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Abstract: This manuscript addresses a novel output model predictive controller design for a
representative model of continuous stirred-tank reactor (CSTR) and axial dispersion reactor with
recycle. The underlying model takes the form of ODE-PDE in series and it is operated at an
unstable point. The model predictive controller (MPC) design is explored to achieve optimal
closed-loop system stabilization and to account for naturally present input and state constraints.
The discrete representation of the system is obtained by application of the structure properties
(stability, controllability and observability) preserving Cayley-Tustin discretization to the coupled
system. The design of a discrete Luenberger observer is also considered to accomplish the output
feedback MPC realization. Finally, the simulations demonstrate the performance of the controller,
indicating proper stabilization and constraints satisfaction in the closed loop.

Keywords: optimal control; distributed parameter systems (DPS); model predictive control (MPC);
lumped parameter systems (LPS); recycle; continuous stirred-tank reactor (CSTR); axial dispersion
reactor; Luenberger observer; Cayley-Tustin discretization

1. Introduction

The modeling of many chemical engineering process plants relies on the description given by
either transport-reaction mathematical models, which belong to the class of distributed parameter
systems (DPS), or by lumped parameter system models, which represent idealization of the process
units where some assumptions of spatial uniformity (mainly due to the mixing) can take place [1].
The transport-reaction processes are modeled as distributed parameter systems and take the form of
partial differential equations (PDEs) which are given by parabolic or hyperbolic PDEs.

To apply control methods on PDEs, one approach is the traditional method, which uses lumping
techniques to convert the PDEs to a set of ordinary differential equations (ODEs) [2–6]. Due to the high
numbers of modes required in this approach, especially when it comes to the parabolic PDE models,
this type of simplification leads to the high dimensionality of the ensuing controller. Furthermore,
neglecting the nature of the infinite dimensionality in the original setting might result in instability
of the closed-loop system. There are several contributions focused on the synthesis of low-order
controllers, which address the issue of having the spatially varying nature in transport-reactions
systems. These contributions include the analysis of dynamic properties in the frequency domain,
nonlinear, and robust controllers for different classes of dissipative PDEs and Lyapunov-based control
methodologies (e.g., [1,7,8]).

Along the line of modeling, most complex processes are in the mixed form of distributed and
lumped parameter systems (LPS), and the latter are generally modeled by ODEs [9]. The interconnected
coupling of DPS and LPS is a challenging task, but in essence is the proper way to address a variety
of process units in real world plants. There are two types of possible interactions between PDEs
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and ODEs. The first is an in-domain coupling, where the parameters of the DPS are coupled to the
LPS (e.g., [10,11]). The second type of interaction is called cascaded ODE-PDE, where the boundary
conditions for the DPS are coupled to the LPS [12]. There are numerous research efforts focused on
this type of interaction in the control literature, for instance, the observer design of coupled ODE-PDE
cascade systems [13], feedback boundary control for coupled ODE-PDE system [14] and backstepping
boundary control for coupled ODE-PDE [15,16].

Although the aforementioned contributions consider the stabilization of the ODE-PDE coupled
system, they never address either input or state constraints, which are naturally present in the
process plants. If constraints are present in the system, one can use a model predictive control
(MPC) methodology to take into account these limitations in the process control realization. Basically,
within the optimal control framework, the popularity of the so-called online receding horizon control
comes from its capability to handle the constraints, particularly for the manipulated input and state
variables [17]. Motivated by this, some researchers investigated the properties of MPC controllers,
such as the stability of the closed-loop system, constraints validation and system performance [18–20].
In addition, some works considered a class of the Riesz spectral systems with separable spectrums and
successfully designed MPC algorithms with constraints [21–23]. There are also some other relevant
studies regarding nonlinear MPC for DPS, such as data-based modeling or the techniques based on
model reduction by using repeatedly online linearization [24,25].

Computer applications in various engineering areas require a modern controller realization,
which is implemented in the discrete setting. Hence, in order to turn the models/controllers into
a discrete setting, mostly traditional numerical methods, such as explicit and implicit Euler [26],
are used for time discretization. However, from the linear system theory it is known that this may
impact the stability of the system when there is an increase in sampling period, mapping a stable
continuous system into an unstable discrete one [27]. The aforementioned issue becomes more serious
when DPS are analyzed, as these are represented by infinite-dimensional state-spaces. It has been
demonstrated that the Crank-Nicolson midpoint integration rule method (Cayley-Tustin) preserves
the system characteristics and intrinsic energy (i.e., Hamiltonian preserving) of the linear distributed
parameter system [28]. Motivated by this, in this contribution, the conversion of the continuous linear
infinite-dimensional system representation to the linear discrete-time infinite-dimensional one, is done
by the application of the Cayley-Tustin discretization [29].

In this work, the extension of the standard finite-dimensional MPC for linear systems [30,31] is
considered. The optimal constrained finite-dimensional controller is applied to the lumped parameter
system coupled to a distributed parameter system, and ensures the input and state constraints
satisfaction within the framework of finite-dimensional quadratic optimization problem [32].
The relevant process engineering model includes a continuous stirred-tank reactor (CSTR), and the
output of this reactor is coupled to an axial dispersion mono-tubular reactor that has a recycle stream.
The system of coupled equations includes a parabolic PDE with algebraic boundary conditions
(representing the tubular reactor), while the ODE refers to the CSTR model dynamics. The discrete
Luenberger observer is designed to account for the system output and its stability is based on the design
in the continuous-time setting. The reconstructed system states are then used in the MPC, providing
optimal stabilization of the ODE-PDE cascade with the inclusion of state and input constraints.

The manuscript is organized as follows. In Section 2, the coupled ODE-PDE system is introduced
in the appropriate abstract Hilbert space. Then, in addition to the stability analysis of the system in
Section 2.2, the discretization scheme is accomplished by the Cayley-Tustin method in Section 3. It is
followed by the observer design for the coupled ODE-PDE system in Section 4. Finally, in Section 5,
considering an unstable operating condition, the feasible optimization problem is realized with
input, state, and stability constraints, and it is followed by the simulation studies, which show the
performance of the optimization-based controller design.
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2. Problem Formulation

2.1. System Representation

Consider the following coupled CSTR-tubular reactor configuration as the combination of a
lumped and parabolic distributed parameter system. This setting is used for some chemical processes
(see, e.g., [33]), and can be represented as follows (Figure 1):

Figure 1. CSTR-tubular reactor system with recycle stream.

The mentioned process can be described by the following coupled ODE-PDE system of equations
on domain {t ∈ <+, ζ ∈ [0, 1]} with algebraic coupled boundaries and initial condition:

dxF(t)
dt

= a1xF(t) + a2u(t) + RxI(1, t)

∂xI(ζ, t)
∂t

= D
∂2xI(ζ, t)

∂ζ2 − v
∂xI(ζ, t)

∂ζ
+ ψxI(ζ, t) + f (ζ)d(t)

xF(0) = xI(ζ, 0) = 1

xI(0, t) = xF(t)

∂xI(ζ, t)
∂ζ

∣∣∣
ζ=1

= 0

y(t) = xI(1, t)

(1)

where the second order linear parabolic PDE corresponds to convection-diffusion reactor. The transport
of a property xI(ζ, t) ∈ L2(0, 1) - L2(0, 1) is a Hilbert space—through the tubular reactor, given with the
inner product (< ·, · >), (L2(Ω; Z), < h, f >=

∫
Ω
< h(z), f (z) >Z dz), the ODE indicates the dynamics of

the variable xF ∈ < within the CSTR. ζ ∈ [0, 1] is the position and t ≥ 0 is the time variable. ψ ∈ <
and a1 ∈ < are the constant values responsible for the consumption or generation of xI(ζ, t) and xF(t),
respectively. R ∈ <+ refers to the recycle factor in the system and is considered to be a bounded
parameter (0 ≤ R ≤ 1). v ∈ <+, D ∈ <+ are the constant transport velocity and diffusion-constant,
respectively. a2 ∈ < is a constant number, and u(t)∈ < represents the system input. f (ζ) and d(t)
represent a known disturbance which may present in the tubular reactor and can express changes
in unit operations, such as temperature. d(t) is considered to be a step function and f (ζ) is given
as follows:

f (ζ) =

{
0 0 ≤ ζ < yI

kI yI ≤ ζ ≤ 1
(2)
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where yI and kI are constant values. Here, the linear coupled finite-infinite-dimensional system can be
rewritten by the following state-space equations:

ẋ(t) = Ax(t) + Bu(t) + Md(t)
y(t) = Cx(ζ, t)

(3)

where x is state representing both finite and infinite part of the process

(
x =

[
xF = x(t)
xI = x(ζ, t)

])
. For

the sake of simplicity in the paper, index F refers to the finite part of the system (ODE), while index
I indicates the infinite part (PDE). A is defined as a linear operator L(X) (where X is a real space

<⊕ L2(0, 1)), such that D(A) = {x ∈ X : xF ∈ <, xI(ζ) ∈ L2(0, 1)
∣∣ xI(ζ),

dx
dζ

are absolutely continuous,

xI(0) = xF and
dx(ζ = 0)

dζ
= 0}. B =

[
a2

0

]
is the linear input operator L(<, X), M =

[
0

f (ζ)

]
is the linear

disturbance input operator and C=
[

0
∫ 1

0
δ(ζ − 1)(.)dζ

]
is the linear output operator.

2.2. Open-Loop Stability

The generality of the ensuing design can be established by performing the stability analysis of the
target system given by Equation (1). The eigenvalue problem for the open-loop (u(t) = 0) unstable
coupled ODE-PDE system is defined as below:

AΦ = λΦ (4)

where :

A =

AF = a1 R(·)I

∣∣∣∣
ζ=1

0 AI = −v
∂(·)I

∂ζ
+ D

∂2(·)I

∂ζ2 + ψ(·)I

 , Φ(ζ) =

[
ΦF

ΦI(ζ)

]
(5)

λ and Φ are the eigenvalues and eigenfunctions, respectively. The boundary conditions are given by

ΦI(ζ = 0) = ΦF,
dΦI(ζ)

dζ

∣∣∣
ζ=1

= 0. (6)

After some simple manipulation and using the boundary conditions defined by Equation (6) in
Equation (4), one gets the following:

d2ΦI
dζ2 −

v
D

dΦI
dζ
− (λ− ψ)

D
ΦI = 0 (7a)

ΦI(ζ = 0) = ΦF = −RΦI(ζ = 1)
a1 − λ

,
dΦI
dζ

∣∣∣∣
ζ=1

= 0 (7b)

λ and ΦI(ζ) are found numerically from Equation (7a). The solution of Equation (4) with the set of
parameters R = 0.55, v = 1.8 and consumption of the desired component in both CSTR and dispersive
tubular reactor (ψ = −1 and a1 = −0.25), shows that most eigenvalues have negative real parts and
there is only one unstable eigenvalue in the system (see Figures 2 and 3). To explore the effects of
diffusion (D) on eigenvalues placement, several values for diffusion were considered. By analyzing
Figure 3, with the same conditions, one can notice that as diffusivity increases, the distribution will
shift from complex eigenvalues to the real ones.

In this particular chemical engineering system, with the boundary conditions mentioned above,
the instability of the coupled ODE-PDE system present with the value assigned for R. As will be
discussed in Section 5 by canceling the unstable mode under model predictive control, the stabilization
of the system is addressed.
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Figure 2. Eigenvalues distribution for unstable coupled ODE-PDE system when there is no diffusion
within the tubular reactor.

Figure 3. Effects of diffusivity within the dispersive reactor on the eigenvalues placement for unstable
coupled ODE-PDE system.

3. Discrete Representation

3.1. Discrete Operators

In this section, the Cayley-Tustin time discretization is applied, which maps the mentioned
coupled ODE-PDE system from continuous-time to a discrete one, preserving all energy properties
with the feature of no spatial discretization. The discrete version of Equation (3) with sampling time
∆t can be represented as follows:

xk+1 = Adxk + Bduk + Mddk
yk = Cdxk + Dduk + Nddk

(8)

δ = 2/∆t and (Ad, Bd, Cd, Dd,Md, Nd) are the linear discrete operators defined by:[
Ad Bd Md
Cd Dd Nd

]
=

[
−I + 2δ [δ− A]−1 √

2δ [δ− A]−1 B
√

2δ [δ− A]−1 M√
2δC [δ− A]−1 C [δ− A]−1 B C [δ− A]−1 M

]
(9)

where δ = 2/∆t, and [δ− A]−1 = R(δ, A) is given as the resolvent operator of A in Equation (5).
It should be mentioned that the discrete operators are found by replacing s with δ in R(s, A) . In order
to find the resolvent operator, one may easily apply Laplace transform to the set of Equations (1):
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∂

∂ζ

 xI(ζ, s)
∂xI(ζ, s)

∂ζ


︸ ︷︷ ︸

X(ζ,s)

=

 0 1
s− ψ

D
v
D


︸ ︷︷ ︸

P

 xI(ζ, s)
∂xI(ζ, s)

∂ζ

+

 0

− xI(ζ, 0)
D


︸ ︷︷ ︸

H

(10)

Since P is a constant matrix, one can calculate ePζ with the Laplace inverse transform (L−1{[sI −

P]−1}). Therefore, the solution of the mentioned system
(

X(ζ, s) = ePζ X(0, s) +
∫ ζ

0
eP(ζ−η)Hdη

)
can

be expressed as follows: xI(ζ, s)
∂xI(ζ, s)

∂ζ

 =

[
e1(ζ) e2(ζ)

e3(ζ) e4(ζ)

]  xI(0, s)
∂xI(0, s)

∂ζ

+

[
b1(ζ)

b2(ζ)

]
. (11)

After applying the boundary conditions
(

xI(ζ = 0, s) = xF(s),
∂xI(ζ=1,s)=0

∂ζ

)
to Equation (11),

the discrete operators are obtained and have the following form:

Ad(·) = −
[
(·)F
(·)I

]
+ 2δ

[
RFF RFI
RIF RI I

] [
(·)F
(·)I

]
(12)

Bd =
√

2δ

[
RFFB
RIFB

]
; Md =

√
2δ

[
RFI f (ζ)
RI I f (ζ)

]
(13)

Cd =
√

2δ
[

RIF
∣∣
ζ=1 RI I

∣∣
ζ=1

] [(·)F
(·)I

]
(14)

Dd = [RIFB]
∣∣
ζ=1; Nd = [RI I f (ζ)]

∣∣
ζ=1 (15)

with the following components:

RFF(·)F =

 (·)F
R

δ− a1
R
− f (1)3

 , RFI(·)I =


b(1)1 −

e(1)2 b(1)2

e(1)4
δ− a1

R
− f (1)3


RIF(·)F(ζ) = f3(ζ)

 (·)F
R

δ− a1
R
− f (1)3



RI I(·)I(ζ) = f3(ζ)

 b(1)1 −
e(1)2 b(1)2

e(1)4

δ− a1
R
− f (1)3

− e(1)2 b(1)2

e(1)4

+ b1

RFFB = f3(ζ)

 a2

(δ− a1)
2

R
− f (1)3 (δ− a1)

+
a2

δ− a1

RIFB(ζ) = f3(ζ)

 a2
R

δ− a1
R
− f (1)3

 , RFI f (ζ) =


k(1)1 −

e(1)2 k(1)2

e(1)4
δ− a1

R
− f (1)3


RI I f (ζ) = f3(ζ)

 k(1)1 −
e(1)2 k(1)2

e(1)4

δ− a1
R
− f (1)3

− e(1)2 k(1)2

e(1)4

+ k1

(16)
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in above equations e1(ζ), e2(ζ), e3(ζ), e4(ζ), b1(ζ), b2(ζ), k1(ζ), k2(ζ) and f3(ζ) are defined by the
following expressions:

e1(ζ) = e
mζ
2

(
cosh

(
hζ
2

)
−

sinh
(

hζ
2

)
m

h

)

e2(ζ) =
2sinh

(
hζ
2

)
e

mζ
2

h

e3(ζ) =
2
(

δ−ψ
D

)
sinh

(
hζ
2

)
e

mζ
2

h

e4(ζ) = e
mζ
2

(
cosh

(
hζ
2

)
+

sinh
(

hζ
2

)
m

h

)
b1(ζ) =

∫ ζ

0
f1(ζ, η)(·)Idη

f1(ζ, η) =
−2e

(ζ−η)m
2 sinh

(
h(ζ−η)

2

)
Dh

k1(ζ) =
∫ ζ

0
f1(ζ, η) f (ζ)dη

b2(ζ) =
∫ ζ

0
f2(ζ, η)(·)Idη

f2(ζ, η) = − e
(ζ−η)m

2

D

cosh
(

h(ζ − η)

2

)
+

sinh
(

h(ζ−η)
2

)
m

h


k2(ζ) =

∫ ζ

0
f2(ζ, η) f (ζ)dη

m =
v
D

h =

√( v
D

)2
+ 4

(
δ− ψ

D

)
f3(ζ) = e1(ζ)−

e2(ζ)e
(1)
3

e(1)4

(17)

where e(1)1 , e(1)2 , e(1)3 , e(1)4 , b(1)1 , b(1)2 , k(1)1 , k(1)2 , f (1)1 , f (1)2 and f (1)3 are the corresponding terms calculated
at ζ = L = 1.

3.2. Discrete Adjoint Operators

The adjoint operators are required for developing the model predictive control. The expressions
for adjoints (A∗d , B∗d) of the discrete operators (Ad, Bd) are written in the following form:

A∗d(·) = −
[
(·)F
(·)I

]
+ 2δ

[
R∗FF R∗IF
R∗FI R∗I I

] [
(·)F
(·)I

]
(18)

B∗d =
√

2δ

[
(RFFB)∗

(RIFB)∗

]T

(19)
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the components of the adjoint operators are computed based on the definition (< AdΦ, Ψ? >=<
Φ, A?

dΨ? >) and results in following operators:

R∗FF(·)F = RFF(·)F

R∗IF(·)I =
∫ L

0


e1 −

e2e(1)3

e(1)4

δ− a1 − R f (1)3

 (·)Idζ

R∗FI(·)F(ζ) =


f (1)1

δ− a1
R
− f (1)3

−

e(1)2 f (1)2

e(1)4
δ− a1

R
− f (1)3

 (·)F

R∗I I(·)I(ζ) =

− f (1)2

∫ L

0

 e(1)2

e(1)4

(
δ− a1 − R f (1)3

) f3(η) +
e2(η)

e(1)4

 (·)Idη

+

 f (1)1

∫ L

0

 f3(η)(
δ− a1 − R f (1)3

)
 (·)Idη +

∫ L

ζ
f1(η, ζ)(·)Idη



(RFFB)∗(·)F =

 a2 f (1)3
(δ− a1)

2

R
− f (1)3 (δ− a1)

+
a2

δ− a1

 (·)F

(RIFB)∗(·)I =

 a2
R

δ− a1
R
− f (1)3

 ∫ L

0

[
e1(ζ)−

e(1)3 e2(ζ)

e(1)4

]
(·)Idζ

(20)

4. Luenberger Observer Design

In a real process system controller realization, having access to all the state variables cannot be
feasible, especially when DPS are considered. In order to address this issue in the design of the model
predictive control, the Luenberger observer is introduced for reconstruction of the state variables by
taking the output measurement into account. First, the design of observer for the coupled parabolic
PDE-ODE system in the continuous setting is considered. Then, the continuous observer gain is
transferred into the discrete one using Cayley-Tustin discretization. The Luenberger observer has the
form given by:

˙̂x(ζ, t) = Ax̂(ζ, t) + Bu(t) + Lc[y(t)− ŷ(t)] + f (ζ)d(t)
ŷ(t) = Cx̂(ζ, t)

(21)

where Lc=

[
LF

LI(ζ)

]
is the continuous observer gain. By subtracting Equation (21) from its general form

(ẋ(ζ, t) = Ax(ζ, t) + Bu(t)), one can get the dynamics of the observer error as follows:

˙̂e(ζ, t) = (A− LcC)ê(t), ê(0) 6= 0 (22)
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the design of the observer is relied on choosing Lc such that the state estimation error dynamics
given by Equation (22) is stable. Hence, the stability of the observer can be ensured by analyzing the
eigenvalues problem of the observer error:

(A− LcC)Φ = λΦ (23)

which results in following equation and boundary conditions:

d2ΦI

dζ2 −
v
D

dΦI
dζ
− (λ− ψ)

D
ΦI =

LI(ζ)

D
ΦI(ζ = 1) (24a)

ΦI(ζ = 0) = ΦF = − (LF − R)ΦI(ζ = 1)
a1 − λ

,
dΦI
dζ

∣∣∣∣
ζ=1

= 0. (24b)

Figure 4 shows the eigenvalues placement for different values of Lc=

[
LF

LI(ζ)

]
. It should be

emphasized that in the eigenvalue problem, although a spatially varying LI(ζ) could be chosen,
a constant value throughout the whole spatial domain (LI(ζ) = L) is considered and the same value
assigned for the finite part (LF = L). It can be seen that as the value of Lc increases, the unstable
real eigenvalue is shifted to the left side (the stable region). Therefore, as depicted in Figure 4 for
Lc > 0.1 the stability of the error dynamics will be ensured by having only negative eigenvalues.
Here, the resolvent is used to compute the corresponding discrete observer gain from the continuous
one [34]:

Ld =
√

2δ

[
RFF RFI
RIF RI I

] [
LF

LI(ζ)

]
. (25)

Therefore, the reconstructed state in the discrete setting can be expressed as:

x̂k+1 = Ad x̂k + Bduk + Ld(yk − ŷk) + Mddk

ŷk = Cd x̂k + Dduk + Nddk, yk = Cdxk + Dduk + Nddk

(26)

Figure 4. Shifting the unstable eigenvalue of the observer for different values of the observer gain.

5. Model Predictive Control for Linear Coupled ODE-PDE System

5.1. Optimization Problem

The linear discrete-time model dynamics represented in Equations (12)–(20) is used in the
formulation of the model predictive control for the coupled CSTR and tubular reactor system. The MPC



Mathematics 2020, 8, 711 10 of 17

developed in [31] regarding linear time invariant systems for the finite-dimensional setting is extended
to infinite-dimensional one. In order to achieve this purpose, the following objective function should
be minimized at each sampling time (k) to design the regulator of the coupled ODE-PDE system:

min
uN

J =
∞

∑
j=0

< x̂(k + j|k), Qx̂(k + j|k) > + < u(k + j + 1|k), Fu(k + j + 1|k) >

s.t. x̂(k + j + 1|k) = Ad x̂(k + j|k) + Bdu(k + j|k),
umin 6 u(k + j|k) 6 umax,
x̂min

F 6 x̂F(k + j|k) 6 xmax
F ,

< x̂(k + N), Φu >= 0

(27)

where x̂ =

[
x̂F
x̂I

]
refers to the reconstructed state, F is a positive definite operator, Q=

[
QF
QI

]
represents

positive semidefinite spatial operator associated with the state of coupled ODE-PDE system and the
indices, (k + j) and (k + j + 1|k), for both input and state variable, indicate current and future time,
respectively. In order to get the finite horizon objective function, one can assume zero input beyond
the control horizon (i.e., u(k + N + 1|k) = 0) by taking the terminal penalty term into an account.
The result takes the following form:

min
uN

J =
N−1

∑
j=0

< x̂(k + j|k), Qx̂(k + j|k) > + < u(k + j + 1|k), Fu(k + j + 1|k) >

+ < x̂(k + N|k), Q̄x̂(k + N|k) >

s.t. x̂(k + j + 1|k) = Ad x̂(k + j|k) + Bdu(k + j|k),
umin 6 u(k + j|k) 6 umax,
x̂min

F 6 x̂F(k + j|k) 6 xmax
F ,

< x̂(k + N), Φu >= 0.

(28)

After simple algebraic manipulation, the following finite-dimensional quadratic optimization
problem is obtained:

min
U

J = UT HU + 2UT Px̂(k|k)+ < x̂(k|k), Q̄x̂(k|k) > (29a)

where Q̄ is terminal state penalty operator. The above equation is subjected to the following constraints:

1. Umin 6 U 6 Umax

2. x̂min
F 6 x̂F 6 x̂max

F

3. < x̂(N), Φu >= 0

(29b)
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where U =
[
u(k + 1|k) u(k + 2|k) u(k + 3|k) . . . u(k + N|k)

]T
and (H, P) are computed as below:

H =


B∗d Q̄Bd + F B∗d A∗dQ̄Bd . . . B∗d A∗d

N−1Q̄Bd
B∗d Q̄AdBd B∗d Q̄Bd + F . . . B∗d A∗d

N−2Q̄Bd
...

...
. . .

...
B∗d Q̄AN−1

d Bd B∗d Q̄AN−2
d Bd . . . B∗d Q̄Bd + F

 ,

P =


B∗d Q̄Ad
B∗d Q̄A2

d
...

B∗d Q̄AN
d

 .

(30)

The model predictive control scheme used on the coupled ODE-PDE system is illustrated in
Figure 5. As can be seen, the full state feedback is needed for the MPC scheme, which is going to be
given by the reconstructed states from the observer.

Figure 5. Representation of the closed loop.

5.2. Terminal State Penalty Operator

The terminal state penalty term, the operator Q̄=

[
Q̄F
Q̄I

]
, can be found from the solution of the

following discrete Lyapunov equation:

A∗dQ̄Ad − Q̄ = −Q. (31)

The above solution of the discrete Lyapunov equation based on Cayley-Tustin method is the same
unique solution of Q̄ in Equation (31) in continuous setting (A∗Q̄ + Q̄A = −Q) [35]. Since the solution
of Q̄ cannot be obtained directly; in other words, because of the necessity of using integral operators
coming from discrete operators for calculating Q̄, the procedure followed here is to connect the discrete
and continuous Lyapunov equations. Here, one can rewrite the continuous Lyapunov equation in the
following format [36]:

< Ax1, Q̄x2 > + < Q̄x1, Ax2 >= − < x1, Qx2 > . (32)

By considering x1 = Φ̂m and x2 = Ψ̂m and using the fact that λm and Ψ̂m are the eigenvalue and
eigen function of the system (i.e., AΦ̂m = λmΦ̂m), the equation leads to:

< λmΦ̂m, Q̄Ψ̂m > + < Q̄Φ̂m, λmΨ̂m >= λm < Φ̂m, Q̄Ψ̂m > +λm < Q̄Φ̂m, Ψ̂m >= − < Φ̂m, QΨ̂m > (33)
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Q̄ is a bounded symmetric operator (D(A∗) = D(A)) and it is self-adjoint (see [36]) which implies
< Φ̂m, Q̄Ψ̂m >=< Q̄Φ̂m, Ψ̂m >= Q̄m, accordingly the following simplified equation is achieved:

Q̄m =
− < Φ̂m, QΨ̂m >

2λm . (34)

Finally, the solution of the continuous Lyapunov equation gives the expression for the infinite
part (PDE) of the terminal state penalty operator (Q̄I) which can be expressed as below:

Q̄I(·)I =
∞

∑
m=0

− < Φ̂m
I , QIΨ̂m

I >

2λm < (·)I , Ψ̂m
I > Φ̂m

I (35)

where Φ̂m
I and Ψ̂m

I refer to the normalized eigenfunction and adjoint eigenfunction of infinite part
of the system, respectively. In Equation (35), the summation is computed for increasing number of
different eigenvalues, until the applied operator converges to a constant value. In this work the first 20
eigen modes are considered in the simulation. For the finite part (ODE), AF = A∗F = a1. According to
Lyapunov equation, Q̄F is easily obtained and given by the following expression:

Q̄F(·)F =
QF
2a1

(·)F (36)

5.3. Stability Constraint

Based on the definition of a positive definite operator, it is possible to show that Q̄ is a positive
operator if only the stable nodes are taken into account [36]. In order to guarantee stabilization of the
system, a stability constraint is applied in the optimization problem and is represented by an equality
constraint [35]. It is assumed that the controller will gain stabilization by rejecting the unstable modes.
Hence, this condition can be written as below:

< x̂(N), Φu >= 0 (37)

where Φu refer to unstable eigenfunctions associated with positive eigenvalues. The corresponding
equality constraint, which cancels the unstable modes at end of the horizon, is constructed as follows:[

< AN−1
d Bd, Φu > . . . < Bd, Φu >

]
U

= − < AN
d x̂(k|k), Φu > .

(38)

If there is a feasible input sequence given by optimization problem, the above equality constraint
is satisfied for the constrained convex optimization problem given by Equation (29a). Therefore,
stabilization can be obtained, and the unstable modes will be canceled by end of the horizon.
Here, due to the feasibility of the optimization represented by constrained quadratic problem in
the zero-disturbance case, feasibility implies stability and optimal stabilizability. This extension is
based on the well-known results from the finite-dimensional theory [30,31].

6. Simulation Results

In this section, the simulation study is performed for the proposed controller of the coupled
ODE-PDE system. First, the design of the observer is discussed in the discrete setting with
reconstruction of states in an open-loop condition by using Cayley-Tustin method, then the
performance of the ensuing Model Predictive Control is demonstrated and compared with the
open-loop response.
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6.1. Observer Design and Open-Loop Response

Based on Equations (8)–(13), one can reconstruct the dynamics of the discrete representation for
both finite and infinite parts of the system with the set of parameters given in Table 1. As discussed in
Section 4, to guarantee the stability of the observer, Lc = 5 is chosen as the observer gain. By using
Equation (25) the discrete version of the corresponding observer gain is computed. The initial
conditions for the mentioned observer and original system are considered to be constants in the
entire space, x̂0 = 0 and x0 = 1, respectively. In simulation ∆t = 0.04 is considered which implies
δ = 50 and for numerical integration ∆z = 0.005 is chosen. Then, according to Equation (26),
the reconstructed state is obtained, and the corresponding error dynamics is evaluated. As shown in
Figure 6a, the dynamics of the observer error converges to zero, which means the developed observer
has a good performance. Hence, in the case of a realistic system, the Model Predictive Control can be
applied using just the output measurement.

Table 1. Parameter values used in numerical simulation.

Parameters Values

v 1.8
F 1
D 0.35
a1 −0.25
ψ −1
a2 1
R 0.5

umin −0.09
umax 0
xF

min 0
xF

max 0.65

As discussed in Section 2.2 regarding the instability of the coupled ODE-PDE system, Figure 6b
demonstrates the space-time evolution of the tubular reactor (xI(ζ, t)) for 0 ≤ t ≤ 20 which grows
unbounded as expected. Following this, the corresponding dynamics of the CSTR (xF(t)) with
pertaining initial condition is depicted in Figure 6c.

(a) (b) (c)

Figure 6. (a) Evolution of the discrete error dynamics with the value Lc = 5 for observer gain; (b) The
estimated state profile evolution (xI(ζ, k)) through dispersive tubular reactor constructed on the basis
of discrete-time coupled ODE-PDE system in an open-loop condition; (c) Dynamics reconstruction of
the scalar variable within the CSTR in an open-loop condition.
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6.2. MPC Implementation

In this part, based on the scheme represented by Figure 5, the successful application of the
proposed constrained model predictive controller is demonstrated on the basis of Cayley-Tustin time
discretization with optimization problem described by Equations (27)–(38). The implementation of
the system under model predictive control with and without constraints (see Equation (29b)) in time
domain 0 ≤ t ≤ 20 is shown in Figure 7(b)) and Figure 7(d)). By choosing QF = 2.5, QI(ζ) = 1.5 and
N = 65 for the MPC control horizon, it is possible to see that the controller is able to comply with the
input and states constraints (dash-dotted lines) imposed into the coupled ODE-PDE system. Moreover,
regarding the instability of the system, as described in Section 5.3, one can notice that the stability
constraint is also fulfilled by canceling the unstable mode at end of the horizon (see Figure 7(c)).

(I) (II)

(III)

Figure 7. (I) (a), (b) and (c) demonstrate the comparison between input profiles under model predictive
control law: with and without input/state constraints, with constraints and with disturbance for
20 ≤ t ≤ 25; (II) (d), (e) and (f) denote reconstructed dynamics of the scalar variable within the CSTR
under model predictive law: with and without input/state constraints, with constraints and with
disturbance for 20 ≤ t ≤ 25; (III) Evolution of the stabilized spatial profile for the tubular reactor with
all constraints.



Mathematics 2020, 8, 711 15 of 17

On the other hand, in order to provide a comparison of the dynamics of scalar variable xF in
CSTR with input and state constraints, the simulation is performed again to justify two scenarios,
for the first one only stability constraint is considered in the MPC algorithm while in the second one
all constraints (stability, input and state) are present. Figure 7(d)) and Figure 7(e)) show this analogy
with corresponding control actions given by Figure 7(a)) and Figure 7(b)). As expected in the first
setting, the CSTR dynamics is faster compared to the latter case as no state/input constraints need to
be satisfied.

Another simulation has been performed to explore the behavior of the MPC algorithm for handling
the mentioned constraints, the step disturbance is applied through the infinite part of the system
(tubular reactor) for 20 ≤ t ≤ 25. The idea here is to examine the performance of the MPC algorithm
for stabilization and the state/input constrains satisfaction. yI = 0.5 and kI = 0.6 are chosen as the
parameters in Equation (2) describing spatial varying function f (ζ). Figure 7(c)) and Figure 7(f))
verify the good performance of MPC for handling the constraints when the disturbance is present.
By analyzing Figure 7(c)), one can notice that after the step disturbance is applied, the state variable of
the CSTR stays at the upper limit (xmax

F ) until t = 25, then decreases and once again goes back to zero
(at t = 45) based on the control action given by Figure 7(c)).

7. Conclusions

In this contribution, the design of a model predictive controller and discrete observer for a coupled
ODE-PDE system was investigated. In particular, the lumped and distributed system were coupled by
the boundaries, with the manipulated variable acting on the ODE. The system stability characteristics
were first analyzed by studying the system’s eigenvalues. A discrete representation of the system was
necessary in the controller design; thus, the Cayley-Tustin time discretization was applied, preserving
the original system characteristics. An unstable operation condition was considered, and the MPC
and observer design had to take this into account. To develop the discrete observer, the design in
the continuous-time setting was first derived, then the discrete observer was obtained based on the
continuous gain. The MPC was designed to obtain the optimal control sequence while handling input
constraints and stabilizing the system using a terminal constraint. Finally, numerical simulations were
shown to present the performance of the controller in the closed loop. As expected, the controller was
able to achieve stabilization, while handling the constraints. If a disturbance is made, the controller
can deal with the effects made in the system while satisfying the constraints.
The constrained optimal control design for the class of parabolic and hyperbolic PDEs, which
guarantees the system stability and handling both input and state constraints will be an extension to
be addressed in future studies.
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