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Abstract: Taking advantage of the possibility of fuzzy test statistic falling in the rejection region,
a statistical hypothesis testing approach for fuzzy data is proposed in this study. In contrast to classical
statistical testing, which yields a binary decision to reject or to accept a null hypothesis, the proposed
approach is to determine the possibility of accepting a null hypothesis (or alternative hypothesis).
When data are crisp, the proposed approach reduces to the classical hypothesis testing approach.

Keywords: fuzzy testing; hypothesis testing; fuzzy sets; fuzzy numbers

1. Introduction

A statistical hypothesis is a statement of the population distribution. In order to seek evidence for
confirming if the hypothesis is true or false, a sample observation needs to be drawn randomly from
the population. The major work of this research is, therefore, via selecting a proper statistical method
to analyze the collected data and decide whether the null hypothesis under consideration is effective.
In classical statistical testing, the sample observations are generally crisp, and all the corresponding
testing methods can be well implemented. However, in a practical world, the data are frequently fuzzy
due to imprecise measurement and rough description. For example, a survey test for the starting salary
of graduated students per year, owing to people unwilling to tell the precise number, the collected
sample data are generally fuzzy, and data, such as “roughly $29,000”, “roughly $32,000”, or “less
than $40,000”, are obtained. Therefore, the extension of the notion of hypothesis testing to the fuzzy
environment would be useful to apply in such a case.

Hypothesis testing methods have been effective for solving problems of fuzzy data. Bellman
and Zadeh [1] first introduced hypothesis-testing models for application in the fuzzy environment.
Casals et al. [2], Son et al. [3], Römer and Kandel [4], Lubiano et al. [5], and Arefi [6] extended classical
statistical hypothesis testing methods to perform hypothesis testing for fuzzy data. Watanabe and
Imaizumi [7] also fuzzified the statistical hypothesis and then performed fuzzy testing. Delgado
et al. [8] considered a Bayesian testing method for fuzzy data. Arnold [9] considered statistical tests with
a continuously distributed test statistic and determined a test to maximize the degree of satisfaction
under particular fuzzy requirements. Saade and Schwarzlander [10] discussed hypothesis testing
for hybrid data, which is composed of fuzzy data and crisp data. Grzegorzewski [11] presented a
corresponding fuzzy testing method by using fuzzy confidence intervals considered by Kruse and
Meyer [12]. Filzmoser and Viertl [13] considered testing hypotheses with fuzzy data by the fuzzy
p-value. Taheri and Arefi [14] introduced testing fuzzy parametric hypotheses according to a fuzzy
test statistic. Wu [15] developed a testing rule as well as a step-by-step procedure by fuzzy critical
values and fuzzy p-values when assessing process performance. Parchami et al. [16] presented a
method to test hypotheses by comparing a fuzzy p-value and a fuzzy significance level when there
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were problems with fuzzy hypotheses and crisp data. Alizadeh et al. [17] proposed a hypothesis testing
based on a likelihood ratio test for fuzzy hypothesis and fuzzy data. Saeidi et al. [18] considered the
problem of testing a hypothesis on the basis of records in a fuzzy environment. Elsherif et al. [19]
proposed an algorithm for testing a hypothesis when both hypotheses and data are fuzzy based on a
fuzzy test statistic. Habiger [20] developed a framework for the randomized p-value, mid-p-value and
abstract randomized p-value, and multiple test function. Icen and Bacanli [21] presented a hypothesis
test method for the mean of an inverse Gaussian distribution. In the presented method, confidence
intervals by the help of α-cuts are used to obtain a fuzzy test statistic. Yosefi et al. [22] presented an
approach for testing fuzzy hypotheses based on a likelihood ratio test statistic. Parchami et al. [23]
extended one-way ANOVA to the environment with symmetric triangular and normal fuzzy data.
Hesamian and Akbari [24] presented an approach for intuitionistic fuzzy hypotheses by extending the
type-I, type-II, power of test, and p-value. Parchami et al. [25] presented a minimax approach to the
problem of fuzzy hypotheses while data are crisp. Akbari and Hesamian [26] suggested a degree-based
criterion to compare the fuzzy p-value and a specific significance level for making the decision to
accept the null hypothesis or not. Kahraman et al. [27] developed interval-valued intuitionistic fuzzy
confidence intervals for population mean and differences in means of two populations. Haktanir and
Kahraman [28] developed a Z-fuzzy hypothesis testing method. In the developed method, Z-fuzzy
numbers are used to capture the vagueness in the sample data, and a Z-fuzzy number is represented
by a restriction function that is usually a triangular or trapezoidal fuzzy number. Parchami [29]
applied two R packages “FPV” and “Fuzz.p.value” for the practical hypothesis-test problem for when
data/hypotheses are fuzzy.

In Theorem 4 of Grzegorzewski [11], the fuzzy test for H0 : θ = θ0 against the alternative
Ha : θ , θ0 is a function ϕ with the following α-cuts

ϕ(X̃1, · · · , X̃n) =


{0} if θ0 ∈ (Πα\(¬Π)α)

{1} if θ0 ∈ ((¬Π)α\Πα)

{0, 1} if θ0 ∈ (Πα ∩ (¬Π)α)

φ if θ0 < (Πα ∪ (¬Π)α)

(1)

where X̃1, X̃2, . . . , X̃n are fuzzy random sample, Πα is the α-cut of fuzzy confidence interval Π for θ
and (¬Π)α is the α-cut of complement of fuzzy confidence interval Π. Grzegorzewski [11] claims that
the membership function of ϕ is µϕ(t) = µΠ(θ0)I{0}(t) + (1− µΠ(θ0))I{1}(t), t ∈ {0, 1}, where µΠ(θ0)

is the membership function value that the parameter value of null hypothesis, θ0, falling in the fuzzy
confidence interval Π. For example, we get µϕ(t) = 0.4/0 + 0.6/1 from Figure 1, and the result may
be interpreted as “rather reject H0 : θ = θ0”. Note that, in Figure 1, Grzegorzewski’s approach uses
the information on the right-hand side of the fuzzy confidence interval only. This means the testing
method of Grzegorzewski [11] is simple but may have some spaces to be improved.

Mathematics 2020, 8, x 2 of 17 

 

problems with fuzzy hypotheses and crisp data. Alizadeh et al. [17] proposed a hypothesis testing 
based on a likelihood ratio test for fuzzy hypothesis and fuzzy data. Saeidi et al. [18] considered the 
problem of testing a hypothesis on the basis of records in a fuzzy environment. Elsherif et al. [19] 
proposed an algorithm for testing a hypothesis when both hypotheses and data are fuzzy based on a 
fuzzy test statistic. Habiger [20] developed a framework for the randomized p-value, mid-p-value 
and abstract randomized p-value, and multiple test function. Icen and Bacanli [21] presented a 
hypothesis test method for the mean of an inverse Gaussian distribution. In the presented method, 
confidence intervals by the help of α-cuts are used to obtain a fuzzy test statistic. Yosefi et al. [22] 
presented an approach for testing fuzzy hypotheses based on a likelihood ratio test statistic. Parchami 
et al. [23] extended one-way ANOVA to the environment with symmetric triangular and normal 
fuzzy data. Hesamian and Akbari [24] presented an approach for intuitionistic fuzzy hypotheses by 
extending the type-I, type-II, power of test, and p-value. Parchami et al. [25] presented a minimax 
approach to the problem of fuzzy hypotheses while data are crisp. Akbari and Hesamian [26] 
suggested a degree-based criterion to compare the fuzzy p-value and a specific significance level for 
making the decision to accept the null hypothesis or not. Kahraman et al. [27] developed interval-
valued intuitionistic fuzzy confidence intervals for population mean and differences in means of two 
populations. Haktanir and Kahraman [28] developed a Z-fuzzy hypothesis testing method. In the 
developed method, Z-fuzzy numbers are used to capture the vagueness in the sample data, and a Z-
fuzzy number is represented by a restriction function that is usually a triangular or trapezoidal fuzzy 
number. Parchami [29] applied two R packages “FPV” and “Fuzz.p.value” for the practical 
hypothesis-test problem for when data/hypotheses are fuzzy. 

In Theorem 4 of Grzegorzewski [11], the fuzzy test for 00 :  H  against the alternative 

0:  aH  is a function   with the following α-cuts 





















 ))(( if       
 ))(( if  }1,0{

 )\)(( if     }1{
 ))(\( if     }0{

)~,,~(

0

0

0

0

1

















 nXX   (1)

where n21 X~,,X~,X~   are fuzzy random sample,   is the α-cut of fuzzy confidence interval   for 
  and )(   is the α-cut of complement of fuzzy confidence interval  . Grzegorzewski [11] 
claims that the membership function of   is ),())(1()()()( }1{0}0{0 tItIt     }1 ,0{ t , 

where )( 0  is the membership function value that the parameter value of null hypothesis, 0 , 
falling in the fuzzy confidence interval  . For example, we get )(t  = 0.4/0 + 0.6/1 from Figure 1, 

and the result may be interpreted as “rather reject 00 :  H ”. Note that, in Figure 1, 
Grzegorzewski’s approach uses the information on the right-hand side of the fuzzy confidence 
interval only. This means the testing method of Grzegorzewski [11] is simple but may have some 
spaces to be improved. 

)(x )(x

0 x  
Figure 1. Testing function   of Grzegorzewski [11]. Figure 1. Testing function ϕ of Grzegorzewski [11].



Mathematics 2020, 8, 551 3 of 16

In classical statistical hypothesis testing, the sample data are substituted into a proper test statistic,
and the critical value for the test statistic is determined under a given significance level, then the
rejection region is determined consequently. When the observed value of the test statistic falls in the
rejection region, the null hypothesis should be rejected. Otherwise, the null hypothesis should not be
rejected. This is so-called binary decision. Intuitively, when data are fuzzy, the fuzzy testing methods
should be developed by fuzzifying the corresponding classical statistical testing methods. Since testing
the rejection region is a crisp set, and the observed value of test statistic is fuzzy, we can conduct a
reasonable testing approach to determine whether the fuzzy test statistic falls in the rejection region.
Moreover, the proposed fuzzy testing method should be able to degenerate to the classical statistical
testing method with crisp data. Based on these thoughts, the rest of this paper is organized as follows.
Section 2 presents the method to determine whether the fuzzy test statistic falls into the rejection
region. Section 3 presents the testing of the normal population to illustrate the real-life application of
the proposed method. Section 4 gives examples to compare our proposed approach with the testing
methods of Grzegorzewski [11] and Filzmoser and Viertl [13]. Conclusions and suggestions are drawn
in Section 5.

2. Fuzzy Test Approach

The fuzzy number can be defined as: given a fuzzy set A of the real line<, with the membership
function µA :<→ [0, 1] satisfies the following conditions:

(a) A is normal, i.e., there exists an element x0, such that µA(x0) = 1.
(b) µA(y) ≥ min(µA(x),µA(z)), ∀x ≥ y ≥ z ∈ <.
(c) µA is upper semicontinuous.
(d) Support (A) is bounded.

Usually, the α-cut Aα =
{
x ∈ < : µA(x) ≥ α

}
is used to analyze the fuzzy number. That is, the set{

Aα : α ∈ [0, 1]
}

is used to describe fuzzy number A.
The probability distribution of the object, Pθ, belongs to a distribution family ℘ = {Pθ : θ ∈ Θ}.

Assume that the null hypothesis is H0 : θ ∈ Θ0 and the alternative hypothesis is Ha : θ ∈ Θ1, in which
Θ0 and Θ1 are the subsets of Θ, and Θ0 ∩Θ1 = φ. The problem of the classical hypothesis testing
problem is that in a set of random sample X1, X2, . . . , Xn, the observations can be used to determine to
reject H0 (to accept Ha) or not to reject H0. The classical testing method is to calculate the probability of
a specific test statistic T(X 1, X2, . . . , Xn) (i.e., the function of observations), to conduct the rejection
region C (a crisp set). If the observations of statistic T(X 1, X2, . . . , Xn) fall into C, then reject the null
hypothesis H0; otherwise, do not reject the null hypothesis H0 [30].

When X̃1, X̃2, . . . , X̃n are fuzzy random data, based on the definitions of Kwakernaak [31,32]
and Kruse [33], they may be treated as a fuzzy perception of the usual random sample X1, X2, . . . , Xn
(see [11]), and Pθ is the population distribution of X1, X2, . . . , Xn. Assume that we are interested
in testing H0 : θ ∈ Θ0 against Ha : θ ∈ Θ1, and the observed sample data are fuzzy numbers,
X̃1 = x̃1, X̃2 = x̃2, . . . , X̃n = x̃n. By substituting these data into a test statistic T(X 1, X2, . . . , Xn),
we can obtain a fuzzy number T̃ = T( x̃ 1, x̃2, . . . , x̃n), which are the observations of fuzzy test
statistic T∗ = T

(
X̃

1
, X̃2, . . . , X̃n). If each membership function of fuzzy number X̃i, µX̃i

is known,

we can obtain the membership function of fuzzy number T̃, µT̃(t), by using Zadeh’s extension

principle [34]. Fuzzy number T̃ is the observations of fuzzy test statistic T∗ = T
(
X̃1, X̃2, . . . , X̃n) .

Therefore, if T̃ = T( x̃ 1, x̃2, . . . , x̃n) ∈ C, then the null hypothesis should be rejected. Otherwise,
the null hypothesis should not be rejected. Since T̃ is a fuzzy number, it is not clear whether T̃ falls into
the rejection region, C. To solve this problem, Filzmoser and Viertl [13] introduce the concept of a fuzzy
p-value. Suppose all α-cuts of T̃ are closed interval [t 1(α), t2(α)] , then each α-cut of T̃ corresponds to
a α-cut of fuzzy p-value, which is defined by

[p1(α), p2(α)] = [P(T ≤ t1(α)), P(T ≤ t2(α))] for the left-hand sided testing problem,
[p1(α), p2(α)] = [P(T ≤ t1(α), P(T ≤ t2(α)] for the right-hand sided testing problem, and



Mathematics 2020, 8, 551 4 of 16

[p1(α), p2(α)] =

{
[2P(T ≤ t1(α)), min[1, 2P(T ≤ t2(α))]] or
[2P(T ≥ t2(α)), min[1, 2P(T ≥ t1(α))]]

for the two-sided testing problem.

Given the significance level γ for all α ∈ (0, 1] and p1(α) ≤ p2(α), the decision of Filzmoser
and Viertl [13] is made according to (1) if p2(α) < γ, then reject H0 and accept Ha; (2) if p1(α) > γ,
then accept H0 and reject Ha; (3) if γ ∈ [p1(α), p2(α)] then both H0 and Ha are neither accepted nor
rejected. Note that we cannot make a certain decision in the third case. In this paper, we define the
possibility of T̃ ∈ C and propose another testing approach, so that the total information of a membership
function of test statistic can be used, and a fuzzy decision can be made in any case.

Assuming that a fuzzy set A of the real line <, the membership function of A is µA(y), and
Zadeh [35] defines that the probability of fuzzy set A is

P(A) =

∫
<

µA(y)dP (2)

where P is the probability measure of Y on real axis<. Based on Equation (2), we can define:

Definition 1. The possibility of the value of the fuzzy test statistic, T̃ , falling in the rejection region. C is the
ratio of probability of T̃ to the probability of T̃ in C, i.e.,

Poss(T̃ ∈ C) = P(T̃ ∈ C
∣∣∣ T = T̃)

P(T = T̃ and T̃ ∈ C)

P(T̃)

∫
C µT̃(t)dP0(t)∫
<
µT̃(t)dP0(t)

(3)

Poss(T̃ ∈ C) = 0, indicates that the possibility of rejecting H0 is zero, then we should not reject H0. Poss(T̃ ∈ C)
= 1, indicates that the possibility of rejecting H0 is 100%, then we should reject H0. If 0 < Poss(T̃ ∈ C) = P0

< 1, this indicates that the possibility of rejecting H0 is P0, then we should reject H0 with degree of conviction P0.
Hence, a fuzzy decision rule is formulated. If a decision maker needs a crisp answer to know whether H0 should
be rejected or not, the manager can use a random mechanism to transfer the fuzzy decision rule to the binary
decision rule. For example, the manager can randomly draw a random number a in [0, 1]. If a ≤ p0, then H0 is
rejected. If a > p0, then H0 is not to be rejected. Consequently, we have a decision rule that is analogous to that
of a classical random test.

When data reduce to crisp, the membership function of T̃ ≡ t0 is

µT̃(t) =
{

1, t = t0

0, otherwise
.

Then, the denominator of Equation (3) is zero, which means that Equation (3) is meaningless.
However, since T̃ ≡ t0 is crisp, the possibility of t0 ∈ C is also crisp. That is, if t0 ∈ C, then Poss(T̃ ∈
C) = P(t0 ∈ C | T = t0 ) = 1; if t0 < C, then Poss(T̃ ∈ C) = P(t0 ∈ C | T = t0 ) = 0. This is identical to
the classical testing method.

3. Fuzzy Testing of Hypotheses with Fuzzy Data

Suppose the sample data are fuzzy numbers x̃1, x̃2, . . . , x̃n. According to Section 2, by substituting
these sample data into test statistic T = T(X 1, X2, . . . , Xn), the value T̃ = T(x̃ 1, x̃2, . . . , x̃n) of a fuzzy
test statistic T∗ becomes a fuzzy number. If every membership function of fuzzy number x̃i, µX̃i

is

known, we can obtain the membership function of fuzzy number T̃, µT̃(t), by using Zadeh’s extension
principle [34].

Represent the α-cuts of X̃i as

(xi)α = [ (Xi)
L
α, (Xi)

U
α ]= [min·xi {xi ∈ X |µX̃i

(xi) ≥ α }, max·xi {xi ∈ X |µX̃i
(xi) ≥ α } ] (4)
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where X is the crisp universal set on which X̃i is defined. It is very difficult to deduce the exact
membership function µT̃ of T̃ because the function relationship may be nonlinear. The approximately
membership function µT̃ can be derived by the approaches of Liu and Kao [36]. Let

TL
α = min.

(Xi)
L
α≤Xi≤(Xi)

U
α

{
T(X1, X2, · · · , Xn)

}
(5a)

TU
α = max.

(Xi)
L
α≤Xi≤(Xi)

U
α

{
T(X1, X2, · · · , Xn)

}
(5b)

then T̃α = [TL
α, TU

α ] is the α-cuts of T̃.
When all fuzzy data reduce to crisp values, Equation (5a,b) become identical and T̃ reduce to T

in the classical model. Using Zadeh’s extension principle [34], the membership function µT̃ may be
constructed as

µT̃(t) =


0, t < TL

0 or t > TU
0

L(t), TL
0 ≤ t ≤ TL

1
1, TL

1 ≤ t ≤ TU
1

R(t), TU
1 ≤ t ≤ TU

0

(6)

where L(t) and R(t) are the left and right shape functions of µT̃, respectively.

Suppose H0 : θ ≤ θ0 against Ha : θ > θ0 is to be tested and the rejection region is
{

T | T > Tγ
}
.

Figure 2 describes one of the relationships between the membership function µT̃ and rejection region.
The probability of the fuzzy test statistic T̃, based on Equations (2) and (6), is defined as,

∆ =

∫ TL
1

TL
0

L(t) f (t)dt +
∫ TU

1

TL
1

f (t)dt +
∫ TU

0

TU
1

R(t) f (t)dt (7)

where f (t) denotes the probability density function of test statistic T. In Figure 2, based on Equations
(3), (6), and (7), the possibility P0 can be defined as,

P0 = [

∫ TU
1

Tγ
f (t)dt +

∫ TU
0

TU
1

R(t) f (t)dt]/∆ (8)
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{

T | T > Tγ
}
.

The right-sided test involves five different types, as shown in Figure 3, where the crisp set{
T | T > Tγ

}
represents the rejection region. Based on Equations (2), (3), (6), and (7), the possibility P0

in Figure 3 are shown in Table 1.
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Similarly, the possibility P0 can be calculated for the left-sided test and two-sided test. Figure 4
shows the five different types of the left-sided test, where the rejection region is
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}
.

The definition of possibility P0 is shown in Table 2.
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Table 2. The possibility P0 for left-sided test.

Case in Figure 4 P0

(a) P0 = 0

(b) P0 = [
∫ TL

1

TL
0

L(t) f (t)dt +
∫ TU

1

TL
1

f (t)dt +
∫ T1−γ

TU
1

R(t) f (t)dt]/∆

(c) P0 = [
∫ TL

1

TL
0

L(t) f (t)dt +
∫ T1−γ

TL
1

f (t)dt]/∆

(d) P0 = [
∫ T1−γ

TL
0

L(t) f (t)dt]/∆

(e) P0 = 1
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The two-sided test involves fifteen different types of membership functions of T̃, as shown in
Figures 5–7, where the crisp set

{
T | (T < T1−γ/2)∪ (T > Tγ/2)

}
is the rejection region. The definition

of possibility P0 is shown in Table 3.
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Table 3. The possibility P0 for the two-sided test.

Case in Figures 5–7 P0

(a) P0 = 1

(b) P0 = [
∫ TL

1

TL
0

L(t) f (t)dt +
∫ TU

1

TL
1

f (t)dt +
∫ T1−γ/2

TU
1

R(t) f (t)dt]/∆

(c) P0 = [
∫ TL

1

TL
0

L(t) f (t)dt +
∫ TU

1

TL
1

f (t)dt +
∫ T1−γ/2

TU
1

R(t) f (t)dt +
∫ TU

0
Tγ/2

R(t) f (t)dt]/∆

(d) P0 = [
∫ TL

1

TL
0

L(t) f (t)dt +
∫ T1−γ/2

TL
1

f (t)dt]/∆

(e) P0 = [
∫ TL

1

TL
0

L(t) f (t)dt +
∫ T1−γ/2

TL
1

f (t)dt +
∫ TU

0
Tγ/2

R(t) f (t)dt]/∆

(f) P0 = [
∫ TL

1

TL
0

L(t) f (t)dt +
∫ T1−γ/2

TL
1

f (t)dt +
∫ TU

1
Tγ/2

f (t)dt +
∫ TU

0

TU
1

R(t) f (t)dt]/∆

(g) P0 = [
∫ T1−γ/2

TL
0

L(t) f (t)dt]/∆

(h) P0 = [
∫ T1−γ/2

TL
0

L(t) f (t)dt +
∫ TU

0
Tγ/2

R(t) f (t)dt]/∆

(i) P0 = 0

(j) P0 = [
∫ TU

0
Tγ/2

R(t) f (t)dt]/∆

(k) P0 = [
∫ T1−γ/2

TL
0

L(t) f (t)dt +
∫ TU

1
Tγ/2

f (t)dt +
∫ TU

0

TU
1

R(t) f (t)dt]/∆

(l) P0 = [
∫ TU

1
Tγ/2

f (t)dt +
∫ TU

0

TU
1

R(t) f (t)dt]/∆

(m) P0 = [
∫ T1−γ/2

TL
0

L(t) f (t)dt +
∫ TL

1
Tγ/2

L(t) f (t)dt +
∫ TU

1

TL
1

f (t)dt +
∫ TU

0

TU
1

R(t) f (t)dt]/∆

(n) P0 = [
∫ TU

1
Tγ/2

L(t) f (t)dt +
∫ TU

1

TL
1

f (t)dt +
∫ TU

0

TU
1

R(t) f (t)dt]/∆

(o) P0 = 1

The numerical method is therefore applied to determine the approximate values of P0. As an
illustration, we consider some fuzzy testing problems for the normal population with fuzzy data.

3.1. Fuzzy Test of Mean with Known Population Variance

3.1.1. Single Normal Population with Known Population Variance

The mean of a normal population in classical tests generally assumes that the observations are
crisp. Suppose that the population variance is known; the test statistic for the null hypothesis about
the population mean, H0 : µ = µ0, is calculated as,

Z =
X − µ0

σ/
√

n
(9)

for a normal population, where X, n, and σ are the sample mean, sample size, and the standard
deviation of the population, respectively.

When measured imprecisely, the test statistic using fuzzy data becomes

Z̃ ≈

1
n

n∑
i=1

X̃i − µ0

σ/
√

n
(10)

The exact membership function of a fuzzy test statistic Z̃ can be derived, since the functional
relationship between Z̃ and X̃i is linear. When all the observations X̃i are trapezoidal fuzzy numbers,
the α-cuts of X̃i can be represented as (Xi)α = [ (Xi)

L
α, (Xi)

U
α ]. Let

ZL
α =

(X)
L
α − µ0

σ/
√

n
(11a)



Mathematics 2020, 8, 551 9 of 16

ZU
α =

(X)
U
α − µ0

σ/
√

n
(11b)

then Z̃α = [ZL
α, ZU

α ] is the α-cuts of Z̃. Equations (11a) and (11b) are a pair of linear functions with
bound constraints. The membership function, µZ̃, is constructed as,

µZ̃(z) =


L(z) , ZL

0 ≤ z ≤ ZL
1

1 , ZL
1 ≤ z ≤ ZU

1
R(z) , ZU

1 ≤ z ≤ ZU
0

0 , otherwise

(12)

where L(z) = (z − ZL
0)/(Z

L
1 − ZL

0) and R(z) = (ZU
0 − z)/(ZU

0 − ZU
1 ). Z̃ is also a trapezoidal fuzzy

number defined as Z̃ = [ZL
0 , ZL

1 , ZU
1 , ZU

0 ], since the function relationship between Z̃ and X̃i is linear.
The trapezoidal membership function µZ̃ is shown in Figure 8.
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Figure 9 shows the right-sided test for µ under fuzzy data. The probability associated with Z̃,
based on Equations (2), (3), and (12), is defined as

∆ =

∫ ZL
1

ZL
0

L(z)g(z)dz +
∫ ZU

1

ZL
1

g(z)dz +
∫ ZU

0

ZU
1

R(z)g(z)dz (13)

where g(z) is the probability density function of a standard normal distribution Z. In Figure 9,

the possibility P0 is defined as P0 = [
∫ ZU

1
Zγ

g(z)dz +
∫ ZU

0

ZU
1

R(z)g(z)dz]/∆.
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3.1.2. Two Normal Populations with Known Population Variances

This approach can also be applied in a testing hypothesis concerning the difference between two
normal population means. Assume the two population variances are known. The classical test statistic
of H0 : µX − µY = µ0 is calculated as,

Z =
(X −Y) − µ0√

σ2
X

nX
+

σ2
Y

nY

(14)

for two independent normal populations. Without loss of generality, assume all data (X̃i and Ỹ j) are
trapezoidal fuzzy numbers for two independent normal populations with fuzzy data. Equation (14)
for calculating the test statistic using fuzzy data becomes,

Z̃ ≈

( 1
nX

nX∑
i=1

X̃i −
1

nY

nY∑
j=1

Ỹ j) − µ0√
σ2

X
nX

+
σ2

Y
nY

(15)

Similar to the aforementioned concept, the exact membership function µZ̃ of Z̃ can be derived.

The α-cuts of X̃i and Ỹ j are represented as,

(Xi)α = [ (Xi)
L
α, (Xi)

U
α ]= [min·xi {xi ∈ X |µX̃i

(xi) ≥ α }, max·xi {xi ∈ X |µX̃i
(xi) ≥ α } ]

(Y j)α = [ (Y j)
L
α

, (Y j)
U
α
]= [min·y j { y j ∈ Y |µỸ j

(y j) ≥ α }, max·y j { y j ∈ Y |µỸ j
(y j) ≥ α } ]

where µX̃i
and µỸ j

are the membership functions of X̃i and Ỹ j, respectively. Let

ZL
α =

[ (X)
L
α − (Y)

U
α ] − µ0√

σ2
X

nX
+

σ2
Y

nY

(16a)

ZU
α =

[ (X)
U
α − (Y)

L
α ] − µ0√

σ2
X

nX
+

σ2
Y

nY

(16b)

where (X)
L
α = (1/nX)

∑nX
i=1 (Xi)

L
α, (Y)

L
α = (1/nY)

∑nY
j=1 (Y j)

L
α
, (X)

U
α = (1/nX)

∑nX
i=1 (Xi)

U
α and (Y)

U
α =

(1/nY)
∑nY

j=1 (Y j)
U
α

. When all data are crisp values, Equation (16a,b) become identical and reduce to
Equation (14).

3.2. Fuzzy Test of Mean with Unknown Population Variance

3.2.1. Single Normal Population with Unknown Population Variance

The same concept can be applied to cases of an unknown population variance for tests of the
mean for a normal population. In the classical statistical test procedure, suppose X and S represent the
mean and the standard deviation of the sample, respectively. If the null hypothesis H0 : µ = µ0 is true,
then the test statistic

T =
X − µ0

S/
√

n
(17)

has a t distribution with n− 1 degrees of freedom when the population is normal.
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When the observations are fuzzy, a natural test statistic is obtained by substituting S2 for

(1/n− 1)
∑n

i=1 (X̃i − (1/n)
∑n

i=1 X̃i)
2
, in Equation (17), and the fuzzy test statistic becomes,

T̃ ≈
√

n

1
n

n∑
i=1

X̃i − µ0√
1

n−1

n∑
i=1

(X̃i −
1
n

n∑
i=1

X̃i)
2

(18)

From Equation (18), the function relationship between T̃ and X̃i is nonlinear. Deducing the exact
membership function µT̃ is nearly impossible since Equation (18) includes quadratic terms of the
fuzzy observations. The lower and upper bounds of α-cuts of fuzzy observations, (Xi)

L
α and (Xi)

U
α ,

are calculated. Let

TL
α = min.

(Xi)
L
α≤Xi≤(Xi)

U
α


√

n

1
n

n∑
i=1

Xi − µ0√
1

n−1

n∑
i=1

(Xi −
1
n

n∑
i=1

Xi)
2


(19a)

TU
α = max.

(Xi)
L
α≤Xi≤(Xi)

U
α


√

n

1
n

n∑
i=1

Xi − µ0√
1

n−1

n∑
i=1

(Xi −
1
n

n∑
i=1

Xi)
2


(19b)

then T̃α = [TL
α, TU

α ] is the α-cuts of T̃.
T̃α is a pair of nonlinear functions with bounded constraints. We can obtain the membership

function of fuzzy number T̃, µT̃(t), by using Zadeh’s extension principle [34]. When all fuzzy data
reduce to crisp values, Equations (19a) and (19b) become identical and reduce to Equation (17) in the
classical model.

3.2.2. Two Normal Populations with Unknown but Equal Population Variances

When the two normal population variances are unknown but equal, the test statistic for the null
hypothesis about the difference between the two population means, H0 : µX − µY = µ0, is determined
to be

T =
(X −Y) − µ0√

S2
P(

1
nX

+ 1
nY
)

(20)

T has a t distribution with nX + nY − 2 degrees of freedom, where S2
P represents the pooled sample

variance, which is defined as

S2
P =

nX∑
i=1

(Xi −
1

nX

nX∑
i=1

Xi)
2

+
nY∑
j=1

(Y j −
1

nY

nY∑
j=1

Y j)
2

nX + nY − 2

When the observations are fuzzy, a natural test statistic substitutes S2
P for S̃2

P, which is defined as,

S̃2
P ≈

nX∑
i=1

(X̃i −
1

nX

nX∑
i=1

X̃i)
2

+
nY∑
j=1

(Ỹ j −
1

nY

nY∑
j=1

Ỹ j)
2

nX + nY − 2
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Accordingly, Equation (20), for calculating the test statistic when using fuzzy data, becomes,

T̃ ≈

( 1
nX

nX∑
i=1

X̃i −
1

nY

nY∑
j=1

Ỹ j) − µ0√
S̃2

P(
1

nX
+ 1

nY
)

(21)

From Equation (21), the test statistic is also a fuzzy number. Let

TL
α =

min.
(Xi)

L
α≤Xi≤(Xi)

U
α

(Y j)
L
α
≤Y j≤(Y j)

U
α


( 1

nX

nX∑
i=1

Xi −
1

nY

nY∑
j=1

Y j ) − µ0√
S2

P(
1

nX
+ 1

nY
)

 (22a)

TU
α =

max.
(Xi)

L
α≤Xi≤(Xi)

U
α

(Y j)
L
α
≤Y j≤(Y j)

U
α


( 1

nX

nX∑
i=1

Xi −
1

nY

nY∑
j=1

Y j ) − µ0√
S2

P(
1

nX
+ 1

nY
)

 (22b)

then T̃α = [TL
α, TU

α ] is the α-cuts of T̃. When all fuzzy data reduce to crisp values, Equations (22a)
and (22b) become identical and reduce to Equation (20) in the classical model. The construction of
the membership function µT̃ and the fuzzy test procedure are the same as those for a single normal
population with unknown population variance.

4. Numerical Examples

To illustrate the application of the proposed fuzzy testing method described in Section 3,
two examples, in which example 1 is described by Grzegorzewski [11], are presented in this section.
Moreover, we will compare the results to that of the testing method of Grzegorzewski [11] and
Filzmoser and Viertl [13].

4.1. Example 1

Four random samples X1, X2, X3, X4 are drawn from normal population N(θ, σ). The perception
of these random samples are fuzzy numbers, x̃1 = “roughly between 6 and 8”, x̃2 = “roughly 5”,
x̃3 = “roughly 8”, x̃4 = “between 4 and 7”. The membership functions of these data are,

µX̃1
(x) =


x− 5, 5 ≤ x ≤ 6
1, 6 ≤ x ≤ 8
9− x, 8 ≤ x ≤ 9
0, otherwise

, µX̃2
(x) =


x− 4, 4 ≤ x ≤ 5
6− x, 5 ≤ x ≤ 6
0, otherwise

µX̃3
(x) =


x− 7, 7 ≤ x ≤ 8
9− x, 8 ≤ x ≤ 9
0, otherwise

, µX̃4
(x) =

{
1, 4 ≤ x ≤ 7
0, otherwise

Assume that standard deviation σ = 1 is known. We are interested in testing H0 : θ ≤ 4.3 against
Ha : θ > 4.3, and significance level γ = 0.05. From a classical testing method, we can easily obtain the
test statistic as

Z =
X − θ0

σ/
√

n
=

X − 4.3

1/
√

4
= 2(X − 4.3)
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where X =
∑4

i=1 Xi/4 is the sample mean. Therefore, the fuzzy test statistic is

Z̃ =

1
n

n∑
i=1

X̃i − θ0

σ/
√

n
= 2(X̃ − 4.3)

where X̃ =
∑4

i=1 X̃i/4 is the fuzzy sample mean. Based on Zaheh’s extension principle [34], X̃ is a
trapezoidal fuzzy number [5, 5.75, 7, 7.75], the membership function µZ̃(z) of fuzzy number Z̃ is

µZ̃(z) =


1

1.5 (z− 1.4), 1.4 ≤ z ≤ 2.9
1, 2.9 ≤ z ≤ 5.4

1
1.5 (6.9− z), 5.4 ≤ z ≤ 6.9
0, otherwise

(23)

Since the forth-mentioned rejection region of right-sided testing is {Z |Z > z0.05 = 1.645},
the possibility of Z̃ ∈ C is

Poss(Z̃ ∈ C) =

∫ 6.9
1.645 µZ̃(z)φ(z)dz∫ 6.9
1.4 µZ̃(z)φ(z)dz

=
0.0217
0.0241

= 0.901

The possibility of rejecting the null hypothesis is 0.901, which is quite high. Grzegorzewski [11]

uses the membership function of fuzzy confidence interval [X̃− z0.05σ/
√

n, ∞) to determine the testing
result. Since the left shape function of the membership function µ

X̃
is L(x) = (4/3)(x − 4.1775).

Substituting θ = 4.3 into x, we can obtain L(x) = 0.1633. This result is equal to the result of substituting
z = 1.645 into Equation (23), and we can have µZ̃(z) = (1.645 − 1.4)/1.5 = 0.1633, which represents the
degree of accepting H0. In addition, 1− µZ̃(z) = 1− 0.1633 = 0.8367, which represents the degree of
rejecting H0. We need to note that, the testing method of Grzegorzewski uses the information of the left
shape function L(x) only. However, our proposed method uses all information of Z̃. The fuzzy p-value
in Filzmoser and Viertl [13] approximates to a trapezoidal fuzzy number [2.6 × 10−12, 3.33 × 10−8,
0.00187, 0.0808], we can neither accept nor reject H0 and Ha at significance level γ = 0.05 in this case.
If θ0 = 4.93, i.e., we are interested in testing H0 : θ ≤ 4.93 against Ha : θ > 4.93, then the membership
function of fuzzy test statistic Z̃ obtained by our proposed method is

µZ̃(z) =


1

1.5 (z− 0.14), 0.14 ≤ z ≤ 1.64
1, 1.64 ≤ z ≤ 4.14

1
1.5 (5.64− z), 4.14 ≤ z ≤ 5.64
0, otherwise

The possibility of Z̃ ∈ C is Poss(T̃ ∈ C) =
∫ 5.64

1.645 µZ̃(z)φ(z)dz/
∫ 5.64

0.14 µZ̃(z)φ(z)dz = 0.24. The result
represents that the possibility of rejecting H0 is 24%, and the possibility of accepting H0 is 76%.

Note that, with defuzzification, we can reasonably call the trapezoidal fuzzy number X̃ = [5, 5.75,
7, 7.75] to be “about 6.375”. The value is 2.89(= (6.375 − 4.93)/0.5) times of the standard deviation
as θ0 = 4.93, which is much larger than the critical value 1.645. When using the testing method of
Grzegorzewski [11], we have L(x) = (4/3)(4.93− 4.1775) > 1, representing the possibility of accepting
H0 is 100%. Therefore, the result obtained by our proposed method is much more reasonable than that
obtained by the testing method of Grzegorzewski [11]. The fuzzy p-value in Filzmoser and Viertl [13]
approximates to a trapezoidal fuzzy number [8.5 × 10−9, 1.74 × 10−5, 0.0505, 0.444], and in this case,
we can neither accept nor reject H0 and Ha at significance level γ = 0.05.
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4.2. Example 2

Consider the statistical model in Example 1, but to test H0 : θ = 4 against Ha : θ , 4. Assume
that fuzzy sample is x̃1 = “roughly 4.6”, x̃2 = “roughly 5.6”, x̃3 = “roughly 6”, x̃4 = “roughly 3.72”.
The membership functions of these data are,

µX̃1
(x) =


1

0.1 (x− 4.5), 4.5 ≤ x ≤ 4.6
1

0.2 (4.8− x), 4.6 ≤ x ≤ 4.8
0, otherwise

, µX̃2
(x) =


1

0.1 (x− 5.5), 5.5 ≤ x ≤ 5.6
1

0.2 (5.8− x), 5.6 ≤ x ≤ 5.8
0, otherwise

µX̃3
(x) =


1

0.2 (x− 5.8), 5.8 ≤ x ≤ 6
1

0.3 (6.3− x), 6 ≤ x ≤ 6.3
0, otherwise

, µX̃4
(x) =


1

0.12 (x− 3.6), 3.6 ≤ x ≤ 3.72
1

0.18 (3.9− x), 3.72 ≤ x ≤ 3.9
0, otherwise

The fuzzy statistic of the two-sided test is

Z̃ =

1
n

n∑
i=1

X̃i − θ0

σ/
√

n
=

X̃ − 4

1/
√

4
= 2(X̃ − 4)

Based on Zadeh’s extension principle [34], X̃ is a triangular fuzzy number [4.85, 4.98, 5.2]. We can
obtain the membership function of fuzzy number, µZ̃(z), which is

µZ̃(z) =


1

0.26 (z− 1.7), 1.7 ≤ z ≤ 1.96
1

0.44 (2.4− z), 1.96 ≤ z ≤ 2.4
0, otherwise

Under the significance level γ = 0.05, the rejection region is C = {Z| |Z| > z0.025 = 1.96}, and

Poss(Z̃ ∈ C) =

∫ 2.4
1.96 µZ̃(z)dP∫ 2.4
1.7 µZ̃(z)dP

= 0.5187

Note that the difference between the triangular fuzzy number X̃ = [4.85, 4.98, 5.2] and θ0 = 4 is
between 1.7 (= (4.85 − 4)/0.5) and 2.4 (= (5.2 − 4)/0.5) times of the standard deviation. When using the
testing method of Grzegorzewski [11], we obtain the left shape function of fuzzy confidence interval

(X̃ − z0.025(1/
√

4)) is L(x) = (1/0.13)(x − 3.87), 3.87 < x ≤ 4. When θ0 = 4, L(x) = 1, representing
the possibility of accepting H0 is 100%. Apparently, the result obtained by our proposed method is
much more reasonable than that obtained by the testing method of Grzegorzewski [11]. The fuzzy
p-value in Filzmoser and Viertl [13] approximates to a triangular fuzzy number [0.0164, 0.05, 0.0719],
we can neither accept nor reject H0 and Ha at significance level γ = 0.05 in this case. If we consider the
significance level γ = 0.08, the rejection region is C = {Z| |Z| > z0.04 = 1.75}, and

Poss(Z̃ ∈ C) =

∫ 2.4
1.75 µZ̃(z)dP∫ 2.4
1.7 µZ̃(z)dP

= 0.9772

Hence, H0 is rejected with very high possibility at the level γ = 0.08. However, when using
the testing method of Grzegorzewski [11], the left shape function of fuzzy confidence interval

(X̃ − z0.04(1/
√

4)) is L(x) = (1/0.13)(x − 3.975), 3.975 < x ≤ 4.105. When θ0 = 4, L(x) = 0.1923,
representing that the possibility of accepting H0 is 19.23%. Using fuzzy p-value in Filzmoser and
Viertl [13], we conclude that H0 is rejected at the level γ = 0.08, which is close to the result of ours.
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If significance level γ = 0.1, then Grzegorzewski [11], Filzmoser and Viertl [13], and our method have
the same conclusion that the null hypothesis H0 is rejected.

5. Conclusions

In this paper, we propose a fuzzy test approach for the hypothesis testing of fuzzy data, which is
an extension of a classical method of statistical hypothesis testing of crisp data. The proposed approach
first utilizes the probability of fuzzy sets to conduct the possibility definition that fuzzy test statistics
fall in the rejection region, and then results in a fuzzy decision rule to determine whether the null
hypothesis is to be rejected or not. Although the proposed approach is similar to the fuzzy testing
method of Grzegorzewski [11], which is conducted by using confidence intervals, our method is
more direct and clear since we use fuzzy test statistics directly. In addition, the latter only uses the
single point information on the membership function of the fuzzy confidence interval to make a fuzzy
decision rule for the possibility of accepting the null hypothesis. Apparently, when we make decisions,
the information used in our proposed approach is much more reasonable and effective than that of
Grzegorzewski [11]. Moreover, though our proposed approach is similar to the fuzzy testing method
of Filzmoser and Viertl [13], in the latter approach, we can neither accept nor reject H0 and Ha at
significance level γ if the value of membership function of the fuzzy p-value at γ is not zero, while our
method can make a clear decision in any case. Therefore, our method is more flexible and useful than
Filzmoser and Viertl [13]. Although we only present the testing of a single normal population as the
illustrative examples, our proposed approach can be applied to all the classical testing methods for
fuzzy data. Therefore, the proposed approach is simple and useful.
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