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Abstract: In model based clustering, it is often supposed that only one clustering latent variable
explains the heterogeneity of the whole dataset. However, in many cases several latent variables could
explain the heterogeneity of the data at hand. Finding such class variables could result in a richer
interpretation of the data. In the continuous data setting, a multi-partition model based clustering
is proposed. It assumes the existence of several latent clustering variables, each one explaining the
heterogeneity of the data with respect to some clustering subspace. It allows to simultaneously find
the multi-partitions and the related subspaces. Parameters of the model are estimated through an EM
algorithm relying on a probabilistic reinterpretation of the factorial discriminant analysis. A model
choice strategy relying on the BIC criterion is proposed to select to number of subspaces and the
number of clusters by subspace. The obtained results are thus several projections of the data, each one
conveying its own clustering of the data. Model’s behavior is illustrated on simulated and real data.

Keywords: clustering; mixture model; factorial discriminant analysis; EM algorithm

1. Introduction

In exploratory data analysis, the statistician often uses clustering and visualization in order
to improve his knowledge on the data. In visualization he looks for some principal components
explaining some major characteristics of the data. For example in principal component analysis (PCA)
the goal is to find a linear combination of the variables explaining the major variability of the data.
In cluster analysis, the goal is to find some clusters explaining the major heterogeneity of the data.
In this article we suppose that the data can contain several clustering latent variables, that is, we are in
the multiple partition setting, and we are simultaneously looking for clustering subspaces, that is, linear
projections of the data each one related to some clustering latent variable thus the developed model
is later called multi-partitions subspace clustering. A solution to perform multi-partition subspace
clustering is to use a probabilistic model on the data such as a mixture model [1], it allows to perform
the parameters estimation, and model selection such as the choice of the number of subspaces and the
number of clusters per subspace using standard model choice criteria such as BIC [2]. Thus the main
fields related to our work are model based subspace clustering and multi-partitions clustering.

In the model based subspace clustering framework, let first notice that PCA can be re-interpreted
in a probabilistic way by considering a parsimonious version of a multivariate Gaussian distribution [3]
and that the k-means algorithm can be re-interpreted as a particular parsimonious Gaussian mixture
model estimated using a classification EM algorithm [4]. A re-interpretation of the probabilistic PCA
has also been used in clustering by Bouveyron et al. [5] in order to cluster high-dimensional data.
Although the proposed high dimensional mixture does not performs dimension reduction, it rather
operates a class per class dimension reduction which does not allow to have a global model-based
data visualization. Thus Bouveyron and Brunet [6] proposed the so called Fisher-EM algorithm which
simultaneously performs clustering and dimension reduction. This is performed through a modified
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version of the EM algorithm [7] by including a Fisher step between the E and the M step. This approach
allows the same projection to be applied to all data, but does not guarantee the increasing of the
likelihood at each iteration of the algorithm.

In the context of multi-partitions clustering, Galimberti and Soffritti [8] assumed that the variables
can be partitioned into several independent blocks, each one following a full-covariance Gaussian
mixture model. The model selection was done by maximizing the BIC criterion by a forward/backward
approach. Then, Galimberti et al. [9] generalized thier previous work by relaxing the assumption of
block independence. The proposed extension takes into account three types of variables, classifying
variables, redundant variables and non-classifying variables. In this context, the choice of the model
is difficult because several roles have to be taken into account for each variable, which requires a lot
of calculations, even for the reallocation of only one variable. Poon et al. [10] also took into account
the multi-partition setting, called as facet determination in their article. The model considered is
similar to that of Galimberti and Soffritti [8], but it also allows tree dependency between latent class
variables, resulting in the Pouch Latent Tree Models (PLTM). Model selection is performed by a greed
search to maximize the BIC criterion. The resulting model allows a broad understanding of the data,
but the tree structure search makes estimation even more difficult as the number of variables increases.
More recently, Marbac and Vandewalle [11] proposed a tractable muti-partition clustering algorithm
not limited to continuous data; in the Gaussian setting it can be seen as particular case of Galimberti
and Soffritti [8] where they assume a diagonal covariance matrix allowing a particularly efficient
search of the partition of the variables in sub-vectors.

In this article we suppose that the data can contain several clustering latent variables, that is we
are in the multiple partition setting. But contrary to Marbac and Vandewalle [11] where it is assumed
that variables are divided into blocks each one related to some clustering of the data, we are looking
for clustering subspaces, i.e., linear projections of the data each one related to some particular clustering
latent variable thus replacing the combinatorial question of finding the partition of the variables
in independent sub-vectors by the question of finding the coefficients of the linear combinations.
The proposed approach can be related to the independent factor analysis [12] where the author deals
with source separation, in our framework a source can be interpreted as some specific clustering
subspace; however, their approach becomes intractable as the numbers of sources increases and does
not allow to consider multivariate subspaces. Moreover, it is not invariant up to a rotation and rescaling
of the data, where our proposed methodology is.

The organisation of the paper is the following, in Section 2 we present a reinterpretation of
the factorial discriminant analysis as a search of discriminant components and of independent
non-discriminant components. In Section 3, the multi-partitions subspace clustering model and
the EM algorithm to estimate the parameters of the model will be presented. In Section 4, results on
simulated and real data will show the interest of the method in practice. In Section 5, a conclusion and
discussion of future extension of the paper will be made.

2. Probabilistic Interpretation of the Factorial Discriminant Analysis

2.1. Linear Discriminant Analysis (LDA)

It is supposed that n quantitative data in dimension d are available, the data number i will be
denoted by xi = (xi1, . . . , xid)

T, where xij is the value of variable j of data i. The whole dataset will
be denoted by x = (x1, . . . , xn)T. Let assume that the data is clustered in K clusters, the class label of
data i will be denoted by zi = (zi1, . . . , ziK)

T, with zik equals to 1 if data i belongs to cluster k and 0
otherwise. Let also denote by z = (z1, . . . , zn) the partition of x. In this section z is supposed to be
known. For sake of simplicity the random variables and their realisations will be denoted in lower
case, and p will be used as a generic notation to denote a probability distribution function (p.d.f.)
which will be interpreted according to its arguments.
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In the context of linear discriminant analysis [13], it is supposed that the distribution xi given the
cluster follows a d-variate Gaussian distribution with common covariance matrices:

∀k ∈ {1, . . . , K}, xi|zik = 1 ∼ Nd(µk, Σ),

with µk the vector of means in cluster k and Σ the common class conditional covariance matrix. Let also
denote by πk = p(zik = 1) the prior weights of each cluster.

The posterior cluster membership probabilities can be computed using the Bayes formula:

p(zik = 1|xi) =
πkφd(xi; µk, Σ)

∑K
k′=1 πk′φd(xi; µk′ , Σ)

, (1)

where φd(·; µk, Σ) stands for the p.d.f. of the d-variable Gaussian distribution with expectation µk and
covariance matrix Σ.

Let x̄k denote the class conditional mean in cluster k:

x̄k =
1
nk

n

∑
i=1

zikxi,

with nk = ∑n
i=1 zik the number of data in cluster k, and by x̄ the unconditional mean. Let also denote

by W the empirical intra-class covariance matrix:

W =
1
n

K

∑
k=1

n

∑
i=1

zik(xi − x̄k)(xi − x̄k)
T,

and by B the empirical between class covariance matrix:

B =
1
n

K

∑
k=1

nk(x̄k − x̄)(x̄k − x̄)T.

If the data are supposed to be independent, the likelihood can simply be written as:

`(π1, . . . , πK, µ1, . . . , µK, Σ; x, z) = −n
2

log(det(Σ))− 1
2

n

∑
i=1

K

∑
k=1

zik‖xi − µk‖2
Σ−1

+
n

∑
i=1

K

∑
k=1

zik log(πk)−
n
2

log(2π).

The maximum likelihood estimators of the parameters of πk, µk and Σ are π̂k =
nk
n , µ̂k = x̄k and

Σ̂ = W . A new data point can be then classified by plugin the estimated values of the parameters in
Equation (1):

ẑi = argmax
k∈{1,...,K}

µ̂T
k Σ̂−1xi −

1
2

µT
k Σ̂−1µk + log(π̂k),

the resulting classification boundary being linear in this case.

2.2. Factorial Discriminant Analysis (FDA)

Let us note that, from a descriptive viewpoint, one can be interested in dimension reduction in
order to visualize the data. This could be done by using PCA, but from a classification perspective the
component explaining the largest variability in the data are often not the same that the components
providing the best separation between the clusters.
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The goal of factorial discriminant analysis (FDA) is to find the component maximizing the variance
explained by the cluster above the intra-class variance. The coefficients of the first discriminant
component v1 ∈ Rd is defined by

v1 = arg max
v∈Rd

vT Bv
vTWv

.

It is well known that v1 is the eigen vector associated with the highest eigen value λ1 of W−1B [14].
The remaining discriminant components are obtained through the remaining eigen vectors of W−1B.
Let denote by λ1, . . . , λK−1 the eigen values of W−1B sorted in decreasing order and by v1, . . . , vK−1

the associated eigen vectors. Moreover, if each component is constrained to have an intra-class
variance equal to one (i.e., vk

TWvk = 1, ∀k ∈ {1, . . . , K − 1}), the classification obtained using the
Mahalonobis distance can simply be obtained by using the Euclidean distance on the data projected on
the discriminant components.

2.3. Equivalence between LDA and FDA

As proved in Campbell [15] and detailed in Trevor Hastie [16], the FDA can be interpreted in
a probabilistic way as an LDA where the rank of {µ1, . . . , µK} is constrained to be equal to p with
p ≤ K− 1 under the common class covariance matrix assumption. This allows us to reparametrize the
probabilistic model in the following way:

xi|zik = 1 ∼ Nd

(
A

(
νk
γ

)
, AAT

)
,

where νk ∈ Rp, γ ∈ Rd−p and A ∈ Md,d(R). Let notice that this new parametrization at this step is not
unique but the model can easily be made identifiable by imposing some constraints on the parameters.

Let yi ∈ Rp and ui ∈ Rd−p two random variables, the new parametrization can be reinterpreted
in the following generative framework:

• Draw zi : zi ∼M(1; π1, . . . , πK) whereM stands for the multinomial distribution
• Draw yi|zi : yi|zik = 1 ∼ Np(νk, Ip)

• Draw ui : ui ∼ Nd−p(γ, Id−p)

• Compute xi based on yi and ui : xi = A

(
yi
ui

)
.

Thus the p.d.f. of xi can be factorized in the following way:

p(xi) =
1
|A| p(ui)p(yi).

From a graphical angle the model can be reinterpreted as in Figure 1, where ui and yi are latent
random variables.

zi yi

ui

xi

n

Figure 1. Bayesian dependency graph for factorial discriminant analysis.
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In practice we are interested in finding yi and ui from xi. We will denote by V ∈ Mp,d(R) and
R ∈ Md−p,d(R) the matrices which allow this computation: yi = V xi, ui = Rxi. It is obvious that(

V
R

)
= A−1, for the rest of the article only the parametrization in terms of V and R will be used.

The main interest of this parametrization is that

p(zik = 1|xi) = p(zik = 1|yi, ui) = p(zik = 1|yi) = p(zik = 1|V xi).

It means that only V xi is required to compute the posterior class membership probabilities:

p(zik = 1|xi) =
πkφp(V xi; νk, Ip)

∑K
k′=1 πk′φp(V xi; νk′ , Ip)

. (2)

Parameters are estimated by maximum likelihood, using the variable change formulae the
likelihood can be written:

`(π1, . . . , πK, V , R, γ, ν1, ..., νK; x, z) = n log

∣∣∣∣∣det

(
V
R

)∣∣∣∣∣− 1
2

n

∑
i=1

K

∑
k=1

zik‖V xi − νk‖2

+
n

∑
i=1

K

∑
k=1

zik log(πk)−
1
2

n

∑
i=1
‖Rxi − γ‖2 − n

2
log(2π).

The first term is related to the variable change, the second term is related to the discriminant
components and the third term is related to prior class membership probabilities and the fourth term
is related to the non-discriminant components. In practice, this decomposition is the corner stone of
the proposed approach since it separates the clustering part from the non-clustering part.

As stated in Campbell [15] the maximum likelihood estimator of V are the first p eigen vectors
v1, . . . , vp of W−1B in rows:

V̂ =


vT

1
...

vT
p

 ,

renormalized such that:
V̂WV̂ T = Ip.

The maximum likelihood estimator of R is obtained such that :

R̂WV̂ T = 0

and that
R̂W R̂T = Id−p, (3)

with Dd−p the diagonal matrix of the d − p last eigen-values of W−1B (with the d − K last
eigen-values which are null). R̂T can simply be obtained by multiplying the last d − p
egien-vectors of W−1/2BW−1/2 by W−1/2 then renormalize them such that Equation (3) is satisfied.
Such renormalization makes the parameters V et R identifiable up to a sign.

Moreover νk and γ are estimated by

ν̂k =
1
nk

n

∑
i=1

zikV̂ xi,

γ̂ =
1
n

n

∑
i=1

R̂xi.
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As stated in Trevor Hastie [16] the link between the two parametrizations is as follows:

µ̂k = WV̂ T R̂(x̄k − x̄) + x̄,

and
Σ̂ = W + W R̂T R̂BR̂T R̂W .

From this formula we can clearly see that the reduced rank constraint operates some regularization
on the parameters estimation. Moreover, from a practical perspective the reparametrization
Equation (2) is more efficient for computing the posterior class membership probabilities.

2.4. Application in the Clustering Setting

As in Trevor Hastie [16], the model can easily be used in the clustering setting using the EM
algorithm to maximise the likelihood. Thus W , B, x̄k are recomputed at each iteration by using their
version weighted by their posterior membership probabilities.

The EM algorithm is now presented. The algorithm is first initialized with some starting value
of the parameters or of the partition. Then the E step and the M step are iterated until convergence.
Let (r) denote the value of the parameters at iteration r, the E and the M steps are the followings:

• E step: compute the posterior class membership probabilities.

t(r+1)
ik =

πkφd(xi; µ
(r)
k , Σ(r))

∑K
k′=1 πk′φd(xi; µ

(r)
k′ , Σ(r))

=
πkφp(y

(r)
i ; ν

(r)
k , Ip)

∑K
k′=1 πk′φp(y

(r)
i ; ν

(r)
k′ , Ip)

,

with y(r)
i = V (r)xi.

• M step: Compute

x̄(r+1)
k =

1

n(r+1)
k

n

∑
i=1

t(r+1)
ik xi,

W (r+1) =
1
n

K

∑
k=1

n

∑
i=1

t(r+1)
ik (xi − x̄(r+1)

k )(xi − x̄(r+1)
k )T,

B(r+1) =
1
n

K

∑
k=1

n(r+1)
k (x̄(r+1)

k − x̄)(x̄(r+1)
k − x̄)T.

Then deduce V (r+1), R(r+1), ν
(r+1)
1 , . . . , ν

(r+1)
K and γ(r+1) as in the previous section using the

eigenvalue decomposition of W (r+1)−1
B(r+1).

As noticed in Trevor Hastie [16], this approach is not equivalent to performing a standard EM
algorithm and then performing FDA at the end of the EM algorithm. FDA must be computed at each
iteration of the EM algorithm since the posterior membership probabilities are only computed based
on the p first clustering projections.

Let us also notice that the M step can be interpreted in a Fisher-M step since FDA is required.
In this sense it can be interpreted as a particular version of the Fisher-EM algorithm of Bouveyron and
Brunet [6]. Although the homoscedasticity could be seen as particularly constraining, it is the best
framework for introducing our model in the next section, since it is easily interpretable and allows for
efficient computation owing to the closed form of FDA. This limitation could be easily overcome by
using rigorous extensions of the FDA in the heteroscedastic setting as in Kumar and Andreou [17];
however, the computation would be much more intensive, since in this case no closed form formula is
available and an iterative algorithm would be required even for finding the best projection.
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3. Multi-Partition Subspace Mixture Model

3.1. Presentation of the Model

Let us now suppose that instead of having only one class variable zi for data i, we now have H
class variables z1

i , . . . , zH
i with K1, . . . , KH modalities. It is assumed that z1

i , . . . , zH
i are independent,

with p(zh
ik = 1) denoted by πh

k . Let also denote by yh
i the variables related to the clustering variable zh

i
such that:

yh
i |zh

ik = 1 ∼ Nph(ν
h
k , Iph)

and that we will denote by p• = ∑H
h=1 ph.

Let us still denote by ui the non clustering variables

ui ∼ Nd−p•(γ, Id−p•).

Let us also define xi by:

xi =


V1
...

VH
R


−1

y1
i
...

yH
i

ui

 .

Thus,

p(x) =

∣∣∣∣∣∣∣∣∣∣
det


V1
...

VH
R


∣∣∣∣∣∣∣∣∣∣

p(u)
H

∏
h=1

p(yh).

The Figure 2 illustrates the model in the case of H = 2.

z2
i y2

i

z1
i y1

i

ui

xi

n

Figure 2. Adapted Bayesian dependency graph to the multi-partition setting, for H = 2 clustering variables.

Let us notice that this model allows us to visualize many clustering viewpoints in a low
dimensional space since xi can be summarized by y1

i , . . ., yH
i . For instance, one can suppose that

p1 = . . . = pH = 1. In this case each clustering variable can be visualized on one component. We will
denote by θ = (V1, . . . , VH , R, γ, ν1

1 , ..., νH
KH

) the parameters of the model to be estimated.

3.2. Discussion about the Model

The Cartesian product of cluster spaces results in ∏H
h=1 Kh clusters, which can be very large

without needing many parameters. Thus the proposed model can be interpreted as being a very
sparse Gaussian mixture model allowing the possibility to deal with a very large number of clusters,
the resulting conditional means and covariances matrices are given in the following formulas:



Mathematics 2020, 8, 597 8 of 18

E(xi|z1
ik1

= 1, z2
ik1

= 1, . . . , zH
ikH

= 1) =


V1
...

VH
R


−1

ν1
k1
...

νH
kH

γ

 ,

and
V(xi|z1

ik1
= 1, z2

ik1
= 2, . . . , zH

ikH
= 1) = (V T

1 V1 + · · ·+ V T
HVH + RT R)−1.

Thus, the expectation of xi given in all the clusters is a linear combination of the cluster specific
means which can be referred to as a multiple-way MANOVA setting. On the one hand, as a particular
homoscedastic Gaussian mixture, our model is more prone to model bias than free homoscedastic
Gaussian mixture, and in the case when our model would be well-specified the homoscedastic Gaussian
mixture would give a similar clustering for a large sample size (i.e., the same partitions with respect
to the partition resulting from the product space of our multi-partitions model). On the other hand,
our approach produces a factorised version of the partition space as well as the related clustering
subspaces which is not a standard output of clustering methods, and it can deal with a large number
of clusters in a sparse way which can be particularly useful for a moderated sample size. In practice,
the choice between our model and an other mixture model can simply be performed through the
BIC criterion.

In some sense our model can be linked with the mixture of factor analyzers [18]. In mixture of
factor analyzers the model is of the type:

xi = Ayi + ui,

where A is a low rank matrix. But here we have chosen a model of the type

xi = A

(
yi
ui

)
,

which allows us to deal with the noise in a different way. Actually, our model is invariant up to a
bijective linear transformation of the data which is not the case for the mixtures of factor analyzers.
On the other hand, our model can only deal with data with moderated dimension with respect to the
number of statistical units; it assumes that the sources yi can be recovered from the observed data xi.

3.3. Estimation of the Parameters of the Model in the Supervised Setting

The likelihood of the model can be written:

`(θ; x, z) = n log

∣∣∣∣∣∣∣∣∣∣
det


V1
...

VH
R


∣∣∣∣∣∣∣∣∣∣
−

n

∑
i=1

H

∑
h=1

Kh

∑
k=1

zh
ik‖V

T
h xi − νh

k ‖
2

+
n

∑
i=1

H

∑
h=1

Kh

∑
k=1

zh
ik log(πh

k )−
n

∑
i=1
‖RTxi − γ‖2 − n

2
log(2π).

The likelihood cannot be maximized directly. However, in the case of H = 1, it reduces to
the problem of Section 2. Let notice that if all the parameters are fixed except Vh and R, νh

k and γ,

the optimisation can be easily performed by constraining V (r+1)
h and R(r+1) to be linear combinations

of V (r)
h and R(r). Thus the likelihood will be optimized by using an alternate optimization algorithm.
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Let M ∈ Md−p•+ph ,d−p•+ph
(R) the matrix which allow to compute V (r+1)

h and R(r+1) based on V (r)
h

and R(r): (
V (r+1)

h
R(r+1)

)
= M

(
V (r)

h
R(r)

)
=

(
M1

M2

)(
V (r)

h
R(r)

)
,

where M1 is the sub-matrix containing the ph first rows of M and M2 the matrix containing the last
d− p• rows of M.

Thus, the increase of the likelihood when all the parameters are fixed except Vh, R, νh
k and

γ becomes:

C(M1, M2, νk, γ) = n log |det(M)| − 1
2

n

∑
i=1

Kh

∑
k=1

zh
ik

∥∥∥∥∥M1

(
V (r)

h
R(r)

)
xi − νh

k

∥∥∥∥∥
2

−1
2

n

∑
i=1

∥∥∥∥∥M2

(
V (r)

h
R(r)T

)
xi − γ

∥∥∥∥∥
2

.

By denoting (
yh

i
(r)

ui
(r)

)
=

(
V (r)

h
R(r)

)
xi,

we have to maximize:

C(M1, M2, νk, γ) = n log |det(M)| − 1
2

n

∑
i=1

Kh

∑
k=1

zh
ik

∥∥∥∥∥M1

(
yh

i
(r)

ui
(r)

)
− νh

k

∥∥∥∥∥
2

−1
2

n

∑
i=1

∥∥∥∥∥M2

(
yh

i
(r)

ui
(r)

)
− γ

∥∥∥∥∥
2

.

Consequently, M and the others parameters can be obtained by applying a simple FDA on

the data (yh
i
(r)T

, ui
(r)T

). In order to optimise over all the parameters, we can loop over all the
clustering dimensions.

Thus, in the case of mixed continuous and categorical data, this model can be used to visualize
the clustering behavior of the categorical variables with respect to the quantitative ones.

3.4. Estimation of the Parameters of the Model in the Clustering Setting

Here our main goal is to consider the clustering setting, that is, when z1
i , . . . , zH

i are unknown.
Consequently we will use an EM algorithm to “reconstitute the missing label” in order to maximize
the likelihood. Thus the algorithm stays the same as in the supervised setting, except that the data at

each iteration are now weighted by th
ik
(r+1)

instead of zh
ik.

The algorithm is the following:

• Until convergence, for h ∈ {1, . . . , H} iterates the following steps:

– E step: compute

th
ik
(r+1)

=
πk p(yh

i
(r)

; νh
k
(r)

, Ip)

∑K
k′=1 πk′ p(yh

i
(r); νh

k′
(r), Ip)

.

– M step: compute πh
1
(r+1)

, . . . , πh
Kh

(r+1)
, V (r+1)

h , R(r+1), γ(r+1) and νh
k
(r+1)

based on formulas
given in the supervised setting.
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3.5. Parsimonious Models and Model Choice

The proposed model needs the user to define the number of clustering subspaces H, the number
of cluster in each clustering subspace K1, . . . , KH , and the dimensionality p1, . . . , pH of each subspace.
The constraints are that H < d, that ph ≤ Kh − 1 and p• = p1 + · · · + pH < d. It is clear that the
number of possible models can become very high. To limit the combinatorial aspect, one can impose
K1 = · · · = KH = K and/or p1 = · · · = ph = p. In practice the choice of p = 1 enforces to find
clustering which could be visualized in one dimension, which can help the practitioner. Moreover,
choosing K = 2 is the minimal requirement in order to investigate a clustering structure. However,
if possible we recommend to explore the largest possible number of models and choosing the best one
with the BIC. Let us define the following parsimonious models and their related number of parameters:

• [Kh ph] the general form of the proposed model, the index h will be removed if values are the same
for each clustering subspace.

H

∑
h=1

(Kh − 1) +
H

∑
h=1

ph(2Kh + 2d− ph + 1)
2

+
(d− p•)(d + p• + 3)

2
,

• [Kph] where the number of clusters is the same for each subspace

H(K− 1) +
H

∑
h=1

ph(2K + 2d− ph + 1)
2

+
(d− p•)(d + p• + 3)

2
,

• [Kh p] where the dimensionalities are the same for each subspaces

H

∑
h=1

(Kh − 1) +
H

∑
h=1

p(2Kh + 2d− p + 1)
2

+
(d− Hp)(d + Hp + 3)

2
,

• [Kh1] where the dimensionalities are equals to one for each subspaces

H

∑
h=1

(Kh − 1) +
H

∑
h=1

(Kh + d) +
(d− H)(d + H + 3)

2
,

• [Kp] where the number of clusters is the same for each subspace and the dimensionalities are the
same for each subspace

H(K− 1) +
Hp(2K + 2d− p + 1)

2
+

(d− Hp)(d + Hp + 3)
2

,

• [K1] where the number of clusters is the same for each subspace and the dimensionalities are
equals to one for each subspaces

H(K− 1) + H(K + d) +
(d− H)(d + H + 3)

2
.

For a given model m the BIC is computed as:

BIC(m) = `(θ̂m; x)− νm

2
log n,

where νm is the number of parameters of the model detailed above. Thus the model choice consists
of choosing the model maximising the BIC. BIC enjoys good theoretical consistency properties,
thus providing a guarantee to select the true model as the number of data increases. The ICL
criterion [19] could also be used to enforce the choice of well separated clusters, since from a
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classification perspective BIC is known to over-estimate the number of clusters if model assumption
are violated. Let us however notice that in practice the user could be mainly interested by a low value
of H, since even H = 2 can provide him with new insights about his data, focusing on finding several
clustering view points.

4. Experiments

4.1. Experiments on Simulated Data

We now present a tutorial example. Let us consider n = 100 data, with H = 2 clustering subspaces
each one of dimension one (p1 = p2 = 1) and containing each of two clusters (K1 = K2 = 2). Let us
draw y1

i , the first clustering variable, according to a mixture of two Gaussian univariate distributions:
y1

i ∼ 0.5N (0, 1) + 0.5N (4, 1) and draw independently y2
i , the second clustering variable, according

to the same mixture distribution: y2
i ∼ 0.5N (0, 1) + 0.5N (4, 1), then draw ui the non-classifying

components according to a multivariate Gaussian distribution in R4, ui ∼ N4(0, I4). Finally compute

xi based on the formula: xi = A

y1
i

y2
i

ui

, where the 36 entries of the matrix A have been drawn according

to independent N (0, 1) for sake of simplicity.
Thus the proposed model, based on the observed data x, aims at recovering the clustering

variables y1 and y2 as well as the associated cluster variables z1 and z2. The initial data x are presented
on Figure 3, we see that the clustering structure of the data is not apparent from these scatter plots.
The underlying clustering variables are presented on Figure 4, where we see the separation of the
colors on the first clustering variable Y1 and separation of the shapes on the second clustering variable
Y2. Let us notice that such factorization gives a more synthetic view of the clustering than seeing
these clusters as four clusters. Using standard dimension reduction techniques such as PCA does
not succeed in recovering the clustering subspace see Figure 5. Performing a factorial discriminant
analysis considering the four clusters in the supervised setting we get Figure 6, it finds good separation
between the clusters, however we do not obtain the factorised interpretation of the clustering as the
Cartesian product of two independent clusterings. Finally by performing the estimation of the model
parameters in an unsupervised setting based on the data x we get Figure 7. We see that Ŷ1 succeeds in
recovering Y1 up to a sign and that Ŷ2 succeeds in recovering Y2.

Moreover, supposing p1 = p2 = 1 we can choose K1 and K2 according to the BIC criterion. Values
of the BIC criterion are presented in Table 1, where we show that the selected model is the true one
with K1 = K2 = 2. The lower diagonal of the table is not presented for symmetry reasons, and we
limited ourselves to K1, K2 ∈ {1, . . . , 5}.
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Figure 3. Scatter plots of the initial data on the illustrative example. The color depends on the first
cluster variable, and the shape depends on the second cluster variable.
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Figure 5. Scatter plot of the illustrative data on components one to four of the proimcipal component
analysis (PCA).
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Figure 6. Scatter plot of the component of the factorial discriminant analysis for the illustrative example.
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Figure 7. Comparison of the true and of the estimated clustering subspaces on the illustrative example,
points are marked according to the estimated clusters.

Table 1. Value of the BIC criterion according to K1 and K2, for the choice of the number of clusters on
the illustrative example, best value in bold.

K1 \ K2 1 2 3 4 5

1 −1318.40 −1301.15 −1305.20 −1305.47 −1310.08
2 −1291.80 −1293.22 −1292.28 −1307.07
3 −1296.70 −1303.68 −1310.95
4 −1306.09 −1320.29
5 −1319.22

4.2. Experiments on Real Data

Let us consider the crabs dataset [20]. It consists of 200 crabs morphological data, each crab
has two categorical (cluster) attributes—the species, orange or blue, and the sex, male or female.
The dataset is composed of 50 males orange, 50 males blue, 50 females orange, 50 females blue for
which 5 numerical attributes have been measured: the frontal lobe size, the rear width, the carapace
length, the carapace width and the body depth. We can see the PCA of the data in Figure 8. We see
that component two separates males and females well, whereas component three separates orange and
blue subspecies. However, we will see that by applying our model we obtained a better separation of
the clusters.

Like in the tutorial example we will take p1 = p2 = 1 and K1, K2 ∈ {1, . . . , 5}. The resulting BIC
tabular is given in Table 2, it suggests the choice of K1 = 3 and K2 = 4. The resulting visualization of
the clustering variables in given Figure 9. Let us notice that Y2 is divided in four clusters however,
however we only see three since two of them have the same mean. We can see that even if the numbers
of clusters do not correspond, the first clustering subspace finds the subspecies, whereas the second
clustering subspace finds the sex. We could also look at the solution provided by K1 = K2 = 2 on
Figure 10, this one has a lower BIC but seems more natural for the problem at hand. We see that the
obtained map is in fact quite similar the map obtained Figure 9; however, we notice that from a density
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approximation point of view we obtain a lower fit. In fact, if we look at the correlations between Y1

Figure 9 and Y2 Figure 10 we have a correlation of −0.97, and a similar correlation is obtained between
Y2 Figure 9 and Y1 Figure 10. Thus, the produced subspace are finally quite similar.
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Figure 8. Scatter plots of the crabs data after PCA. Subspecies are represented according to their color,
and sex is represented according to its symbol.

Table 2. Value of the BIC criterion according to K1 and K2, for the choice of the number of clusters on
the crabs dataset, best value in bold.

K1 \ K2 1 2 3 4 5

1 −62.66 0.41 10.40 5.11 0.80
2 17.82 16.57 18.88 0.49
3 3.75 22.52 17.44
4 −26.65 −26.64
5 12.06
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Figure 9. Scatter plots of the clustering subspace on the crabs data for K1 = 3 and K2 = 4, 95%
isodensity is given for each component resulting of the Cartesian product.
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Figure 10. Scatter plots of the clustering subspace on the crabs data for K1 = K2 = 2, 95% isodensity is
given for each component resulting of the Cartesian product.

5. Conclusions and Perspectives

We have proposed a model which allows us to combine visualization and clustering with many
clustering viewpoints. Moreover, we have shown the possibility of performing model choice by using
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the BIC criterion. The proposed model can provide new information on the structure present in the data
by trying to reinterpret the cluster as a result of the Cartesian product of several clustering variables.

The proposed model is limited to the homoscedatic setting, which could be seen as a limitation;
however, from our point of view this is more robust than the heteroscedastic setting, which is known to
be jeopardized by the degeneracy issue [21]. However, the extension of our work on the heteroscedastic
setting can easily be performed from the modeling point of view; the main issue in this case would
be the parameters estimation where an extension of the FDA to the heteroscedastic setting would be
needed, as presented in Kumar and Andreou [17]. Another difficult issue is the choice of H, K1 . . . , KH
and p1, . . . , pH , which is very combinatorial. Here we have proposed an estimation strategy for all
these tuning parameters being fixed, and then performed a selection of the best tuning according to
BIC. However, in future work, a model selection strategy to perform the model selection through a
modified version of the EM algorithm will also be investigated as in Green [22]; it would thus limit the
combinatorial aspect of the global model search through EM-wise local model searches.
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