(1) = 1,

(10)

the result follows.

Analogously to the nonrational case we can derive the following result.

Corollary 4. The rational q-Bernstein basis (bn
0,q, . . . , bn

n,q) satisfies the boundary tangent property if and only
if q = 1, that is, if and only if it is the corresponding rational Bernstein basis.

Figure 2 illustrates the boundary tangent property of rational q-Bernstein bases. For the example
we have considered the same control points as in the example illustrating the boundary tangent
property of q-Bernstein bases with weigths (wi)0≤i≤4 = (1, 15, 30, 15, 1). As in that case, we can
observe that the theoretical results are confirmed: P0P1 is tangent to all the rational q-Bézier curves at
x = 0, whereas Pn−1Pn is only tangent to the rational Bézier curve at the other endpoint x = 1.
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4.4. Degree Elevation of Rational q-Bézier Curves

At the end of Section 3 in [8] it was shown briefly how to elevate by 1 the degree of rational
q-Bézier curves. In the following result this procedure is generalized.

Theorem 6. Let γ(x) be the rational q-Bézier curve (6) with (Pi)0≤i≤n a sequence of control points in R2 or
R3 and (wi)0≤i≤n a sequence of strictly positive weights. Then

γ(x) =
n+r

∑
i=0

Pr
i

wr
i bn+r

i,q (x)

∑n+r
i=0 wr

i bn+r
i,q (x)

, (11)

where, for n ≥ 3,

wk
i =

(
1− [n + k− i]

[n + k]

)
wk−1

i−1 +
[n + k− i]
[n + k]

wk−1
i ,

Pk
i =

(
1− [n+k−i]

[n+k]

)
wk−1

i−1 Pk−1
i−1 + [n+k−i]

[n+k] wk−1
i Pk−1

i

wk
i

for k = 1, 2, . . . , r, and i = 0, 1, . . . , n + k with w0
i = wi and P0

i = Pi for i = 0, 1, . . . , n.

Proof. Denoting by

D(x) :=
n

∑
i=0

wi bn
i,q(x) and N(x) :=

n

∑
i=0

fi bn
i,q(x),



Mathematics 2020, 8, 541 12 of 15

with fi := wi Pi for i = 0, 1, . . . , n, we have γ(x) = N(x)/D(x). Applying Theorem 2 and Remark 1 to
both D(x) and N(x) we deduce that

D(x) =
n+r

∑
i=0

wr
i bn+r

i,q (x) and N(x) =
n+r

∑
i=0

f r
i bn+r

i,q (x),

where,

wk
i =

(
1− [n + k− i]

[n + k]

)
wk−1

i−1 +
[n + k− i]
[n + k]

wk−1
i ,

f k
i =

(
1− [n + k− i]

[n + k]

)
f k−1
i−1 +

[n + k− i]
[n + k]

f k−1
i

for k = 1, 2, . . . , r and i = 0, 1, . . . , n + k, with w0
i = wi and f 0

i = fi for i = 0, 1, . . . , n. Then, taking
Pk

i = f k
i /wk

i the result follows.

Example 1. We have considered the rational q-Bézier curve given by (6) for n = 4, q = 0.75, weigths
(wi)0≤i≤4 = (1, 15, 30, 15, 1) and control points P0 = (0, 0), P1 = (1, 1.5), P2 = (3.5, 2), P3 = (6, 1.5)
and P4 = (7, 0). Then, applying the degree elevation method for rational q-Bézier curves given in
Theorem 6 for r = 3 we obtain the rational q-Bézier curve given by (11) with weights (w3

i )0≤i≤7 =

(0.788899, 12.0288, 22.8239, 23.1543, 17.9863, 11.4596, 5.43495, 0.332817) and control points P3
0 = (0, 0),

P3
1 = (0.98376, 1.47564), P3

2 = (2.82167, 1.86236), P3
3 = (3.80275, 1.85416), P3

4 = (4.62368, 1.74692),
P3

5 = (5.38032, 1.58936), P3
6 = (6.08145, 1.37782) and P3

7 = (7, 0). Figure 3 illustrates this particular
example of the degree elevation of rational q-Bézier curves. The polygon with dashed line corresponds to
the control polygon of the original curve, whereas the other polygon corresponds to the control polygon obtained
after of the degree elevation process.
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5. Rational q-Bézier Surfaces

Given a matrix of positive weights (wij)0≤i≤m;0≤j≤n, a matrix of control points (Pij)0≤i≤m;0≤j≤n in
R3 and q1, q2 ∈ (0, 1], we define the rational q-Bézier surface

F(x, y) =
m

∑
i=0

n

∑
j=0

Pij
wij bm

i,q1
(x) bn

j,q2
(y)

∑m
i=0 ∑n

j=0 wij bm
i,q1

(x) bn
j,q2

(y)
, (x, y) ∈ [0, 1]× [0, 1]. (12)

Now let us consider the evaluation of q-Bézier rational surfaces. The rational q-Bézier surface in (12)
can be written as

F(x, y) =
∑m

i=0

[(
∑n

j=0
Pijwijbn

j,q2
(y)

∑n
j=0 wijbn

j,q2
(y)

)(
∑n

j=0 wijbn
j,q2

(y)
)

bm
i,q1

(x)
]

∑m
i=0

(
∑n

j=0 wijbn
j,q2

(y)
)

bm
i,q1

(x)
.
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Taking into account the previous expression of a rational q-Bézier surface, this can be evaluated by
computing the evaluation of the 2m + 2 q-Bézier curves, m + 1 rational and m + 1 nonrational,

Pi(y) =
n

∑
j=0

Pijwijbn
j,q2

(y)

∑n
j=0 wijbn

j,q2
(y)

and wi(y) =
n

∑
j=0

wijbn
j,q2

(y),

for i = 0, 1, . . . , m, and, finally, by computing the evaluation of the following rational q-Bézier curve:

m

∑
i=0

Pi(y)
wi(y)bm

i,q(x)

∑m
i=0 wi(y)bm

i,q(x)

The evaluation of all these functions can be performed by either Algorithm 3 or Algorithm 4, obtaining
Algorithm 5 and Algorithm 6, respectively.

Algorithm 5 Evaluation of a rational q-Bézier surface

Require: (wij)0≤i≤m;0≤j≤n, (Pij)0≤i≤m;0≤j≤n, q1, q2
Ensure: F(x, y)

for i = 0 to m do
for j = 0 to n do

f 00
ij = Pij

w00
ij = wij

end for
end for
for r = 1 to n do

for j = 0 to n− r do
w0r

ij = (qj − qr−1y)w0,r−1
ij + y w0,r−1

i,j+1

f 0r
ij =

(qj−qr−1y)w0,r−1
ij f 0,r−1

ij +y w0,r−1
i,j+1 f 0,r−1

i,j+1

w0r
ijend for

end for
for r = 1 to m do

for i = 0 to m− r do
wrn

i0 = (qi − qr−1x)wr−1,n
i0 + x wr−1,n

i+1,0

f rn
i0 =

(qi−qr−1x)wr−1,n
i0 f r−1,n

i0 +x wr−1,n
i+1,0 f r−1,n

i+1,0
wrn

i0
end for

end for



Mathematics 2020, 8, 541 14 of 15

Algorithm 6 Evaluation of a rational q-Bézier surface

Require: (wij)0≤i≤m;0≤j≤n, (Pij)0≤i≤m;0≤j≤n, q1, q2
Ensure: F(x, y)

for i = 0 to m do
for j = 0 to n do

f
00
ij = Pij

w00
ij = wij

end for
end for
for r = 1 to n do

for j = 0 to n− r do
w0r

ij = (qj − qr−1y)w0,r−1
ij + y w0,r−1

i,j+1

f 0r
ij =

(qj−qr−1y)w0,r−1
ij f

0,r−1
ij +y w0,r−1

i,j+1 f
0,r−1
i,j+1

w0r
ijend for

end for
for r = 1 to m do

for i = 0 to m− r do
wrn

i0 = (qi − qr−1x)wr−1,n
i0 + x wr−1,n

i+1,0

f
rn
i0 =

(qi−qr−1x)wr−1,n
i0 f

r−1,n
i0 +x wr−1,n

i+1,0 f
r−1,n
i+1,0

wrn
i0

end for
end for

Taking wij = 1 for all i ∈ {0, 1, . . . , m} and j ∈ {0, 1, . . . , n} in (12) a tensor product q-Bézier
surface is obtained. For this particular case, Algorithms 5 and 6 are two evaluation algorithms
alternative to the algorithm for the evaluation of tensor product q-Bézier surfaces proposed in [12].

As a consequence of the subdivision properties of Algorithms 3 and 4 in Theorem 5, we deduce
the following subdivision properties for Algorithms 5 and 6.

Theorem 7. Let F(x, y) a rational q-Bézier surface given by (12) and let a, b ∈ (0, 1). Then the part of
the surface that corresponds to [0, a]× [0, b], denoted by F[0,a]×[0,b](x, y), is given by

F[0,a]×[0,b](x, y) =
m

∑
i=0

n

∑
j=0

f ij
00(a, b)

wij
00(a, b)bm

i,q1
(x)bn

j,q2
(y)

∑m
i=0 ∑n

j=0 wij
00(a, b)bm

i,q1
(x)bn

j,q2
(y)

=
m

∑
i=0

n

∑
j=0

f
ij
00(a, b)

wij
00(a, b)bm

i,q1
(x)bn

j,q2
(y)

∑m
i=0 ∑n

j=0 wij
00(a, b)bm

i,q1
(x)bn

j,q2
(y)

, (x, y) ∈ [0, a]× [0, b],

where quantities f ij
00(a, b) and wij

00(a, b), and f
ij
00(a, b) and wij

00(a, b) are computed from Algorithm 5 and
Algorithm 6, respectively.

6. Conclusions

In this paper, it is shown that many properties and efficient algorithms for Bézier curves and
surfaces can be extended to q-Bézier curves and surfaces, showing some differences. The existence
of evaluation algorithms formed by steps in barycentric form for the rational q-Bézier curves and
surfaces is also proved. Therefore, q-Bézier curves and surfaces can be very useful, sharing many
nice properties with Bézier curves and surfaces and, in addition, providing greater flexibility. We also
conclude that there are some limitations with respect to Bézier curves and surfaces. For instance, with
the geometric boundary tangent property. Finally, we can use for rational q-Bézier curves and surfaces
algorithms with many nice properties of rational Bézier curves and surfaces.
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