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Abstract: The Richards’ equation is widely used in the modeling soil water dynamics driven by the
capillary and gravitational forces in the vadose zone. Its state and parameter estimation based on
field soil moisture measurements is important and challenging for field applications of the Richards’
equation. In this work, we consider simultaneous state and parameter estimation of systems described
by the three dimensional Richards’ equation with multiple types of soil. Based on a study on the
interaction between subsystems, we propose to use decentralized estimation schemes to reduce the
complexity of the estimation problem. Guidelines for subsystem decomposition are discussed and a
decentralized estimation scheme developed in the framework of moving horizon state estimation
is proposed. Extensive simulation results are presented to show the performance of the proposed
decentralized approach.

Keywords: state estimation; parameter estimation; moving horizon estimation; Richards’ equation;
agro-hydrological systems

1. Introduction

Agriculture accounts for about 70% consumed fresh water according to the United Nations
statistics [1]. However, the average water-use efficiency in agriculture irrigation is about 50%
globally [2]. In order to achieve water sustainability, it is important to significantly improve the
water-use efficiency in agriculture irrigation. If we examine the current irrigation practice from a
systems engineering perspective, majority of irrigation currently is done in an open-loop manner,
in which no real-time field measurement (e.g., soil moisture) is used in irrigation decision making.
The current open-loop irrigation leads to excessive consumption of water resources. Closed-loop
irrigation, in which real-time field measurements are used to determine the time and the amount
of water to be applied, is a promising alternative to significantly reduce water consumption. In the
implementation of a closed-loop irrigation system, the soil moisture information of the entire field
is important. It is, however, very expensive to install sufficient number of sensors to cover one
agriculture field. One approach to conquer this challenge is to use a model of the field and state
estimate to reconstruct the soil moisture of the entire field based on the measurements of a small
number of sensors. In this work, we focus on infiltration processes that can be described by the Richards’
equation and consider simultanesouly online estimation of soil moisture and soil parameters online.

For online soil state and parameter estimation, sequential data assimilation is one commonly used
type of approaches. Generally, in this type of approaches, the first step is to use a dynamical model
of the infiltration process to predict the current soil state; and then, in the second step, the prediction
is corrected based on process measurements. Kalman filter and its variants are the most widely
adopted algorithms in implementing the prediction-update approach (e.g., [3–8]). When estimating
soil parameters using sequential data assimilation, parameters are typically augmented as extra states
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of the dynamical model. For example, Li and Ren [9] studied parameter estimation by augmenting
parameters as states and used ensemble Kalman filter (EnKF) as the estimation algorithm. In [5], dual
Kalman filter was used to first estimate the states using a standard Kalman filter and then to estimate
the parameters using an unscented Kalman filter. In [7], three ensemble-based simultaneous state
and parameter estimation methods, augmented ensemble Kalman filter, dual EnKF and simultaneous
optimization and data assimilation were compared. The augmented EnKF was found to be the
most robust method for general conditions. However, the above discussed methods do not handle
constraints on the states or parameters in a systematical way. Constraints on the states and parameters
may contain important information and may be used to significantly improve estimation performance.
In our previous work [10], we compared the estimation performance of the moving horizon estimation
(MHE), extended Kalman filter (EKF) and ensemble Kalman filter (EnKF) on a one-dimensional (1D)
infiltration process. It showed that MHE outperforms the other two on parameter and state estimation
due to the consideration of constraints on state and parameters.

Moving horizon estimation is an online optimization-based estimation method, which is widely
used in state estimation of nonlinear systems [11,12]. Since MHE casts an estimation problem into an
optimization-based problem, the computational complexity is typically much higher than that of other
common estimation algorithms. Therefore, when dealing with systems/processes of medium to large
scales, centralized MHE may fail to provide online estimates due to increasingly high computational
load; this issue is especially significant for systems with complex nonlinearity like the infiltration
processes considered in this work. In addition to concerns about the computational load, the centralized
structure that exploits one single agent to handle plant-wide tasks is not favorable from the perspectives
of fault tolerance, organizational and maintenance flexibility [13–17]. The above considerations have
motivated the use of decentralized and distributed frameworks in advanced control [18–21] as well
as state estimation [22–25]. In a decentralized/distributed context, the overall system/process is
typically divided into smaller units (subsystems), and the original estimation problem which could
be large and complex is typically decomposed into smaller sub-problems, which are handled by a
number of local agents instead of using a single central agent. In this way, the computational burden
for each agent is eased, and the fault tolerance and maintenance flexibility can be much enhanced
at the same time. While the decentralized and the distributed frameworks are inherently similar,
one primary difference between them is that the local agents of a decentralized scheme typically do
not communicate with each other while the local agents of a distributed scheme coordinate with
each other via communication. As a result, a distributed architecture can be advantageous when
the sub-problems have significant interaction; that is, when the subsystems interact with each other
significantly, since the interactions can be appropriately handled by exchanging information between
the local agents [15,16]. In the literature, there have been some results on decentralized MHE (DeMHE)
and distributed MHE (DMHE) designs. In [26], a DMHE scheme was developed for nonlinear systems
based on the concept of sensor network. In [27–29], DMHE designs where local estimators are based
on decomposed subsystems were proposed. More relevant results can be found in [12,22,30].

The objective of this work is to develop a systematic parameter and state estimation scheme
that can provide accurate estimates of soil moisture. In particular, we consider fields that can
be described by the three-dimensional (3D) Richards’ equation with spatially heterogeneous and
temporally homogeneous parameters, which is an extension of our previous work [10]. In [10], only
one-dimensional (1D) infiltration processes were studied. While distributed schemes can provide
better overall performance as compared to their decentralized counterpart in many cases, it is worth
pointing out that DeMHE serves as a preferable candidate for the problem considered in this work.
In particular, we consider multiple soil profiles in a field. And it is found that several 1D models
that have negligible dynamic interactions can be used jointly to characterize the 3D soil moisture
dynamics in this circumstance. Therefore, distributed estimation is not a necessity due to the relatively
weak interactions between two soil profiles, and decentralized estimation can be adopted so that
fairly accurate estimates can be obtained while minimal information exchange between local agents
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can be achieved. In the remainder of this work, the investigated 3D system, the construction of the
numerical model and augmented model are first introduced in Section 2. The subsystem decomposition
guidelines and the formulation of DeMHE are presented in Section 3. The simulation results and
discussion are shown in Section 4 including the simulation setup, a study on spatial discretization size,
observability test and DeMHE estimation results. Section 5 summarizes the work covered in this work.

2. System Description and Problem Formulation

2.1. System Description and Modeling

An agriculture field may have complex terrains, such as hill, valley, etc. It may contain more than
one types of soil at different locations, for example, loam, clay, sand, etc. In order to capture the water
dynamics of a field with multiple soil profiles, it is essential to introduce the 3D agro-hydrological
system. In this work, we consider a simplified field with multiple types of soil with the following
assumptions. First, the soil heterogeneity only presents in horizontal direction and the interface
between two types of soil is vertical and flat. In other words, we assume that there is no mixture of
different types of soil in the system. Second, for each type of soil, the irrigation is uniformly applied
on the top surface. If the surface of one type of soil is significantly large and the irrigation equipment
cannot cover the whole surface at the same time, this soil can be decomposed into sections with each
section has the uniform irrigation/input. Third, the surface of the field is assumed to be flat, therefore,
the effect of terrains is not studied in this work. A schematic of the 3D agro-hydrological system is
shown in Figure 1, which is a modified version from [10]. In particular, we focus on the infiltration
process in this work; that is, the water dynamics within the vadose zone of the soil. The water dynamics
in the vadose zone of such a 3D field can be described using the following Richards’ equation:

c (h)
∂h
∂t

= ∇ · [K (h)∇ (h + z)] , (1)

where h (m) represents the capillary potential in the unsaturated soil, K(h) (m/s) and c(h) (1/m) are
respectively the hydraulic conductivity and capillary capacity of the soil. The van Genuchten-Mualem
soil hydraulic model K(h) and c(h) are utilized and shown in Equations (2) and (3), respectively [31]:

K (h) = Ks

[ (
1 + (−αh)n)−(1− 1

n )
] 1

2
[
1−

[
1−

[ (
1 + (−αh)n)−(1− 1

n )
] n

n−1
]1− 1

n
]2

(2)

c (h) = (θs − θr) αn
(

1− 1
n

)
(−αh)n−1 [1 + (−αh)n]−(2− 1

n ) , (3)

where Ks (m/s), θs (m3/m3) and θr (m3/m3) denote respectively the saturated hydraulic conductivity,
the saturated soil moisture and the residual soil moisture of the considered soil, and α (1/m) and
n are two more parameters that characterize the properties of the soil. For one type of soil, the
parameter set (Ks, θs, θr, α and n) determines the properties of the soil. When more than one types of
soil are considered, for each type of soil, it has its own set of parameters. Note that in the Richards’
Equation (1), the term z on the right-hand-side denotes the impact of gravitational force on water in the
vertical (z) direction and the vector differential operator (∇) in the 3D form summarizes the second
derivatives of total pressure head with respect to x, y and z directions.
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Figure 1. A schematic diagram of a 3D agro-hydrological system.

2.2. Model Discretization

The Richards’ equation in (1) is a nonlinear partial differential equation and is very difficult to
solve analytically if ever possible. In order to find numerical approximations fo the solution of (1),
we discretize the model using the finite difference (FD) method. The procedure to construct the FD
model is detailed below.

First, the vector differential operation (∇) along the three spatial directions (x, y, z) is represented
as the following:

∇ =

[
∂

∂x
∂

∂y
∂

∂z

]
. (4)

It is applied on Richards’ equation in (1), which results in the following form:

c (h)
∂h
∂t

=
∂

∂x

(
K(h)

∂h
∂x

)
+

∂

∂y

(
K(h)

∂h
∂y

)
+

∂

∂z

[
K(h)

(
∂h
∂z

+ 1
)]

, (5)

where the right-hand side is a summation of three terms, which are the second order derivatives of the
total pressure head in x, y, and z directions, respectively. The first and second terms govern the water
movements in x and y directions, respectively. Because the gravity force only applies to the water
movement in the vertical (z) direction, +1 term does not present in the first and second terms.

Next, two-point central difference scheme and two-point forward difference scheme are
used to approximate the derivatives with respect to spatial and temporal domains, respectively.
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Equations (6)–(8) below show the approximations of the derivative terms with respect to x, y, and z.
Equation (9) illustrates how the derivative with respect to time is approximated.

∂

∂x

(
K(h(t))

∂h(t)
∂x

)∣∣∣∣
i,j,k

=
1

∆xi

[
Ki− 1

2 ,j,k (h (t))

(
hi−1,j,k (t)− hi,j,k (t)

1
2 (∆xi−1 + ∆xi)

)

−Ki+ 1
2 ,j,k (h (t))

(
hi,j,k (t)− hi+1,j,k (t)

1
2 (∆xi + ∆xi+1)

)] (6)

∂

∂y

(
K(h(t))

∂h(t)
∂y

)∣∣∣∣
i,j,k

=
1

∆yj

[
Ki,j− 1

2 ,k (h (t))

(
hi,j−1,k (t)− hi,j,k (t)

1
2 (∆yj−1 + ∆yj)

)

−Ki,j+ 1
2 ,k (h (t))

(
hi,j,k (t)− hi,j+1,k (t)

1
2 (∆yj + ∆yj+1)

)] (7)

∂

∂z

[
K(h(t))

(
∂h(t)

∂z
+ 1
)]∣∣∣∣

i,j,k
=

1
∆zk

[
Ki,j,k− 1

2
(h (t))

(
hi,j,k−1 (t)− hi,j,k (t)

1
2 (∆zk−1 + ∆zk)

+ 1

)

−Ki,j,k+ 1
2
(h (t))

(
hi,j,k (t)− hi,j,k+1 (t)

1
2 (∆zk + ∆zk+1)

+ 1

)] (8)

∂h (t)
∂t

∣∣∣∣
i,j,k

=
hi,j,k (t + 1)− hi,j,k (t)

∆t
. (9)

Note that in Equations (6)–(9), i, j, k denote the locations of the discretized x, y, z directions, respectively,
and t indicates the discrete time. Specifically, i ∈ [1, Nx,x] ⊂ Z, j ∈ [1, Nx,y] ⊂ Z, and k ∈ [1, Nx,z] ⊂ Z,
where Nx,x, Nx,y, and Nx,z denote the number of compartments (or nodes) in x, y, and z directions.
t ∈ [0, Nt] ⊂ Z where Nt denotes the number of time instants considered. ∆t denotes the temporal step
size. ∆xi, ∆yj, and ∆zk represent the length (x direction), width (y direction), and depth (z direction) of
the corresponding compartment, respectively.

The FD model that calculates the capillary pressure head at the position i, j, k and the time instant
t + 1, is obtained by substituting Equations (6)–(9) into Equation (5) as shown below:

hi,j,k(t + 1) = hi,j,k(t) +
∆t

ci,j,k(h(t))

{
1

∆xi

[
Ki− 1

2 ,j,k (h (t))

(
hi−1,j,k (t)− hi,j,k (t)

1
2 (∆xi−1 + ∆xi)

)

−Ki+ 1
2 ,j,k (h (t))

(
hi,j,k (t)− hi+1,j,k (t)

1
2 (∆xi + ∆xi+1)

)]
+

1
∆yj

[
Ki,j− 1

2 ,k (h (t))

(
hi,j−1,k (t)− hi,j,k (t)

1
2 (∆yj−1 + ∆yj)

)

−Ki,j+ 1
2 ,k (h (t))

(
hi,j,k (t)− hi,j+1,k (t)

1
2 (∆yj + ∆yj+1)

)]
+

1
∆zk

[
Ki,j,k− 1

2
(h (t))

(
hi,j,k−1 (t)− hi,j,k (t)

1
2 (∆zk−1 + ∆zk)

+ 1

)

−Ki,j,k+ 1
2
(h (t))

(
hi,j,k (t)− hi,j,k+1 (t)

1
2 (∆zk + ∆zk+1)

+ 1

)]}
,

(10)

where ci,j,k(h) = c(hi,j,k) and the hydraulic conductivity is explicitly linearized as follows:

Ki− 1
2 ,j,k(h) = K

(hi−1,j,k + hi,j,k

2

)
, Ki,j− 1

2 ,k(h) = K
(hi,j−1,k + hi,j,k

2

)
, Ki,j,k− 1

2
(h) = K

(hi,j,k−1 + hi,j,k

2

)
.

The Neumann boundary conditions are used to characterize the top, bottom, left, right, front, and
back boundaries, which are shown below:
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∂h (t)
∂z

∣∣∣∣
i,j,0

=− 1−
qi,j,0(t)

K (h (t))
,

∂h (t)
∂z

∣∣∣∣
i,j,(Nx,z+1)

= −1−
qi,j,(Nx,z+1) (t)

K (h (t))

∂h (t)
∂x

∣∣∣∣
0,j,k

=−
q0,j,k (t)
K (h (t))

,
∂h (t)

∂x

∣∣∣∣
(Nx,x+1),j,k

= −
q(Nx,x+1),j,k (t)

K (h (t))

∂h (t)
∂y

∣∣∣∣
i,0,k

=−
qi,0,k (t)
K (h (t))

,
∂h (t)

∂y

∣∣∣∣
i,(Nx,y+1),k

= −
qi,(Nx,y+1),k (t)

K (h (t))
.

(11)

In the above equations, if either of i, j or k equals to zero, it means the boundary is either of left, front
or top boundary, respectively. On the other hand, if it equals to either of Nx,x + 1, Nx,y + 1 or Nx,z + 1,
the boundary is either of right, back, or bottom boundary. The variable q (m/s) denotes the water flow
rate. In particular, qi,j,0 represents the irrigation rate supplied at the surface point i, j. It is considered
as the input of the system. By following the standard 3D Cartesian coordinate system, when the
water flows in the same direction of one of positive axes, the flow rate is defined as a positive value.
On the contrary, the flow rate has a negative value when the water flows in the opposite direction.
The incorporation of flux based boundary conditions into the Richards’ equation is shown below with
top boundary as an example.

By rearranging the 1st boundary condition in Equation (11), the irrigation rate can be represented
as the following:

− qi,j,0(t) = K(h(t))

(
∂h (t)

∂z

∣∣∣∣
i,j,0

+ 1

)
. (12)

Since only unsaturated case is considered in this work, it is not necessary to calculate the value of the
capillary pressure head at the top boundary (hi,j,0), when calculating the capillary pressure head at the

top layer (hi,j,1). Instead, the term Ki,j, 1
2
(h (t))

( hi,j,0(t)−hi,j,1(t)
∆z0

+ 1
)

in Equation (10) can be substituted
by Equation (12). Then hi,j,1 is calculated by directly using the irrigation rate, qi,j,0, instead of hi,j,0.

2.3. Augmented Model

A compact form describing the 3D infiltration process can be obtained by combining
Equations (10)–(12) of all the spatial discretization nodes and adding in process and measurement
noise terms, which is represented as below:

x(t + 1) = F(x(t), u(t), p(t)) + ωx(t)

y(t) = Cx(t) + ν(t),
(13)

where x(t) ⊂ RNx is the state vector which is a collection of all the capillary pressure heads (hi,j,k
in (10)) at each discretization point, u(t) ⊂ RNu is the input vector (a collection of irrigation rates at all
the nodes of the top surface), p(t) ⊂ RNp denotes the parameter vector, ωx(t) ⊂ RNωx represents the
system noise, y(t) ⊂ RNy is the system output vector, and ν(t) ⊂ RNν denotes the measurement noise.
The state is the capillary pressure head and the total number (Nx) of the states is the product of Nx,x,
Nx,y and Nx,z. The size of the parameter vector (Np) depends on the number of types of soil presented
in the system. The output is obtained by directly measuring some of the states.

In order to estimate the states and parameters simultaneously, the parameters are augmented as
extra system states assuming that the parameters are constant as follows:

p (k + 1) = p (k) . (14)

The augmented process model is shown below:
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xa(t + 1) = Fa(xa(t), u(t)) + ωa(t)

y(t) = Caxa(t) + ν(t),
(15)

where the subscript a denotes the augmentation, xa(t) ⊂ RNxa is the augmented state vector, which is
xa = [x, p]T . The augmented process noise is denoted as ωa(t) ⊂ RNwa .

3. Proposed Estimation Method

In our previous work [10], it was found that MHE outperforms EKF and EnKF due to its ability in
handling constraints. In this work, we will adopt MHE as the estimation algorithm as well. We consider
fields with more than one types of soil and propose to use decentralized MHE for simultaneously
state and parameter estimation. In this section, we will first present the guidelines for subsystem
decomposition in Section 3.1, then discuss how to use observability analysis and sensitivity analysis to
pick the set of parameters for estimation. Following this, we will show why a decentralized framework
is appropriate in Section 3.3. At last, Section 3.4 presents the proposed DeMHE design.

3.1. Guidelines for Subsystem Decomposition

In the development of a decentralized estimation scheme, the first step is to decompose the entire
process into smaller subsystems. For a 3D infiltration system, we propose the following guidelines for
subsystem decomposition:

• it is expected that the numbers of the states in the configured subsystems can be made similar,
such that the computational and organizational complexity of the local estimators are not
significantly different;

• it is desirable if each subsystem only accounts for one soil type;
• it is expected that the initial values of the states involved in each subsystem are relatively similar;
• it is expected that the areas that are subject to different irrigation schedules are assigned to

different subsystems;
• it is expected that each configured subsystem is assigned sufficient sensors such that the subsystem

is observable;
• it is important that the dynamical interaction between each two subsystems is made minimal.

Following the guidelines, each subsystem represents a relatively small 3D field, which contains
only one type of soil and its irrigation is uniformly applied.

3.2. Significant Parameter Selection and Minimal Number of Sensors

Before conducting subsystem decomposition, it is necessary to conduct an observability test of
the centralized augmented system of Equation (15) to ensure that the system is observable assuming
that all the pressure head states are measured [10,16]. Based on the observability results, if the
system of Equation (15) is not observable, it is essential to remove some of the parameters from the
augmented system. This can be achieved by finding the most significant parameters that can ensure
the observability of the augmented system. The significant parameter subset for estimation may be
selected using sensitivity analysis. Once the significant parameters are identified, we can determine
the the minimum number of sensors required to ensure the observability of the system using the
maximum multiplicity method [32]. The detailed algorithms for testing the observability, finding the
significant parameter subset and determining the minimal number of sensors are discussed in [10].
The application of these algorithms to a 3D infiltration process will be discussed in the simulations.

3.3. Subsystem Approximation and Motivation of Decentralized Estimation

It is favorable to use a 3D Richards’ equation to develop the state and parameter estimation
algorithm. However, a 3D model with fine discretization leads to increased number of states, which
MHE may not be able to handle in an online fashion. One of the benefits of the proposed subsystem
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guidelines is that the states on a horizontal layer within a subsystem are very similar. Therefore,
it is possible to use, for example, the states at the center column (a 1D system) of a subsystem to
approximate the vertical capillary potential dynamics of different nodes within the same subsystem.
Based on this, we further propose to use a 1D Richards’ equation to approximate the dynamics of
each 3D subsystem. This can significantly reduce the computational demand for each decentralized
estimator. Specifically, we propose to use the center column of each subsystem to approximate the
vertical water dynamcis of a subsystem.

Based on this approximation, we study the significance of interaction between subsystems and
motivate the use of a decentralized estimation framework. First, according to the FD model of
Equation (10), the state at time instant t + 1, hi,j,k(t + 1) is dependent on itself and its adjacent states at
time instant t. Figure 2 shows an illustration of the neighboring states of hi,j,k. Let us assume that the
states hi,j,k, hi,j,k−1 and hi,j,k+1 belong to (a 1D approximation of) one subsystem, and hi−1,j,k, hi+1,j,k,
hi,j−1,k and hi,j+1,k belong to the neighbouring subsystems. Let us examine the following term on the
right-hand side of Equation (10):

1
∆xi

[
Ki− 1

2 ,j,k (h (t))

(
hi−1,j,k (t)− hi,j,k (t)

1
2 (∆xi−1 + ∆xi)

)
− Ki+ 1

2 ,j,k (h (t))

(
hi,j,k (t)− hi+1,j,k (t)

1
2 (∆xi + ∆xi+1)

)]
.

Suppose that the discretization along x direction is equally spaced, the above term can be further
simplified into the following:

Ki− 1
2 ,j,k (h (t))

[
hi−1,j,k (t)− hi,j,k (t)

]
− Ki+ 1

2 ,j,k (h (t))
[

hi,j,k (t)− hi+1,j,k (t)
]

(∆x)2 . (16)

This term quantitatively measures how the neighboring states along x direction (hi−1,j,k and hi+1,j,k)
contribute to the evolution of hi,j,k. Similarly, the following two terms quantify how neighboring states
in y and z directions affect the evolution of hi,j,k, respectively:

Ki,j− 1
2 ,k (h (t))

[
hi,j−1,k (t)− hi,j,k (t)

]
− Ki,j+ 1

2 ,k (h (t))
[

hi,j,k (t)− hi,j+1,k (t)
]

(∆y)2 (17)

Ki,j,k− 1
2
(h (t))

[
hi,j,k−1 (t)− hi,j,k (t) + 1

]
− Ki,j,k+ 1

2
(h (t))

[
hi,j,k (t)− hi,j,k+1 (t) + 1

]
(∆z)2 . (18)

According to Equation (10), the summation of the above three terms contributes to the evolution of
hi,j,k. As mentioned before, ∆x and ∆y represent the horizontal distances between two subsystems.
Their values can be a few meters or even larger. ∆z is the interval beween two vertical discretization
nodes and its value typically is about 1 to 25 centimeters. For example, if ∆x = ∆y = 10 m and
∆z = 1 cm, then, the denominator of term (18) is 106 times smaller than those of terms (16) and (17).
Because the seven states shown in Figure 2 have values of similar magnitudes, the numerators of the
above three terms are of similar magnitudes. Hence, the term (18) is around 106 times greater than
terms (16) and (17), which implies that the contribution of the states in z direction (hi,j,k−1 and hi,j,k+1)
to the evolution of hi,j,k is significantly larger than those in x and y directions. In other words, the
horizontal interaction between the states is notably smaller, as compared to the vertical interaction
between the states. This justifies the use a decentralized estimation framework.
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hi+1,j,k hi,j,k hi-1,j,k

hi,j+1,k

hi,j-1,k

hi,j,k+1

hi,j,k-1

x

y
z

0.5(∆xi-1+∆xi)

0.5(∆zk-1+∆zk)

Figure 2. A diagram illustrating spatial relation between center state and neighboring states.

3.4. Decentralized Moving Horizon Estimation Design

In the proposed DeMHE design, a 1D model that approximates the corresponding 3D subsystem
is used in the local MHE design. For subsystem n, its 1D approximation is described as follows:

xn
a (t + 1) = Fn

a (xn
a (t), un(t)) + ωn

a (t)

yn(t) = Cn
a xn

a (t) + νn(t),
(19)

where the superscript n ∈ [1, Ns] ⊂ Z denotes the index of the subsystem, xn
a (t) ⊂ RNxn

a is the state
vector of the 1D approximation of subsystem n augmented with the to-be-estimated parameters of
subsystem n, yn(t) ⊂ RNyn is the nth subsystem’s output vector, and ωn

a (t) ⊂ RNωn
a and νn(t) ⊂ RNνn

represent the subsystem’s process and measurement noise.
A schematic diagram of the proposed DeMHE is shown in Figure 3. At every sampling time,

the measurements from the subsystems are measured and sent to the corresponding estimators.
The estimator will only utilize the measurements from the corresponding subsystem and not from
other subsystems. Each estimator is independent on each other in the proposed DeMHE. In each local
estimator, the 1D approximation of the subsystem is used. The mathematical formulation of the MHE
design of subsystem n is shown below:

min
x̂n

a (t−Nn),··· ,x̂n
a (t),

ω̂n
a (t−Nn),··· ,ω̂n

a (t−1)


‖x̂n

a (t−Nn)−x̄n
a (t−Nn)‖2

(Pn)−1+
t−1

∑
l=t−Nn

‖ω̂n
a (l)‖

2
(Qn)−1

+
t

∑
l=t−Nn

‖ν̂n(l)‖2
(Rn)−1

 (20)

s.t. x̂n
a (l + 1) = Fn

a (x̂n
a (l), un(l)) + ω̂n

a (l), l ∈ [t− Nn, t− 1] ⊂ Z (21)

ν̂n(l) = yn(l)− Cn
a x̂n

a (l), l ∈ [t− Nn, t] ⊂ Z (22)

x̂n
a (l) ∈ Xn

a , ν̂n(l) ∈ Vn, l ∈ [t− Nn, t] ⊂ Z (23)
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ω̂n
a (l) ∈Wn

a , l ∈ [t− Nn, t− 1] ⊂ Z (24)

where n denotes the index of the estimator, Nn is the estimation window size of the estimator n, x̂n
a , ω̂n

a ,
and ν̂n are the estimates of xn

a , ωn
a , and νn within the estimation window. In the cost function (20), the

matrices Pn, Qn, and Rn are the covariance matrices of the subsystem’s state uncertainty, model noise,
and measurement noise. For different subsystems with different soil types, the design of the penalty
matrices for each corresponding MHE could be different while the formulation of the MHE remains
the same. In the design, (21) and (22) are the subsystem model. The constraints on the subsystem state,
process and measurement noise are denoted as Xn

a , Wn
a , and Vn, which are shown in Equations (23)

and (24).

...

...

...y1

xâ
1

xâ
2 xâ

Ns

y2 yNs

System

Decentralized MHE

xa
1 xa

2 xa
Ns-1

xa
2 xa

3 xa
Ns

MHE 1 MHE 2 MHE Ns

Subsystem 1 Subsystem 2 Subsystem Ns...

Figure 3. A schematic diagram of the proposed decentralized estimation scheme.

4. Simulation Results and Discussion

4.1. System Description

A field with 20 m (Lx) in x direction, 10 m (Ly) in y direction and a total depth (Lz) of 67 cm is
investigated. A schematic of the field is shown in Figure 4. The soil type is loam on the left half of the
field and is sandy clay loam (SCL) on the right half. The parameters of two types of soil are shown
in Table 1 [33]. In the following simulations, the field is equally partitioned into 500 compartments
in x direction (Nx,x = 500), 250 compartments in y direction (Nx,y = 250), and 32 compartments in
z direction (Nx,z = 32). Each discretization node (state) is centered at the corresponding compartment.

Table 1. The parameters of the investigated 3D field.

Ks (m/s) θs (m3/m3) θr (m3/m3) α (1/m) n

Loam 2.89× 10−6 0.430 0.0780 3.60 1.56
Sandy clay loam 3.64× 10−6 0.390 0.100 5.90 1.48



Mathematics 2020, 8, 681 11 of 21

x

y
z

20 m

Figure 4. A schematic diagram of the investigated field.

4.2. Observability Test on Original System

As described in Section 3.2, it is necessary to ensure the observability of the original system before
performing decomposition, since the system contains two different types of soil, loam and sandy clay
loam. There are in total 10 soil parameters (5 for each type of soil). Following the approach presented
in [10], we determine the significant identifiable parameters, determine the minimum number of
sensors required to ensure the identifiability of the parameters.

Initially, all the 10 parameters (Ks, θs, θr, α, and n for loam and sandy clay loam) are augmented
to the FD model of the field and all the states (soil moisture) are assumed to be measured. Based on
the FD model of the field, a 4-day simulation is carried out under the following settings: (a) on the
surface of the soil, the irrigation (u) is performed at the rate of 2.50 cm/day, from 12:00 PM to 4:00 PM
daily; (b) at the bottom, the free drainage boundary condition is applied, and (c) the field has the
homogeneous initial condition (x(0)) of −0.514 m capillary pressure head. The generated data are
used in the rest of the subsection. It is assumed that the measurements are available every hour.

Following the procedure discussed in [10], the PBH observability test is applied on the augmented
system of Equation (15) to check the identifiability of the parameters. The system needs to be linearized
every sampling time. It shows that the augmented system is not observable when all 10 parameters
are augmented, even all the soil moisture states are measured. In order to look for an observable
system, parameters are removed from the augmented system. It starts with removing only one of the
parameters and this results in 10 different augmented systems with each one augmented with nine
parameters. It is found that none of the systems are observable. Then, two parameters are removed
from the system, which results in 45 different augmented systems. By checking their observability,
it shows that there are four observable systems. The parameters removed from these four candidates
are listed in Table 2. Since observable systems are found, the final parameter set is determined in the
next step.

Table 2. Observable systems and their removed parameters.

Candidate # Parameters Removed

1 θs of loam and θs of SCL
2 θr of loam and θr of SCL
3 θs of loam and θr of SCL
4 θr of loam and θs of SCL
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Sensitivity analysis described in [10] is conducted based on the original augmented system with
all the parameters augmented. By comparing 1-norm of each column of the normalized sensitivity
matrices SN , it can be found that the 1-norm of the column ∂yi

∂θs
of both loam (5050) and SCL (2.34) are

bigger than 1-norm of ∂yi
∂θr

of loam (916) and SCL (0.600), respectively. Based on this, θs of the two types
of soil are considered as the more important parameters because they have more impacts on the output
than θr. It is worth mentioning that even the 1-norm of ∂yi

∂θs
of SCL (2.34) is much smaller than 1-norm

of ∂yi
∂θr

of loam (916), θr of loam is neglected in estimation problem. The reason is that if both θs and θr

of loam are augmented in the system, the system becomes unobservable. Therefore, the parameter set
(Candidate 2) excluding both θr is selected and the final parameter set used in the remaining analysis
is {Ks, θs, α, n} for both loam and sandy clay loam.

In the above, the identifiable and significant parameter set is determined based on the assumption
that all states are measured. The minimum number of sensors (measurements) is determined, following
the method described in [10] by using the maximum multiplicity method. It can be found that the
minimum number of sensors is 8 to ensure the observability of the augmented system with 8 parameters.

4.3. Subsystem Decomposition

Following the guidelines for subsystem decomposition in Section 3.1, we can decompose the
entire field into two subsystems. Subsystem 1 contains the loam on the left of the field and subsystem
2 contains the SCL on the right half of the field. Based on the discretization discussed in Section 4.1,
each subsystem contains 2 million states representing the capillary potentials, 4 soil parameters to be
augmented and estimated, and 4 measured outputs.

Because the soil property in each subsystem is homogeneous, initial state and input are uniform
for each subsystem, it is reasonable to expect that the dynamics along x and y directions are minor
and the dominant dynamics happens in the vertical direction. Therefore, it is reasonable to use the
state at the center column of a subsystem to approximate the dynamics of the entire subsystem. Under
this situation, each 3D subsystem can be approximated by a 1D model which contains only 32 states,
4 augmented parameters, 4 outputs and 1 input. In Figure 4, the column of black solid dots represents
the states of the center column of each subsystem.

In order to ensure the above assumptions are valid, it is necessary to compare the numerical
solutions of the original FD model and the 1D approximation of the two subsystems. In the original FD
model, ∆x and ∆y both equal to 4 cm. We will refer to the original FD model as Model 1. In the scheme
with 1D approximations of the two subsystems, we essentially have ∆x and ∆y both equal to 10 m. We
will refer to this scheme as Model 2. Three scenarios are considered and the simulation settings are
listed in Table 3. The numerical solutions of two models are compared in all three scenarios. Specifically,
the setup of Scenario 1 is that at the surface of the soil, the irrigation (u) is performed at the rate of
2.50 cm/day, from 12:00 PM to 4:00 PM daily. At the bottom, the free drainage boundary condition is
applied. The field has the homogeneous initial condition (x(0)) of −0.514 m capillary pressure head.
Scenario 2 studies the impact of initial conditions. The left half of the field has the homogeneous initial
condition of −0.514 m capillary pressure head and the right half has the homogeneous initial condition
of −0.284 m. The top and bottom boundary conditions of this scenario is the same as the setup of
Scenario 1. Scenario 3 studies the impact of inputs on the numerical solution. It has the same initial
condition and bottom boundary condition as Scenario 1. However, the irrigation is performed at the
rate of 2.5 cm/day, from 12:00 PM to 2:00 PM daily on the left half of the field and from 2:00 PM to
4:00 PM daily on the right half.

The three figures, Figures A1, A2, and Figure A3 in Appendix A, show the selected state trajectories
comparing two models under Scenario 1, 2, and 3, respectively. Within each figure, the subplot on
the left shows the trajectories of the loam and the subplot on the right shows the trajectories of sandy
clay loam. Under each scenario, the trajectories of Model 2 is almost the same as those of Model 1.
Qualitatively speaking, the maximum percentage difference over the investigated time domain of
Scenario 1, 2, and 3 is 0.01%, 0.03%, and 0.006%, respectively. This implies that Model 2 is a good
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approximation of the original FD model. In conclusion, for a subsystem that contains only 1 type of
soil, receives uniform irrigation and is initialized uniformly, the capillary potential at the center of
the subsystem (black dots) is able to represent the capillary potentials at other locations in the same
horizontal layer. Hence, it is reasonable to only use an 1D model to simulate the subsystem.

Table 3. Scenarios studying effects of sizes of ∆x and ∆y on numerical solution of the 3D
Richards’ equation.

x(0) (m) u (cm/day) Irrigation Schedule

Soil type Loam SCL Loam SCL Loam SCL
Scenario 1 −0.514 −0.514 2.5 2.5 12PM to 4PM 12PM to 4PM
Scenario 2 −0.514 −0.284 2.5 2.5 12PM to 4PM 12PM to 4PM
Scenario 3 −0.514 −0.514 2.5 2.5 12PM to 2PM 2PM to 4PM

4.4. Simultaneous Parameter and State Estimation

First, a quantitative result is shown to support the analysis in Section 3.3 and further motivate
the decentralized framework. The trajectories of the magnitudes of terms (16) and (18) are generated
under Scenario 1. The 2nd top state in the left subsystem of Model 2 is considered as xi,j,k. The top plot
of Figure A4 in Appendix A shows the trajectory of the magnitude of the term (16) and the bottom
plot shows the trajectory of the magnitude of term (18). They show that the magnitude of term (18)
is around 0.5× 106 greater than the magnitude of term (16). Therefore, the horizontal interaction
between the states are notably smaller, comparing to the vertical interaction between the states. This
further justifies the use of DeMHE.

Next, we apply DeMHE to estimate the states and parameters of the studied field with two
subsystems. The performance of DeMHE is studied under the three scenarios mentioned in Section 4.3.
While the minimum number of sensors is 8, we consider that we have in total 16 sensors installed to
further ensure the degree of observability. Specifically, we assume that 8 tensiometers (Ny) are installed
in each subsystem. These sensors are installed at 5.23 cm, 13.6 cm, 22.0 cm, 30.4 cm, 38.7 cm, 47.1 cm,
55.5 cm, and 63.9 cm below the surface, which measure the 2nd, 6th, 10th, 14th, 18th, 22th, 26th and
30th states along the z direction, respectively. Eight parameters (Ks, θs, α, and n for both loam and
sandy clay loam) of the system are to be estimated. The actual parameter values used to describe the
system are shown in Table 1 and they are assumed to be constant within the investigated temporal
domain. Process noise and measurement noise (ωx and ν) are considered in the simulations and
they have zero mean and standard deviations 3× 10−6 m and 8× 10−3 m, respectively. In the design
of DeMHE, MHE 1 and MHE 2 are designed for Subsystem 1 and Subsystem 2, respectively. The
algorithm of MHE 1 and MHE 2 are introduced in Section 3. The initial guesses of the parameters and
initial states in the estimator are listed in Table 4 and compared with those used in the actual system.

Table 4. True values of initial states and parameters of the process and the initial guesses used
in estimators.

Variables True Value Initial Guess

MHE 1

Ks (m/s) 2.89× 10−6 3.18× 10−6

θs (m3/m3) 0.430 0.387
α (1/m) 3.60 3.24

n 1.56 1.72
θr (m3/m3) 0.0780 0.0780

MHE 2

Ks (m/s) 3.64× 10−6 4.00× 10−6

θs (m3/m3) 0.390 0.351
α (1/m) 5.90 5.31

n 1.48 1.62
θr (m3/m3) 0.100 0.100

MHE 1 & 2 x0 (m) −0.514 −0.617
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The estimation window sizes of both MHEs are 8 h. The weighting matrices Pn, Qn, and Rn

of both MHEs are the same. Specifically, the matrices Qn and Rn are designed as the covariance
matrices of ωn

x and νn with the standard deviations reported in Section 4.1. The diagonal elements
of Qn corresponding to augmented parameters are 0, because the parameters are assumed to be
temporally constant. In simulations, 10−20 is used to approximate the value 0 and to ensure the
positive definiteness of Qn. The diagonal elements of Pn corresponding to the states are designed
as (3× 10−3)2 and those of parameters are configured as (3× 10−2)2. Then by retaining the same
ratio with respect to the matrices described before, Pn, Qn, and Rn are increased with a much bigger
magnitude to ensure the numerical stability of the associated optimization problem. The Pn matrix is
constant for all the optimizations. One thing worth mentioning is that even the designed weighting
matrices for the two MHEs are the same, the weighting matrices could be designed differently for
different types of soil, especially when the parameter heterogeneity is significant. The constraints of the
states, parameters and the model uncertainty used in the two MHEs are listed in Table 5. The upper
and lower bounds of the term ω̂p are 0 because the parameters are constant.

Table 5. Lower and upper bounds used in DeMHE.

Variables Lower Bounds Upper Bounds

MHE 1

K̂s (m/s) 2.31× 10−6 3.47× 10−6

θ̂s (m3/m3) 0.344 0.516
α̂ (1/m) 2.88 4.32

n̂ 1.25 1.87

MHE 2

K̂s (m/s) 2.91× 10−6 4.37× 10−6

θ̂s (m3/m3) 0.312 0.468
α̂ (1/m) 4.72 7.08

n̂ 1.18 1.78

MHE 1 & 2
x̂ (m) −1.00 −1.00× 10−4

ω̂x −∞ ∞
ω̂p 0.00 0.00

The root mean square errors [34], RMSEx and RMSEp, are used to evaluate the performance of
DeMHE on state and parameter estimation, respectively. They are defined as follows:

RMSEx(k) =

√
∑Nx

i=1(x̂i (k)− xi (k))2

Nx
(25)

RMSEp(k) =

√√√√∑
Np
i=1( p̂i (k)− pi (k))2

Np
. (26)

Figure 5 shows some representative estimated states and Figure 6 shows all estimated parameters
using DeMHE in Scenario 1. The estimated values are also compared with their true values, which
are obtained using Model 1 with both ∆x and ∆y equaling to 4 cm. In each figure, the subplot on the
left side is for loam and the one on the right side is for sandy clay loam. Figure 5 shows the state
trajectories of the top node and a few middle nodes and one bottom node. From the figure, it can
be seen that the top node has more dynamics because it takes time for irrigated water to pass from
the upper layers and to the lower layers. In terms of state estimation performance, it can be seen
that DeMHE gives very good state estimates. Note that from Figure 5, it can also be seen that the
estimates of the 11th state (h11) converge faster than the other estimates. This is because it is a sensor
node. In terms of parameter estimation, Figure 6 shows the results. From the figure, it can be seen that
DeMHE is capable of estimating the parameters. The trajectories of the performance indices RMSEx

and RMSEp associated with the DeMHE are shown in Figure 7 and the indices for both types of soil
decrease to values less than 0.02.
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Figure 5. Selected trajectories of the process states and estimated states using DeMHE.
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Figure 7. Trajectories of RMSE measuring the estimation performance of DeMHE (Scenario 1).

The performance of the DeMHE is also assessed under Scenarios 2 and 3. The trajectories of the
performance indices RMSEx and RMSEp associated with the DeMHE under Scenario 2 and Scenario 3
are shown in Figures 8 and 9, respectively. From these figures, it can be seen that the DeMHE continues
to show good performance in both state and parameter estimation as in Scenario 1. The different initial
conditions of the actual field in Scenario 2 or different irrigation patterns do not affect the performance
of the DeMHE.
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Figure 8. Trajectories of RMSE measuring the estimation performance of DeMHE for studying impact
of initial conditions (Scenario 2).
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Figure 9. Trajectories of RMSE measuring the estimation performance of DeMHE for studying impact
of inputs (Scenario 3).

5. Conclusions

In this work, a distributed state and parameter estimation scheme developed in the framework
of MHE was proposed for 3D infiltration processes with more than one types of soil. The soil
parameters were assumed to be spatially heterogeneous and temporally homogeneous. Parameters
were augmented as extra states for simultaneously state and parameter estimation. The appropriate
parameter set which contains significant and identifiable parameters was determined based on the
observability of the augmented system and the sensitivity of the outputs to the parameters. It was
found that the augmented system was unobservable when a pair of saturated soil moisture and
residual soil moisture of the same type of soil was presented in the system. With the sensitivity analysis
showing the residual soil moisture was less important than the saturated soil moisture which is from
the same soil, residual soil moistures of all presented soils were not considered in parameter estimation.
For estimation, the system was decomposed into subsystems based on the soil types presented in
the system. Each subsystem contained only one type of soil, hence, only four parameters (hydraulic
conductivity, saturated soil moisture, and van Genuchten-Mualem parameters) of the same type of soil
were presented in each subsystem. The performance of the proposed DeMHE was evaluated under the
different scenarios. The simulated results showed that DeMHE was able to estimate the parameters
and states very well under these scenarios. In the future, parameter and state estimation problem
could be expanded and studied on an agro-hydrological system which consists of Richards’ equation,
crop and atmospheric models, etc.
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Appendix A

Figures A1–A3 show the trajectories of Richards’ equation modeled under Scenario 1, 2, and 3,
respectively. In each figure, it compares the numerical solution of the Richards’ equation under
2 different discretization schemes; that is, 4 cm and 10 m. Figure A4 shows the trajectories of
contributions of states in x and z directions to the system’s dynamics, in order to motivate the
decentralized moving horizon estimation.
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Figure A1. Comparison of selected trajectories of Model 1 (4 cm) and Model 2 (10 m) under Scenario 1.
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Figure A3. Comparison of selected trajectories of Model 1 (4 cm) and Model 2 (10 m) under Scenario 3.
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Figure A4. Trajectories of contributions of states in x and z directions to the system’s dynamics.
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