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Abstract: A method is presented that allows one to compute the maximum number of
functionally-independent invariant functions under the action of a linear algebraic group as long
as its Lie algebra admits a basis of square-zero matrices even on a field of positive characteristic.
The class of such Lie algebras is studied in the framework of the classical Lie algebras of arbitrary
characteristic. Some examples and applications are also given.
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1. Introduction

The modern theory of invariants of linear representations was formulated in the fundamental
book [1], which currently represents an essential chapter in the theory of group representations
(cf. MSC2020: 20Cxx). Several interesting expositions and applications of this theory to algebraic and
differential geometry can be seen, for example, in [2–4].

For finite groups, the main results are well known. The ring of invariants of a finite group is known
to be generated by a finite number of algebraically independent homogeneous polynomials (Hilbert’s
finiteness theorem) if and only if such a group is a group of reflections (Shephard–Todd–Chevalley
theorem), and in general, there is also a bound (Noether’s degree bound) for the number of generators
of their invariant algebra. Furthermore, there are algorithms for computing fundamental invariants
(see, e.g., ([4] §2.5), [5]).

In the case of matrix groups with positive dimension, the situation is much more complex.
Actually, there are only three procedures to calculate a basis for the vector space of invariants of fixed
degree (cf. ([4] §4.5)): (1) the Ω-process, (2) solving equations arising from the Lie algebra action,
and (3) generating invariants in symbolic representation. The second procedure reduces the problem
to linear algebra and is especially well suited to computational methods (e.g., see ([4] §2.5) [5,6]),
since it linearizes the calculation of invariants to that of the "infinitesimal" invariants associated with
the induced representation of the Lie algebra of the group. In fact, if ρ : G → GL(V) is a linear
representation of a connected affine group defined over a ground field F, then ρ induces a Lie-algebra
homomorphism ρ∗ : g→ gl(V), and in the case F = C, the invariant functions are the first integrals of
the vector space defined by the image of ρ∗.

Unfortunately, classical invariant theory is developed in the setting of complex vector spaces,
which allows the passage from the group to its Lie algebra, and more importantly, from the Lie algebra
to the group, via the exponential map. But in positive characteristic the exponential map does not
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exist, and therefore, the procedure (2) is invalidated. While the most outstanding difference between
affine algebraic groups on C and those defined on a field of positive characteristic is undoubtedly
the inexistence of exponential map for the latter ones, other important differences exist as well
(see, for example, ([7] III-5)).

A summary of contents of the article is as follows: First of all, in Section 3, the class of Lie
subalgebras g ⊆ gl(n,F) admitting a (vector-space) basis of square-zero matrices, is considered.
For the sake of simplicity we call this class in the sequel, SQZ-LA class. Square-zero matrices have
been dealt with in several settings and with different purposes; for example, see [8–13], among other
papers and authors.

We will consider such matrices in connection with the aforementioned problem of linearizing
the calculation of invariants of a representation of an affine algebraic group defined on a field of
positive characteristic.

Next, the main result of the paper (Theorem 1) is presented, which states that if ρ : G → GL(n,F)
is a linear representation of a linear algebraic group G and its Lie algebra g is in the SQZ-LA class,
then every G-invariant function I ∈ F[V∗] is a common first-integral of the system of derivations
ρ∗(X), ∀X ∈ g, and the number of algebraically independent G-invariant functions in F[V∗] is
upper-bounded by the difference n2 − r, where r is the generic rank of the F[V∗]-moduleM spanned
by all the derivations ρ∗(X). Several consequences of Theorem 1 are deduced and specific examples
are explained in detail.

Having established the importance of the SQZ-LA class of Lie algebras, Section 4 is devoted to
study which ones of the usual Lie algebras belong to this class. Among them, the Lie algebras of the
special linear group and of the symplectic group over an arbitrary field are proven to belong to the
SQZ-LA class; see Propositions 1 and 3, respectively.

Special types of matrices have also connections with several applications. For example, it is
noticeable that skew-symmetric matrices, a class dealt with in the present work can appear in modeling
mechanical systems, a field with active research (e.g., see [14,15]). Nilpotent matrices (we deal in
particular with square-zero matrices) appear customarily when modeling differential-algebraic control
systems, usually known as descriptor linear systems (e.g., see [16]).

Among other standing-out instances, we can also count the cases of special and symplectic
groups—having many applications in mechanics, symplectic geometry and topology—for which the
structure of their algebra of G-invariant functions under a linear representation is proven to be an
F-algebra of polynomials (see Corollary 1 below).

Some counterexamples are also included, and certain Lie algebras in characteristic 2 with
geometric interest are proved to be in the SQZ-LA class as well.

The article closes with an exposition of the conclusions.

2. Terminology and Notation

If F is a field, then a subset X ⊆ Fm is said to be "algebraic" if there exist a finite set of polynomials
P1, . . . , Pk ∈ F[X1, . . . , Xm] such that

X = {x = (x1, . . . , xm) ∈ Fm : P1(x) = . . . Pk(x) = 0} .

If X is an algebraic subset in X ⊆ Fm, then the ring of algebraic functions on X is denoted by
F[X ] = F[X1, . . . , Xm]/IX , where IX denotes the ideal in F[X1, . . . , Xm] of polynomials vanishing
over X .

If IX is a prime ideal, the field of fractions of F[X ] is denoted by F(X ). In general, notation for
algebraic sets has been taken from [17].

The algebra of n× n matrices with entries in F is denoted by gl(n,F), which is considered as a
Lie algebra by means of the Lie bracket given by [A, B] = AB− BA, ∀A, B ∈ gl(n,F), where on the
right-hand side, the product denotes a matricial product.
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Furthermore, G ⊆ GL(n,F) denotes the group of invertible n × n matrices with entries in F
endowed with the group structure defined by matrix multiplication, and gl(n,F) is identified with its
Lie algebra.

The algebraic ring of the group G ⊆ GL(n,F) is the set of quotients P
δn , where P ∈ F[gl(n,F)] is a

polynomial, n ∈ N, and δ : gl(n,F)→ F is the function δ(A) = det(A), ∀A ∈ gl(n,F).
A set-theoretic subgroup G ⊆ GL(n,F) is said to be a linear algebraic group if it is an algebraic

subset in gl(n,F).
Notation and elementary properties of algebraic groups have been taken from Fogarty’s book [7].
The Lie algebra g of a linear algebraic group G is identified with the Lie algebra of left-invariant

derivations (cf. [7], 3.17); namely, g = DerF(F[G])G.
If A = (aij)

n
i,j=1 ∈ gl(n,F), then the corresponding invariant derivation is given by DA =

∑n
i,j,k=1 aikxji

∂
∂xjk

.

3. A Class of Lie Algebras

Let us consider the following definition:

Definition 1. Let F be a field. We define as square-zero Lie algebra class (in short, SQZ-LA class) the class of
Lie subalgebras g in gl(n,F) admitting a basis B (as a vector space over F) such that the square of any matrix in
B is zero.

Lemma 1. Let G ⊆ GL(n,F) be a linear algebraic group with associated Lie algebra g. If U is a square-zero
matrix in the Lie subalgebra g ⊂ gl(n,F), then I + tU belongs to G, ∀t ∈ F, where I ∈ GL(V) denotes the
identity map.

Proof. If U ∈ g is a square-zero matrix, then H = {I + tU : t ∈ F} is a linear algebraic group of
dimension 1 with Lie algebra h = {tU : t ∈ F}, and by virtue of the assumption, we have g ∩ h = h.
Hence dim(G ∩ H) = dim H = 1, so that H = G ∩ H, or equivalently H ⊆ G.

Definition 2. Let G ⊆ GL(n,F) be a linear algebraic group and let V = Fn. A function I ∈ F[V∗] = S•(V∗)
is said to be G-invariant if I (g · v) = I(v) for all g ∈ G and all v ∈ V.

The importance of the SQZ-LA class lies in the following result:

Theorem 1. Let G be a linear algebraic group, let ρ : G → GL(n,F) be a linear representation of G, and let
ρ∗ : g → gl(n,F) be the homomorphism of Lie algebras induced by ρ. If V = Fn and g is in the SQZ-LA
class, then every G-invariant function I ∈ F[V∗] is a common first-integral of the system of derivations ρ∗(X),
∀X ∈ g. Hence, the number of algebraically-independent, G-invariant functions in F[V∗] is upper-bounded by
the difference n2 − r, where r is the generic rank of the F[V∗]-moduleM spanned by all the derivations ρ∗(X),
∀X ∈ g; i.e., r is the dimension of the F(V∗)-vector space F(V∗)⊗F[V∗ ]M.

Proof. Let B be a basis for a g in the SQZ-LA class. By virtue of Lemma 1, the matrix I + tB belongs
to G and we have I ((I + tB) · v) = I(v), for all t ∈ F and B ∈ B, and by taking derivatives at t = 0,
we deduce that ρ∗(X)(I) = 0, ∀X ∈ g, because the map g 3X 7→ ρ∗(X) ∈ DerF[V∗] is F-linear.
Consequently, if B = {B1, . . . , Bm}, then the F[V∗]-module M is spanned by the invariant vector
fields ρ∗(Bi), 1 ≤ i ≤ m, and the differential dI ∈ ΩF(F[V∗]) of every invariant function I verifies
dI(X) = 0, ∀X ∈ M, thereby finishing the proof.

In classical invariant theory over complex numbers, a method for computing the maximum
number of algebraically-independent invariants consists of solving the linear equations arising from
the system of first integrals of vector fields ρ∗(X), X ∈ g; e.g., see ([4] Theorem 4.5.2). Theorem 1
extends this procedure to a class of linear representations of positive characteristic.
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It would also be interesting to adapt the algorithms given in [6] to the linear representations of a
linear algebraic group whose Lie algebra is in the SQZ-LA class of positive characteristic.

Remark 1. As ρ∗ : g → gl(n,F) is a homomorphism of Lie algebras, M is an involutive submodule
in DerF[V∗]. In the real or complex cases, Frobenius’s theorem implies that the maximum number of
algebraically-independent, first-integral functions ofM is n2 − r exactly, but in general the upper bound n2 − r
is not necessarily reached as several of these first-integral functions may be fractional or even transcendental
functions. Nevertheless, we have

Corollary 1. If ρ : G → GL(n,F) is as in Theorem 1, F is algebraically closed of characteristic zero, and G =

SL(n,F) or G = Sp(2n,F), then the algebra F[V∗]G of G-invariant functions is an F-algebra of polynomials
in n2 − r variables.

Proof. According to ([18] Théorème 1), in the two cases of the statement above we have F[V∗]G =

F[p1, . . . , pm], where the polynomials p1, . . . , pm are algebraically independent. Hence, their
differentials dp1, . . . , dpm form a basis of the dual module to DerF(F[V∗])G by virtue of ([19] VIII.
Proposition 5.5), and we thus obtain m = n2 − r.

Example 1. Let GL(2,F) act on V = F2⊕ S2(F2) naturally and let (v1, v2) be the standard basis for V; by setting

v = xv1 + yv2 ∈ F2,
s = z(v1 ⊗ v1) + t(v1 ⊗ v2 + v2 ⊗ v1) + u(v2 ⊗ v2) ∈ S2(F2),

we deduce that the basic invariant is the function I1 : O → F defined on the Zariski open subset O of
non-degenerate metrics as follows: I1(v, s) = s\(v, v), where s\ ∈ S2(F2)∗ is the covariant symmetric tensor

induced by s, assuming s is non-singular. In coordinates, I1(v, s) = 2xyt−x2u−y2z
t2−zu . Hence F[V∗]GL(2,F) = F

and F(V∗)GL(2,F) = F(I1). Nevertheless, the result depends strongly on the linear representation being
considered. For example, if we consider the natural representation of GL(2,F) on V = F2 ⊕ S2(F2)∗, then the
basic invariant is the function I ′1(v, s∗) = s∗(v, v), which is globally defined, and, in this case, we have
F[V∗]GL(2,F) = F[I ′1].

Example 2. If the natural representation of SL(2,F) on V = F2 ⊕ S2(F2) is considered, then, besides I1,
there exists another globally defined invariant—namely, the discriminant function, i.e., I2(v, s) = zu− t2.
Hence, I1I2 is also globally defined and we have F[V∗]SL(2,F) = F[I1I2, I2].

Example 3. A more complex example is the following: If V is a six-dimensional F-vector space and

Ω : V ×V → F

is a non-degenerate alternate bilinear form, then, as a computation shows, the generic rank ofM for the linear
representation of Sp(Ω) on ∧3V∗ is 18; see [20] for the details. As dim∧3V∗ = 20, it follows that there exist
two invariant functions, both of them polynomial functions.

Example 4. Given A ∈ gl(2,C)�{0}, let X be the infinitesimal generator of the one-parameter group
exp(tA), t ∈ C. Let α, β be the eigenvalues of A. We distinguish several cases. If α 6= β, αβ 6= 0, then the
vector field X admits a first integral in C(x, y) if and only if α−1β ∈ Q; otherwise, every non-constant first
integral of X is a transcendental function. If αβ = 0, then X admits a first integral in C[x, y]. If α = β 6= 0
and the annihilator polynomial of A is (λ− α)2, then X = αx ∂

∂x + (1 + αy) ∂
∂y and its basic first integral is the

function I = x exp (−αy/x). If the annihilator is λ− α, then X admits a first integral in C(x, y). Finally,
if α = β = 0 then the annihilator A is λ2 and X admits the function x as a first integral.
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4. The SQZ-LA Class Studied

Notation 1. Let (vi)
n
i=1 be the standard basis for Fn with dual basis (vi)n

i=1. Every matrix A ∈ gl(n,F) is
identified with the endomorphism on Fn to which such matrix corresponds in the basis (v1, . . . , vn). If x = xhvh,
then Eij(x) = xjvi, or equivalently Eij(vk) = δjkvi, which means that Eij is the matrix with 1 in the entry (i, j)
and 0 in the rest of entries. Therefore, (Ehi ◦ Ejk)(vl) = δklδijvh. Hence,

Ehi ◦ Ejk = δijEhk,

(Ehi)
2 = δhiEhi =

{
0, i 6= h

Ehh, i = h
(1)

The Lie algebra of n× n traceless matrices with entries in F is denoted by sl(n,F). The Lie algebra of
n× n skew-symmetric matrices with entries in F is denoted by so(n,F). The Lie algebra of 2n× 2n matrices X
with entries in F such that XT Jn + JnX = 0, where

Jn =

(
0 In

−In 0

)
,

and In ∈ gl(n,F) is the identity matrix, is denoted by sp(2n,F).

By using the formulas (1) and the standard basis for the Lie algebra sl(n,F), i.e., the n2 − 1
matrices Ehi, h 6= i, h, i = 1, . . . , n; Ehh − E11, 2 ≤ h ≤ n, we obtain

Proposition 1. The matrices

Ehi, h 6= i, h, i = 1, . . . , n,
Ehh − E11 − E1h + Eh1, 2 ≤ h ≤ n,

are a basis for sl(n,F) fulfilling the property in Definition 1.

Proposition 2. If the characteristic of F is either zero or is positive p and p does not divide n, then the identity
matrix I ∈ gl(n,F) cannot be written as a sum of square-zero matrices.

Proof. If I = N1 + . . . + Nk, (Ni)
2 = 0, 1 ≤ i ≤ k, as the trace of a nilpotent matrix vanishes, then by

taking traces on both sides in the previous equation, we have n = 0 if the characteristic of F is zero,
and n ≡ 0 mod p if the characteristic is p.

Corollary 2. If the characteristic of F is 2, then the identity matrix I ∈ gl(n,F) can be written as a sum of
square-zero matrices if and only if n is even.

Proof. If n is odd, the result follows from Proposition 2. If n = 2m, then let (vi)
n
i=1 be a basis for

V = Fn with dual basis (v∗i )
n
i=1. The space End(V) is identified with V∗ ⊗V as usual, so that we have

I = ∑m
i=1

(
v∗2i−1 ⊗ v2i−1 + v∗2i ⊗ v2i

)
.

Thus

∑m
i=1
(
v∗2i−1 + v∗2i

)
⊗ (v2i−1 + v2i) = I + ∑m

i=1
(
v∗2i−1 ⊗ v2i + v∗2i ⊗ v2i−1

)
,
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Ai =
(
v∗2i−1 + v∗2i

)
⊗ (v2i−1 + v2i), v∗2i−1 ⊗ v2i, and v∗2i ⊗ v2i−1, 1 ≤ i ≤ m, are square-zero matrices,

and for every 1 ≤ h ≤ n, we have

Ai(vh) = (δh,2i−1 + δh,2i) (v2i−1 + v2i) ,
(Ai)

2 (vh) = (δh,2i−1 + δh,2i) Ai (v2i−1 + v2i)

= 2 (δh,2i−1 + δh,2i) (v2i−1 + v2i)

= 0 mod 2,(
v∗2i−1 ⊗ v2i

)2 vh = δh,2i−1
(
v∗2i−1 ⊗ v2i

)
(v2i)

= 0,(
v∗2i ⊗ v2i−1

)2 vh = δh,2i
(
v∗2i ⊗ v2i−1

)
(v2i−1) ,

= 0.

Similarly, by starting with the standard basis for the symplectic Lie algebra sp(2n,F), i.e.,

Ei,n+i, En+i,i, Eii − En+i,n+i, 1 ≤ i ≤ n,
Eij − En+i,n+j, Eji − En+j,n+i, Ei,n+j − Ej,n+i, 1 ≤ i < j ≤ n,

En+i,j − Ej+n,i, 1 ≤ i < j ≤ n,

we obtain

Proposition 3. The matrices

Ei,n+i,, En+i,i, 1 ≤ i ≤ n,
Eii − En+i,n+i + Ei,n+i − En+i,i, 1 ≤ i ≤ n,
Eij − En+i,n+j, Eji − En+j,n+i, 1 ≤ i < j ≤ n,
Ei,n+j − Ej,n+i, En+i,j − Ej+n,i, 1 ≤ i < j ≤ n,

are a basis for sp(2n,F), fulfilling the property in Definition 1.

Similarly, we have

Proposition 4. The standard basis Ehi, 1 ≤ h < i ≤ n, of the Lie subalgebra of strictly upper triangular
matrices in gl(n,F) satisfies the property in Definition 1.

As for the Lie algebra so(n,F), with basis Ehi − Eih, 1 ≤ h < i ≤ n, we have

Proposition 5. Let x1, . . . , xn be the column vectors of a matrix X ∈ so(n,F) of rank r, and let xi1 , . . . , xir ,
1 ≤ i1 < . . . < ir ≤ n, be r linearly independent column vectors of X. The necessary and sufficient condition
for the square of X to be zero is that the subspace

〈
xi1 , . . . , xir

〉
is totally isotropic with respect to the scalar

product 〈·, ·〉 given by
〈
vi, vj

〉
= δij, i, j = 1, . . . , n.

Proof. As X is skew-symmetric, for all i, j = 1, . . . , n, we have(
X2
)

ij
= ∑n

h=1 xihxhj = −∑n
h=1 xhixhj = −

〈
xi, xj

〉
.

Hence, X2 = 0 if and only if
〈

xi, xj
〉
= 0 for 1 ≤ i ≤ j ≤ n.

Further, if k, l /∈ {i1, . . . , ir}, then xk = ∑r
a=1 λkaxia , xl = ∑r

b=1 λlbxib ; consequently, 〈xk, xl〉 =
∑r

a=1 ∑r
b=1 λkaλlb

〈
xia , xib

〉
. It follows that X2 = 0 if and only if

〈
xia , xib

〉
= 0 for 1 ≤ a ≤ b ≤ r.
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Corollary 3. If the ground field F is formally real, then the only matrix X in so(n,F) with X2 = 0 is the
zero matrix.

Proof. In fact, if x = ∑n
i=1 xivi, then: 〈x, x〉 = ∑n

i=1(xi)2, and by virtue of the hypothesis, it follows
that the only totally isotropic subspace for 〈·, ·〉 is {0}.

Remark 2. If the characteristic of F is 6= 2, then the only matrix X in so(2,F) such that X2 = 0 is the zero
matrix, as [α(E12 − E21)]

2 = −α2 I. The same holds for so(3,F). In fact, if

X = a(E12 − E21) + b(E13 − E31) + c(E23 − E32),

then, as the matrix X2 is symmetric, the condition X2 = 0 leads one to the following system of six equations:
a2 + b2 = 0, ab = 0; a2 + c2 = 0, ac = 0; b2 + c2 = 0, bc = 0. Hence a + b = 0, a + c = 0, b + c = 0,
and consequently, a = b = c = 0.

Remark 3. If an m-dimensional subalgebra g ⊆ gl(n,F) belongs to the SQZ-LA class, then for every basis
A1, . . . , Am of g, symmetric m×m matrices Sh, 1 ≤ h ≤ m, must exist such that trace(ShCk) = 0, for every
h, k = 1, . . . , m, where Ck is the m × m matrix defined by [Ai, Aj] = Ck

ij Ak. In fact, if Bh = λi
h Ai is a

square-zero basis for g, then sij
h Ai Aj = 0, for every i, j = 1, . . . , m, where sij

h = λi
hλ

j
h. Hence, sij

h ck
ij Ak = 0,

thereby proving the remark. Therefore, it can be known whether a matrix algebra does not belong to the SQZ-LA
class in polynomial time by simply solving a system of linear equations.

Next, following the notation and results of [21], we study whether certain Lie algebras in
characteristic 2 are in the SQZ-LA class. Assume the characteristic of F is 2, let f : V × V → F
be a bilinear form, and let L( f ) ⊆ gl(V) be its associated Lie subalgebra; i.e.,

L( f ) = {X ∈ gl(V) : f (X(u), v) = f (u, X(v)), ∀u, v ∈ V}.

(Recall that we are in characteristic 2.) If, in addition, F is algebraically closed, then according
to ([21] Theorem 1.1) the Lie algebra L( f ) is reductive if and only if either (i) f = 0 and n 6= 2, in
which case L( f ) = gl(V), (ii) or n = 2m + 1 and f admits a Gram matrix J2m+1, in which case L( f ) is
Abelian of dimension m + 1, (iii) or else f admits as Gram matrix a direct sum of matrices of the types
indicated below, in which case L( f ) is isomorphic to the direct sum of the Lie algebras associated to
these matrix summands:

TYPE 0:

A =

(
0 Jm

Im 0

)
, L(A) Abelian of dimension m;

B =

(
0 0
Im 0

)
, L(B) ∼= gl(m), m > 2.

TYPE λ, λ ∈ F, λ 6= 1:

A =

(
0 Jm(λ)

Im 0

)
, L(A) Abelian of dimension m;

B =

(
0 λIm

Im 0

)
, L(B) ∼= gl(m), m > 2.

TYPE 1:
A = Γm, m odd, L(A) Abelian of dimension 1

2 (m + 1);

B =

(
0 J2(1)
I2 0

)
, L(B) Abelian of dimension 4;

C = Im, m > 2, L(C) ∼= so(m);
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D =

(
0 Im

Im 0

)
, m > 2, L(D) ∼= sp(2m).

In the case (i) the condition in Definition 1 does not hold for L( f ) as this condition never holds for
gl(m,F). In the case (ii) the condition in Definition 1 does not hold for L( f ) whatever the odd integer
n > 1. Finally, in the case of the matrix A in TYPE 0, L(A) is the Abelian Lie algebra generated by
the powers (

(Jm)T 0
0 Jm

)i

, 0 ≤ i ≤ m− 1.

From Proposition 4 it follows that the algebra L(A) is in the SQZ-LA class, whereas L(B) in
TYPE 0 is not. The Lie algebras L(A) and L(B) in TYPE 1 are not in the SQZ-LA class either. As for
L(C) ∼= so(m) in TYPE 1, they do or do not belong to the SQZ-LA class depending on the nature of
the ground field, as we have seen above. Finally, the Lie algebra L(D) is not in the SQZ-LA class,
as follows directly from Proposition 3.

5. Conclusions

In this work, we have focused our attention on the class of Lie algebras of matrices,
with coefficients in a field F of arbitrary characteristic, admitting a basis, as vector space on F,
of square-zero matrices. We termed such a class of Lie algebras as the SQZ-LA class.

This article has evidenced the interest of the SQZ-LA class in computing the number of invariants
of a linear representation of its associated affine group.

In view of this interest, a study has also been carried out of such Lie algebras and examples and
other applications thereof have been shown.
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