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Abstract: Automatically locating the lung regions effectively and efficiently in digital chest
X-ray (CXR) images is important in computer-aided diagnosis. In this paper, we propose an
adaptive pre-processing approach for segmenting the lung regions from CXR images using
convolutional neural networks-based (CNN-based) architectures. It is comprised of three steps.
First, a contrast enhancement method specifically designed for CXR images is adopted. Second,
adaptive image binarization is applied to CXR images to separate the image foreground and
background. Third, CNN-based architectures are trained on the binarized images for image
segmentation. The experimental results show that the proposed pre-processing approach is applicable
and effective to various CNN-based architectures and can achieve comparable segmentation accuracy
to that of state-of-the-art methods while greatly expediting the model training by up to 20.74% and
reducing storage space for CRX image datasets by down to 94.6% on average.

Keywords: lung X-ray segmentation; deep convolutional neural networks; image binarization;
histogram equalization

1. Introduction

Detecting the lung boundary in chest X-ray (CXR) images has been extensively utilized in the
diagnosis of lung health [1]. An ENT (ear, neck, and throat) radiologist is trained to instinctively
recognize any pulmonary disease based on particular differences that occur within the lung regions [2].
For example, shape irregularity, size measurement, and total lung volume provide clues for serious
diseases such as cardiomegaly, pneumothorax, pneumoconiosis, or emphysema. This subjective
approach relies on the condition and the experience of a radiologist.

The impact of air pollution on human health is well-documented. The probability of a person
to suffer from a pulmonary disease shall increase when the air pollution level increases. Therefore,
more patients will need to have an X-ray checkup, which adds more workloads to ENT radiologists
and may increase the possibility of error diagnosis.

Several studies [3] have shown that computer-aided diagnosis (CAD) systems can indicate the
distinctive features for particular respiratory diseases more accurately, reduce radiologist workload,
and make remote diagnostics possible. For instance, the National Library of Medicine, in collaboration
with the Indiana University School of Medicine [4], is developing a CAD system for the screening
of tuberculosis patients in less developed areas where it is of a lack of radiologists and equipment.
A robust CAD system can help improve organ segmentation in many aspects, which include strong
edges in the rib cage and clavicle region, convoluted structures over the costophrenic angles and
vacillating shape of the lungs, varying heart dimensions, X-ray imaging inhomogeneities, and so forth.
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Many methods have been developed for image segmentation in recent years. For example,
a rule-based segmentation scheme [5] that adopts a set of pre-defined thresholds and morphological
operations were proposed. However, it is heuristic and does not produce accurate results.
Recently, deep-learning-based methods have been applied to many computer vision applications
for better performance, such as image segmentation. Most deep learning models are built using
convolutional neural networks, such as LeNet [6], Alexnet [7], VGGnet [8], GoogleNet [9], ZFNet [10],
Fully Convolutional Network (FCN) [11], U-net [12], and SegNet [13]. These Convolutional Neural
Network (CNN)-based methods usually require a large amount of training data and long training time
to be able to obtain accurate results, which could be a big obstacle for some less developed remote
areas to deploy these methods.

Our work aims to propose a pre-processing approach to achieve low-cost lung X-ray segmentation
based on CNN-based architectures, which semantically segments the regions of the lung boundary in
CXR images. The proposed method has three steps:

1. The confined-region-based histogram equalization method is applied to CXR images for
increasing the difference (contrast) between the lungs and their surrounding regions (both
bony structures and other soft tissues), which is proven to increase accuracy based on the
experimental results.

2. The grayscale CXR images are transformed into binary images based on the adaptive binarization
method, which can reduce 94.6% of the storage space usage with only a slight drop in prediction
accuracy (1.1%).

3. We verify and compare performance of the proposed method for the lung segmentation task
using various convolutional-neural-network-based models that are actively adopted for semantic
segmentation, especially for lung segmentation [14], including Fully Convolutional neural
Networks (FCNs) [11], U-net [12], and SegNet [13], using the preprocessed CXR datasets.
The experimental results revealed that the proposed pre-processing steps could make the model
training process 20.74% faster while maintaining comparable segmentation accuracy compared
to those of the state-of-the-art method.

To briefly sum up, we have made three primary contributions. (1) The confined-region-based
histogram equalization method we adopt can improve segmentation accuracy. (2) The proposed
method can expedite the model training process (20.74% faster). (3) It can substantially save storage
space with only a slight drop in prediction accuracy (1.1%).

The flowchart of the proposed method is shown in Figure 1. The rest of the paper is organized as
follows. In Section 2, the related work will be discussed. The proposed method is described in detail in
Section 3. Section 4 introduces the experimental environment and explains the test results. Section 5
concludes the paper.

Figure 1. Flowchart of the proposed pre-processing approach.
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2. Related Work

Our review covers the four lines of the literature most relevant to our problem—contrast
enhancement, image binarization, lung segmentation, and convolutional neural networks.

2.1. CXR Contrast Enhancement

Image enhancement could be an essential component for accurate segmentation, especially for
images with low visual quality, such as X-ray images. Existing work on image contrast enhancement
broadly falls into two categories as follows—histogram equalization (HE) and gamma correction.
HE works by reassigning pixel values to match the uniform distribution for the image histogram,
which can enhance the contrast of the input image. Ravia et al. [15] presented a HE technique for bone
fracture. Contrast Limited Adaptive Histogram Equalization (CLAHE) locally processes all the small
regions of the image, where the contrast is enhanced through adaptive HE, and the chances of noise
amplification can be reduced as well. Ahmed et al. [16] proposed an image enhancement algorithm for
dental X-ray images based on the adaptive HE technique. Gamma correction can work as a non-linear
contrast enhancement technique applied to each pixel and independently modifies the dynamic range
of the image. Mustapha et al. [17] proposed an approach to shift and modify the gamma value based
on the adaptive factor.

2.2. Image Binarization

Image binarization aims to convert a grayscale image to its binary version. For example, scanned
electronic documents can be binarized for further use by separating texts and other information from
the background. There are two main approaches for image binarization, which are local and global
image binarization methods. For the local binarization method, the threshold is determined according
to properties of local regions in the image, generally working well on low-quality images. Niblack [18]
proposed to calculate the mean and standard deviation of pixels in a sliding window manner to
determine the threshold. Sauvola’s approach [19] extends Niblack’s work [18], which addresses
the issue of black noise using the range of intensities of the image. Unlike local image binarization
methods, which usually are more time-consuming and computationally expensive, global image
binarization only determines one global threshold. If pixel values are more than the threshold, they are
classified as foreground. Otherwise, they are background. Otsu’s method [20] finds the threshold that
maximizes the between-class variance, which is equivalent to minimizing the within-class variance.
Ridler et al. [21] proposed to calculate the threshold by iteratively dividing the pixel histogram into
two classes.

2.3. Lung Segmentation

There has been a lot of work proposed in image segmentation for chest X-ray analysis over
the last few decades. We can roughly classify the related approaches into three categories for lung
segmentation [22]. First, we have rule-based segmentation schemes, which are also parametric learning
algorithms with a sequence of steps and rules such as thresholding [23], the edge detection [24,25],
the geometrical fitting models [25], the region growing [24] and the morphological operations [15].
Lihua et al. [15] proposed to replace edge detection in lung segmentation with the first derivative of
the horizontal and/or vertical image profiles. However, these methods are mostly heuristic and do
not generate accurate results. Therefore, they are often used as an initialization step in more robust
segmentation algorithms [26]. Second, pixel classification-based schemes exploit general classifiers,
such as the Markov random field modeling or various types of neural networks, to extract lung regions.
They are supervised-learning-based methods that classify the pixel values into the lung and non-lung
regions using a set of lung masks [11,12,27–31]. Suzuki et al. [32] proposed to utilize massive training
artificial neural networks for suppressing contrast of ribs and clavicles in chest radiographs while
the visibility of nodules and lung vessels was maintained. Third, they are deformable model-based
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schemes that have been widely applied to analyzing medical images because of its shape and size
flexibility, such as Active Shape Models (ASMs) are deformable statistical models of the shape of
objects that contain a set of landmark points [33]. ASMs have been successfully applied to lung region
segmentation [34–36] and achieved fair accuracy although their results often not accurate in clavicles
and rib cages. There have been a number of studies [37–39] that proposed to address this issue.
Active Appearance Models (AAMs) [27] utilize the multi-scale filter bank of Gaussian derivatives
and k-nearest neighbor classifiers. The major difference between AAMs and ASMs is that AAMs
consider all object pixels with a combination of shapes and appearances, while ASMs consider border
representation. In addition, hybrid approaches that combine prior schemes to produce better results
were also discussed and proposed. For instance, Ginneken et al. [27] integrated deformation-based
(active shape model, active appearance model), and pixel classification methods for better performance
using the majority rule. Coppini et al. [40] exploited a closed fuzzy-curve algorithm for emphysema
detection. The fuzzy-membership functions are determined by Kohonen networks to model lung
boundaries. Candemir et al. [4] proposed a lung segmentation method that specifically analyzes input
using a content-based image retrieval approach for determining features by SIFT-flow registration to
extract fine details.

2.4. Common Convolutional Neural Network Models for Segmentation

Current state-of-the-art neural networks based object detection methods generally include
two parts—bounding box proposals and semantic segmentation. For bounding box proposals,
generating potential bounding boxes in an image and running a classifier on those proposed
boxes. Redmon et al. [30] proposed a single regression method that directly deals with image
pixels to generate bounding box coordinates and category probabilities. Liu et al. [31] used a small
convolution filter to predict object classes and offsets at bounding box locations with different scale
detections. Semantic segmentation methods can assign a pre-defined class pixel-wise. Consequently,
the prediction accuracy, in general, for medical image segmentation using semantic-based methods
could be higher than that using the bounding box-based methods since there may be pixels that do
not correspond to any referred objects in bounding boxes. Shelhamer et al. [11] proposed Fully
Convolutional neural Networks (FCNs), whose architecture consists of only convolution layers
without any fully-connected layers. FCNs have several variants, such as FCN-32, FCN-16, and FCN-8,
representing that their outputs are 32, 16, and 8 times upsampled prediction. Ronneberger et al. [12]
proposed a U-net model that allows the network to propagate context information to higher resolution
layers. Badrinarayanan et al. [13] presented a trainable architecture that consists of an encoder network,
a corresponding decoder network followed by a pixel-wise classification layer. There are hybrid
methods that combine the prior schemes. For example, Howard et al. [41] utilized depthwise separable
convolutions to build lightweight deep neural networks.

3. Proposed Method

3.1. Contrast Enhancement with Confined-Region-Based HE

The radiographic examination involves the use of high kilovoltage techniques, such as X-rays or
Gamma Rays, to check the internal structure of a componentis, which needs an overall penetration
through all tissues (decrease in attenuation differences), therefore likely causing low-contrast X-ray
images. Before further using these images, we may obtain more accurate segmentation results if
these images can be enhanced to have better contrast. Conventionally, applying HE to images
can often improve contrast in images; however, HE uniformly stretches out the intensity range
of the image, which may cause image under- or over-enhancement. Therefore, we propose
using confined-region-based HE for the purpose of better differentiating the lungs from other
surrounding regions.
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Let I be the b-bit input image I(p) ∈
[
0, 2b − 1

]
be the intensity of the input image at pixel p.

The image histogram H is computed as

H(l) = ∑
∀p
1l [I(p)] , (1)

where l ∈ [0, 2b − 1] and 1 is the indicator function defined as

1l(x) :=

{
1, i f x = l,

0, i f x 6= l.
(2)

First, we separate the input image histogram H into the two sub-histograms, SHL and SHU , based
on the median intensity µ̃ of the image, where SHU(l) = H(l)− SHL(l) and

SHL(l) =

{
H(l), i f l ≤ µ̃,

0, otherwise.
(3)

Generally, a CXR image has a dark background and bright foreground, where SHL represents the
histogram of the background with dark features of soft tissues, and SHU represents the foreground with
bright features of bone structures. To enlarge the difference between the background and foreground,
we define the confined-region cumulative distribution function CDFLU with lower and upper bounds,
L and U, as:

CDFLU(l) =
1

W

l

∑
i=L

H(i), ∀l ≤ U, (4)

where W = ∑U
i=L H(i). Based on the confined-region cumulative distribution function CDFLU , the

transformation function T of HE is defined as:

T(l) = (U − L)CDFLU(l) + L. (5)

In our method, we specify L and U as L = SHmax
L and U = SHmax

U , where

SHmax
L = arg max

i
SHL(i),

SHmax
U = arg max

i
SHU(i).

(6)

That is, SHmax
L and SHmax

U represent the peak bin values of SHL and SHU , as shown in Figure 2.
At last, the output image Io after our confined-region-based HE can be obtained as Io(p) = T(I(p)).

Figure 2. A chest X-ray (CXR) image histogram is divided into the two sub-histograms. SHmax
L and

SHmax
U represent the peak bin values in the lower and upper sub-histograms.
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3.2. Image Binarization

After applying our confined-region-based HE to the input image, we can quantize its intensity
range to reduce the storage size. To introduce a more flexible method for image quantization, we adopt
a specific image thresholding approach based on the iterative selection [42] to find the thresholds to
quantize the intensity range of the input image with different levels. With the initial cluster centers
assigned, we can classify pixels into different groups. By observing CXR features, the first two cluster
centers are empirically initialized as one of the four corners and the center of the image. We consider
the chosen corner pixel as a background pixel with its intensity of T0. In contrast, the center pixel is
regarded as a foreground pixel with its intensity of TS, where T0 ≤ T1. The remaining cluster centers
{T1, T2, . . . , TS−1} can be selected evenly between T0 and TS, and each cluster center Tl corresponds
to its cluster Cl . Next, an image pixel Mi is classified to a class with the center that has the shortest
distance to the pixel, where the distance is calculated as:

Dij = (Mi − Tj)
2. (7)

Here, i is a pixel index, and j ∈ {0, 1. . . S}, meaning Mi ∈ Ck as Dik = min∀j(Dij). After all the
pixels are properly classified, we update the cluster centers as:

T′j =
1
|cj| ∑

p∈cj

p, ∀j ∈ {0, 1, . . . , S}, (8)

where T′j will be iteratively updated until it converges. With the cluster centers {T0, T1, T2, . . . , TS},
we can then quantize the original intensity range for image quantization. According to our
experimental results, we choose to binarize CXR images to reduce the data storage usage with only a
slight drop in prediction accuracy (1.1%).

3.3. Image Segmentation Based on Deep Neural Networks

At last, after applying contrast enhancement and image binarization to CXR images, we choose
three state-of-the-art deep-neural networks-based models often used for semantic segmentation,
including FCN, U-net, and SegNet [14], to assess the practicality of the proposed method. Note that
we train these models over our pre-processed CXR images for lung X-ray segmentation from scratch.

In Figure 3, we show general architectures of FCN [11], U-net [12], and SegNet [13]. An FCN
model [11], which consists of only convolutional, pooling, and transposed convolution layers,
transforms the input image into pixel categories. Instead of using fully connected layers, the model uses
encoder-like layers to extract features from the input image and transform these features back to the
size of the input image through the transposed convolution layer. For a pixel at a given location in the
input image, the output is a predicted segmentation label of the pixel that corresponds to the location.
A U-Net architecture originally derived from the FCN architecture proposed in Reference [12] by
adding a full decoder. What U-net differs from FCN is that U-net replaces the transposed convolutional
layers with upsampling operations to increase the resolution of the output. Additionally, U-net adds
skip-connections to concatenate low-level features from the encoder part with high-level features from
the decoder part to provide local information to the global information. SegNet [13] is a convolutional
encoder-decoder architecture proposed for semantic pixel-wise segmentation, whose architecture is
similar to that of U-net. The differences lie in two aspects. First, the original SegNet does not have
skip-connections. Second, it uses unpooling layers to upsample resolutions of feature maps and the
output.The general loss function for a lung segmentation task is defined by binary cross entropy as:

Lbce = −∑
∀p

[
Sgt(p)log(S̃(p)) + (1− Sgt(p))log(1− S̃(p))

]
, (9)
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where Sgt(p) ∈ {0, 1} is the ground truth segmentation label of the pixel p and S̃(p) is the predicted
probability of p being the lung regions.
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Figure 3. General architectures of three common state-of-the-art deep-neural networks-based
models for semantic segmentation. (a) Fully Convolutional Network (FCN) [11], (b) U-net [12],
and (c) SegNet [13].

4. Experimental Results

4.1. Chest X-ray Datasets

To verify our method, we collected three different CXR datasets for the experiment:

1. Japan Society of Radiology Technology (JSRT) dataset, which contains manually-annotated
segmentation labels of lung fields, heart, and clavicles. The JSRT dataset contains 154
nodule-containing digital CXR images (100 malignant cases, 54 benign cases) and 93 normal
digital images [43]. The images are grayscale with their bit depth of 12. The size of the images is
2048× 2048. Both the vertical and horizontal pixel spacing is 0.175 mm.

2. The Department of Health and Human Services of Maryland (Montgomery dataset) collected
X-ray images over many years under Montgomery County’s Tuberculosis Control scheme.
The dataset consists of 58 digital CXR images with manifestations of tuberculosis and 80
normal digital CXR images [44]. The X-ray images are 12-bit grayscale images, and their size is
4020× 4892 with 0.0875 mm pixel resolution.

3. The dataset from a private clinic in India includes 397 chest X-rays with resolutions of 2446× 2010,
1772× 1430, and 2010× 1572. They are all 12-bit grayscale images. The vertical and horizontal
pixel spacing are both 0.175 mm.

Here, we randomly split each dataset into the training, validation, and testing datasets,
where there are 620 images for training, 69 images for validation, and 69 images for testing [27,44].
To enlarge the dataset, we did random cropping for augmentation as recommended in Reference [45].
Note that all the images are grayscale with 12-bit depth and are resized to 320× 320 for training and
testing. The experiment was run on a computer with Inter R© coreTM i7-7700 4.20 GHz CPU, 16GB
RAM, and an Nvidia GeForce RTX 2080 Ti with 11GB of VRAM.

4.2. Object Evaluation

To fairly compare the performance of the above-mentioned models, the measurement metrics
used are the Jaccard Simi(ΩJS), Dice’s coefficient (ΩDS) and Mean Absolute Error (MAE). The Jaccard
Similarity coefficient, known as the Jaccard Index, is for measuring the similarity and diversity of
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sample sets, which defined as ΩJS = |TP|
|FP|+|TP|+|FN| , where |TP|, |FP|, and |FN| are the numbers of

true positives, false positives, and false negatives. The Dices coefficient also quantifies the similarity
like ΩJS but with a different weight on true positive as ΩDS = 2|TP|

|FP|+|TP|+|FN| .
Each model is trained and tested on both the original chest X-ray (OCXR) and enhanced chest

X-ray (ECXR) dataset for a more detailed comparison. The ECXR dataset is generated using the
mentioned contrast enhancement method in Section 3.1. In the experiment, pixels are classified into k
groups for testing, where k ∈ {2, 16, 256}. In Table 1, it shows that the proposed contrast enhancement
can overall help increase ΩDS 20% on U-net model, 15% on FCN-8 model, 20% on FCN-32 model,
and 15% on SegNet model. Besides, using different k on either the OCXR or ECXR dataset with the
these network models, they have similar average accuracy on ΩJS, ΩDS, and MAE. Therefore, to save
the storage size, we can binarize the images that are used for lung segmentation. Moreover, it can also
save time that model access images.

Table 1. The segmentation accuracy (measured using Jaccard, Dice, and MAE metrics) of the often-used
segmentation models using different pixel clusters.

Model Index ΩJS ΩDS MAE Model Index ΩJS ΩDS MAE

ECXR 0.838 0.880 0.738 ECXR 0.808 0.807 0.709k = 2 OCXR 0.832 0.738 0.737 k = 2 OCXR 0.804 0.704 0.710

ECXR 0.839 0.887 0.739 ECXR 0.809 0.810 0.709k = 16 OCXR 0.835 0.740 0.739 k = 16 OCXR 0.805 0.706 0.709

ECXR 0.840 0.891 0.740 ECXR 0.809 0.810 0.711k = 256 OCXR 0.836 0.739 0.740 k = 256 OCXR 0.806 0.707 0.710

ECXR 0.842 0.893 0.739 ECXR 0.809 0.811 0.711

U-net

Original OCXR 0.839 0.740 0.740

FCN-8

Original OCXR 0.808 0.707 0.709

ECXR 0.641 0.645 0.621 ECXR 0.833 0.842 0.734k = 2 OCXR 0.638 0.541 0.620 k = 2 OCXR 0.835 0.736 0.735

ECXR 0.641 0.650 0.626 ECXR 0.835 0.845 0.735k = 16 OCXR 0.639 0.543 0.624 k = 16 OCXR 0.835 0.735 0.734

ECXR 0.642 0.653 0.630 ECXR 0.836 0.846 0.735k = 256 OCXR 0.640 0.541 0.629 k = 256 OCXR 0.835 0.734 0.734

ECXR 0.642 0.655 0.632 ECXR 0.837 0.851 0.736

FCN-32

Original OCXR 0.641 0.543 0.628

SegNet

Original OCXR 0.835 0.734 0.735

4.3. Convergence Rate

As previously noted, the proposed method uses binarized CXR images for training and testing.
Table 2 summarizes the number of iterations required for the training of different models for the lung
segmentation to converge. In the experiment, we compare the number of iterations needed for the
training of different models to converge with CRX image datasets, unprocessed or processed. To be
specific, we generate the ECXR dataset by applying our confined-region-based HE to the OCXR dataset.
We binarize the OCXR images to produce the BOCXR dataset. At last, the BECXR dataset is obtained
by binarizing the ECXR dataset. The results show that the ECRX dataset is easier for the often used
segmentation models to train on. By comparing the training with the OCXR and ECXR datasets, we
can see the training on the ECXR dataset converges 11.07% faster than that on the OCXR one. Using
the image binarization approach based on pixel clustering, we can accelerate the training by 7.02%,
comparing the BOCXR to the OCXR dataset. If we binarize the OCXR and ECXR datasets (BOCXR
vs. BECXR), the training on the BECXR dataset converges faster by 14.75% than on the BOCXR one.
Moreover, our image binarization approach also expedites the training on the enhanced dataset (ECXR).
That is, using the BECXR dataset can speedup the segmentation models in convergence by 10.88%
on average than using the ECXR. Table 2 shows in detail all the comparisons of convergence rates
among different segmentation models. In summary, if applying our image enhancement method and
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binarization to the OCXR dataset, we can achieve 20.74% faster for the training to converge on average.
Figure 4 demonstrates accurate segmentation results obtained using the U-net model trained on the
BECXR dataset, which is the OCXR dataset processed by the proposed pre-processing approach.

Table 2. The comparisons of the convergence rates (measured using numbers of iterations needed
for the training of the models to converge) using different pre-processing approaches. The second
to fifth columns list the total iterations for convergence. The sixth to tenth columns list the iteration
reduction percentages “A” versus “B” (e.g., original chest X-ray (OCXR) vs enhanced chest X-ray
(ECXR)). The last row shows the average with respect to each column.

Iterations

Model OCXR ECXR BOCXR BECXR

OCXR
vs.

ECXR

OCXR
vs.

BOCXR

OCXR
vs.

BECXR

BOCXR
vs.

BECXR

ECXR
vs.

BECXR

U-net 11,321 9394 10,517 8664 −17.02% −7.10% −23.47% −17.62% −7.77%
FCN-8 21,665 19,523 20,101 16,512 −9.89% −7.22% −23.78% −17.85% −15.42%

FCN-32 19,433 17,576 18,298 15,273 −9.56% −5.84% −21.41% −16.53% −13.10%
SegNet 13,588 12,209 12,456 11,868 −10.15% −8.33% −12.66% −4.72% −2.79%
Average 16,502 14,676 15,343 13,079 −11.07% −7.02% −20.74% −14.75% −10.88%

Figure 4. An example of segmentation results. The red and green contours represent the expert
annotation and the estimated segmentation by the U-net model [12], respectively. Note that contrast of
the figure is enhanced for display.

5. Conclusions

In this work, we have made two primary contributions. First, we propose an effective
pre-processing approach that can save storage space for image datasets. Second, we greatly expedite
the model training process in lung X-ray segmentation based on CNN-based architectures using the
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proposed method. More specifically, using the proposed contrast enhancement and image binarization
steps, we demonstrate that it can help the training converge faster and take less storage space for data
with only a slight drop in prediction accuracy (1.1%). We test our approach using four often-used
CNN-based segmentation models with the OCXR, ECXR, BOCXR, and BECXR datasets to verify the
effectiveness of our proposed pre-processing approach. Experimental results showed that using the
dataset (BECXR) processed by the proposed method can help the training converge 20.74% faster
as well as decrease 94.6% of the storage space usage on average compared to using the original
dataset (OCXR).
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Acronyms used in the paper.

CLAHE Contrast Limited Adaptive Histogram Equalization
CXR Chest X-ray
ASM Active Shape Model
AAM Active Appearance Model
FCN Fully Convolutional neural Network
CAD Computer-Aided Diagnosis
TB Tuberculosis
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