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Abstract: Nowadays, demicontractive operators in terms of admissible perturbation are used to
solve difficult tasks. The current research uses several demicontractive operators in order to enhance
the quality of the edge detection results when using ant-based algorithms. Two new operators
are introduced, χ-operator and KH-operator, the latter one is a Krasnoselskij admissible perturbation
of a demicontractive operator. In order to test the efficiency of the new operators, a comparison
is made with a trigonometric operator. Ant Colony Optimization (ACO) is the solver chosen for
the images edge detection problem. Demicontractive operators in terms of admissible perturbation
are used during the construction phase of the matrix of ants artificial pheromone, namely the edge
information of an image. The conclusions of statistical analysis on the results shows a positive
influence of proposed operators for image edge detection of medical images.

Keywords: fixed point; Krasnoselskij iteration; admissible perturbation; Ant Colony Optimization

1. Introduction

Admissible perturbation theory is a direction of research which unifies the main aspects of
iterative approximating. The theory of admissible perturbations of an operator introduced by Rus
in [1] opens a new direction of research and unifies major aspects of the iterative approximation of
fixed point for single valued self operators. The admissible perturbation of a nonlinear operator
was studied in detail in [2] and extended for the generalized pseudocontractive operators by Berinde,
Khan and Fukhar-ud-din [3].

Demicontractive operators are still a very recent object of study [4–6]. In [6] the authors solve
split common fixed point problems for demicontractive mappings in Hilbert spaces as an extension
of the Halpern type algorithm from [7] to a viscosity iteration. In [8] are shown the approximated
solutions for variational inequalities in terms of admissible perturbations. Furthermore, in [9] a weak
convergence theorem in Hilbert spaces using admissible perturbations is introduced. A standard
approach for admissible perturbations of demicontractive operators is provided in [10].

Difficult problems needs highly-efficient algorithms to obtain feasible results. Nowadays,
Ant Colony Optimization (ACO) [11,12] is a successfully probabilistic technique for solving complex
problems as routing, assignment, scheduling problems [13–16] and some generalized versions
as [17–19]. In 2019 Chowdhury did a case study with drones for wildlife surveillance [20].

In order to solve the image edge detection, a problem of identifying discontinuities in
brightness and therefore enhancing edges of objects in an image, different ant algorithms were
involved during last years. From the most recent ones, Shi et al. [21] with Canny Edge and ACO,
make use of a fuzzy triangle membership function in the neighborhood of the gray value,
and Mahalingam and Subramoniam [22] used ACO for an optimized object detection and tracking.
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In [23] ACO is implemented by the memristor crossbar array and uses parallel computing;
threshold generates edges as mean of the final conductance matrix; the results are comparatively better
than neural networks models and while using Sobel operator. A recent survey on nature-inspired
medical image in biomedical data [24] includes the behavior of swarm intelligence. In order to
combine capabilities of several independent exact or meta-heuristics, an integrative cooperative search
framework was proposed in [25].

As a part of swarm intelligence heuristics categories, ant colonies algorithms are inspired by real
ants’ behavior in finding shortest paths while using as information the trail of a chemical substance,
deposited by ants, called pheromone. Ants pheromone sensitivity was proposed in [26,27]; in order
to process medical images, Pintea and Ticala proposed the first theoretical ACO approach involving
pheromone sensitivity in [28].

A heuristic value making use of two admissible perturbation operators was applied in [29] to
a demicontractive mapping in order to solve the image edge detection problem with ACO. The current
work makes a step forward and uses admissible perturbations of demicontractive mappings as test
functions. The agents have different roles in the image edge detection: some are explorers, and others
exploiters; in time they change their roles based on the environment dynamics.

The paper is further structured as follows. Methodologies including a preview of the theory of
admissible perturbations and the Ant Colony Optimization are described in Section 2. The case study of
the ACO algorithm for edge detection in medical images, with all processes involved from initialization
to the decision follows in Section 3. Further, Section 4 includes: experimental results and comparison of
ant-based algorithms and operators involved, the representation of results medical images, statistical
analysis and final discussions. The paper concludes in a positive manner, as the proposals of the current
work obtain promising results for the tested set of the medical images.

2. Methodology

2.1. Theory of Admissible Perturbations

Rus proposed in [1] the theory of admissible perturbations of an operator and succeeded to unify
iterative approximation of fixed point for single valued self operators. The following are the main
related definitions and specific examples.

Definition 1. The operator T : C → C is demicontractive if there exists a constant k < 1 such that, for each
fixed point p of T and each x ∈ C, the following inequality is true [30].

‖Tx− p‖2 ≤ ‖x− p‖2 + k‖x− Tx‖2. (1)

The constant k from Equation (1) is called the contraction coefficient.

Example 1. An example of demicontractive mapping is T : R→ R, defined by Equation (2) as in [31].

Tx =

{
2
3 x sin 1

x , if x 6= 0
0, if x = 0

(2)

Definition 2. Let X be a nonempty set. A mapping G : X × X → X is called admissible if it satisfies
the following two conditions, (A1) with Equation (3) and (A2) with Equation (4) as in [1].

(A1) : G(x, x) = x, for all x ∈ X; (3)

(A2) : G(x, y) = x, implies y = x. (4)
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Definition 3. Let f : X → X be an operator. Then the admissible mapping fG : X → X defined by Equation (5)
is called the admissible perturbation of f .

fG(x) := G (x, f (x)) , (5)

Definition 4. Let f : X → X be a nonlinear operator and G : X × X → X be an admissible mapping.
The iterative algorithm {xn}n∈N given by Equation (6), as in [1], is called the Krasnoselskij algorithm
corresponding to G, or the GK-algorithm.{

x0 ∈ X,

xn+1 = G (xn, f (xn)) , n ≥ 0
(6)

Example 2. Let (V,+,R) be a real vector space, X ⊂ V a convex subset, λ ∈ (0, 1) and G : X × X → X
defined by Equation (7), then fG is an admissible perturbation of f , further called the Krasnoselskij perturbation
of f .

G (x, y) := (1− λ) x + λy, x, y ∈ X. (7)

Example 3. Let (V,+,R) be a real vector space, X ⊂ V a convex subset, χ : X × X → (0, 1) a mapping
and G : X× X → X defined by Equation (8), then fG is an admissible perturbation of f .

G (x, y) := (1− χ (x, y)) x + χ (x, y) y. (8)

We recall that an admissible perturbation is an operator with the properties (A1) Equation (3)
and (A2) Equation (4). Admissible perturbations are thoroughly studied in respect to different types
of operators.

2.2. Ant Colony Optimization for Edge Detection Using Proposed Operators

From meta-heuristics we choose Ant Colony Optimization (ACO) which keeps high standards for
solving complex problems including images edge detection. ACO builds optimal solution of the target
problem using artificial ants while searching the best path in the search space. The ants deposits
pheromones during this process. The “memory” of ants is the artificial pheromone trail, which is
updated during the search process.

The quality of a partial solution is given by the amount of pheromone modified along the way.
The global solution is found after all ants, based on the previous pheromone information, are guided
to more promising regions in the search space. For the K ants engaged in the search, in a space X ,
with M1 ×M2 nodes, ACO is summarized as follows:

• Initiate all K ants, the pheromone matrix, τ(0).
• For every solution construction step index n = 1 : N

– For every ant k = 1 : K successively move the k-th ant for L movement steps based on
the transition probability matrix, Equation (9).

– Update the pheromone matrix τ(n), Equation (10).

• Make the solution decision based on the final pheromone matrix τ(N).

There are two fundamental problems which ACO has to solve, and will be further detailed.

• At first, ACO will build the transition probability matrix. p(n).
• Secondly, ACO will update the pheromone matrix τ(n).

At the n-th construction step, k-th ant moves from node I to J (Equation (9)), where τI J is
the pheromone value of arc (I,J).
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The heuristic value of (I,J) with the same value for all the N construction steps is ηI J ; the weighting
factors for pheromone and heuristic are α, β, and the neighborhood of node I is ΩI .

pn
I J =

(
τ
(n−1)
I J

)α (
ηI J
)β

∑J∈ΩI

(
τ
(n−1)
I J

)α (
ηI J
)β

, if J ∈ ΩI , (9)

The information in the pheromone matrix is updated twice during ACO. First, a local update
is performed after each ant moves within each construction step, the second, global update is made
after the move of all K ants within each construction step.

Local update. The local update of the pheromone matrix is performed after the move of the k-th
ant in the n-th construction step as in Equation (10).

τ
(n)
I J =


τn−1

I J · (1− ρ) + ρ · ∆I J , if (I, J) is on
the best tour,

τ
(n−1)
I J , otherwise.

(10)

In Equation (10) ρ is the pheromone evaporation rate, ∆I J is the quantity of pheromone laid on edge
(I, J). The best tour is considered the best tour found in a current step of an iteration.

Global Update. The exploration is enhanced to further obtain better global and best solution.
The global update uses Equation (11). The pheromone decay coefficient is denoted by ψ.

τ(n) = (1− ψ) · τ(n−1) + ψ · τ(0), (11)

3. Case Study: ACO Algorithm for Edge Detection in Medical Images

The proposed edge detection algorithm uses artificial ants which move in a bi-dimensional image
in order to build the pheromone matrix, each element of the matrix represents the edge information
for every pixel in the image. The new ant technique starts with the initialization process, runs for N
construction steps when it creates and updates pheromone matrix and at last, performs the decision
process to determine the edge.

— Initialization process. In the initialization process, all the K ants are placed randomly on the
image. Each pixel of the image is viewed as a node. Each value of the initial pheromone matrix
τ(0) is set to a constant τinit. A constant value L used to define the number of movement steps in
the construction process is defined.

— Construction process. At the n-th construction step, one ant is randomly chosen from all K ants,
this ant will be consecutively moving for L movement steps. The ant will move from node i to j
based on the transition probability, Equation (9).

There are two main aspects in the construction process.

1. First, it is the issue of establishing the heuristic ηij from Equation (9).
2. The second issue is to establish the domain in which one ant found in node (l, m) can make moves,

i.e., Ωl,m from Equation (9).

The connectivity domain is based on the matrix notation of neighbors nodes: the 8-connectivity
domain, the eight closest neighbors of Iij gray square from Figure 1. We propose to compute the

heuristic value based on the local statistic of the pixel (i, j), Equation (12) where Z =
M1
∑

i=1

M2
∑

j=1
Vc(Ii,j),

is a normalization factor, Ii,j is the intensity value of the pixel at the position (i, j) from the image,
the function Vc(Ii,j) is a function which processes cIi,j called “clique”, defined in [32], as in Figure 1.

ηi,j =
1
Z
·Vc(Ii,j), (12)
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Figure 1. Local configuration at Ii,j pixel, cIi,j, for computing the variation value Vc(Ii,j) defined by
Equation (13). The pixel Ii,j is the gray square.

The value of Vc(Ii,j) depends on the variation of image’s intensity values on cIi,j. More specifically,
the value of Vc(Ii,j) at the pixel Ii,j is considered in Equation (13).

Vc(Ii,j) = f
(∣∣Ii−2,j−1 − Ii+2,j+1

∣∣+ ∣∣Ii−2,j+1 − Ii+2,j−1
∣∣

+
∣∣Ii−1,j−2 − Ii+1,j+2

∣∣+ ∣∣Ii−1,j−1 − Ii+1,j+1
∣∣

+
∣∣Ii−1,j − Ii+1,j

∣∣+ ∣∣Ii−1,j+1 − Ii+1,j−1
∣∣

+
∣∣Ii−1,j+2 − Ii+1,j−2

∣∣+ ∣∣Ii,j−1 − Ii,j+1
∣∣) .

(13)

As prerequisites for operators, χ : R×R −→ [0, 1), is defined as in Equation (14) and y : R→ R
as in Equation (15).

χ(x, y) =
x2 · y2

(1 + x2) · (1 + y2)
. (14)

y(x) =

{
2
3 x sin 1

x , if x 6= 0
0, if x = 0

(15)

The considered operators for f (·) from Equation (13) are illustrated in Figure 2
and further detailed.

f (x) =

 sin

(
πx
2λ

)
, 0 ≤ x ≤ λ;

0, otherwise.
(16)

f (x) =

{
(1− λ) · x + λ · 2

3 x sin 1
x if x 6= 0;

0, if x = 0.
(17)

f (x) =

{
(1− χ (x, y(x))) · x + χ (x, y(x)) · y(x) if x 6= 0
0 if x = 0.

(18)

The parameter λ from Equation (16) adjusts the shape of the operators. This operator is the same
test function used in [32]. The research on admissible perturbations of demicontractive operators,
by using Krasnoselskij perturbation on the demicontractive mapping Equation (2), lead us to define
the KH-operator, Equation (17). The proposed KH-operator can be used in the same way as the other
operators when constructing heuristic value during ACO.
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Figure 2. Operators’ representations: (a) the function defined in Equation (16), Sin, (b) the function
defined in Equation (17), KH-operator, and (c) the function defined in Equation (18), Chi, χ-operator.

Another proposal included is the admissible perturbation operator, the Chi, χ-operator
based on [1] and described by Equation (7). The Chi, χ-operator from Equation (18)
is an admissible perturbation operator obtained by applying the function χ defined by Equation (14),
to the demicontractive mapping, Equation (2).

— Update process. The algorithm uses two update operations for the pheromone matrix.

– First update is made as in Equation (10) after each ant moves within each construction step.
Each element of the matrix is updated.

– The second update is made after the movement of all ants within each construction step,
Equation (11).

— Decision process

At this point of the algorithm, a binary decision is made for each pixel in order to establish if it is
edge or not, by applying a threshold T on the final pheromone matrix τ(N). The threshold is computed
as stated in [33].

4. Results and Discussion

The section includes description of the experiments in Section 4.1, representation of the results in
Section 4.2, statistical analysis Section 4.3 and related discussions about ant-based algorithm.

4.1. Experimental Results

Experimental work for is further described in detail.

A. Preliminary settings for Ant Colony Optimization:

— Data-set. The experimental data set includes the medical images for the experiments as
in Figure 3. The current study makes use of four medical images, as shows Figure 3.
The medical image Brain CT with 128 × 128 resolution could be provided for free by request
from authors for scientific reasons; Hand X-ray from [34] with original 225 × 225 resolution
was reduced to 128 × 128 resolution to make a valid comparison with the other images, as
Head CT from [35] has originally also 128 × 128 resolution; these two medical-images are
available online for free.

— Software used. The ACO-based edge detection approach was implemented using MatLab
and run on a computer with an AMD Rysen 5 2500U, 2GHz processor.

— Parameter settings for Ant Colony Optimization.

The majority of parameters values used are based on [32]. Figure 4 illustrates the way we
tested the parameters: β ∈ {0.1, 0.6, 1.2} and ρ ∈ {0.1, 0.6, 1.0} for Sin, KH and Chi operators
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on all data-set of medical images: Brain CT, Hand X-ray and Head CT. As a result we used
the best parameters found during tests.

— Parameters considered for Ant Colony Optimization

– the number of ants is based on the dimension of the image K = b
√

M1×M2c: where
b and c are the left and right rounded values to the nearest integers less than or equal to
x; for the particular case of the 128× 128 image resolution, 128 is the number of ants.

– each ant makes 300 movements in each of the L = 100 steps; therefore in the particular
case of 128 ants, 38,400 movements are made during each of the L steps.

– the connectivity neighborhood Σ = 8 is based on the ant’s movement range in
Equation (9);

– the value of each component of the pheromone matrix, τinit = 0.0001;
– weighting factors of the pheromone information, α = 1 and heuristic information,

β = 0.1, in Equation (9);
– the evaporation rate, ρ = 0.1, Equation (10);
– the pheromone decay coefficient, ψ = 0.001, Equation (11);
– the adjusting factor of the functions, λ = 10, as in Equations (16)–(18);
– tolerance ε = 0.1 used in the decision process of the proposed method.
– termination criteria is given by reaching the maximal number of steps L.

B. Numerical results and running time:

— ACO Numerical Results. Table 1 shows that more pixels are correctly identified on the edge
of the image, more precise is the edge detection of an medical image. The results are decimal
scaled, and are standard values of correctly identified edges with values in the unit interval
for an accurate visibility.

— ACO Running Time. Based on the computing characteristics, the average running time was
4500 seconds for each medical image. Furthermore, the running time increases as Denoise
Convolutional Neural Network (DnCNN) to enhance each image as follows.

C. Software:

— We make use of the Tian et al. [32] software from the 2008 CEC conference, an image
edge detection using Ant Colony Optimization MatLab software [36]. The existing
software was at first modified for the use of the operators from [32] and described in
Equation (16) (Sin-operator) and the proposed operators given in Equation (17) (KH-operator)
and Equation (18) (Chi-operator).

— Denoise Convolutional Neural Network (DnCNN) a pretrained network [37] is used to
improve the quality of the resulting medical image. Image Processing Toolbox and Deep
Learning Toolbox from Matlab are used.

Figure 3. Data-set of medical images used for practical experiments: (a) Brain CT; (b) Hand X-ray [34],
and (c) Head CT [35].
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Figure 4. Parameters testing for Ant Colony Optimization (ACO) when α = 1, β ∈ {0.1, 0.6, 1.2},
ρ ∈ {0.1, 0.6, 1.0} and ψ = 0.5 (left) ψ = 0.001 (right) for all considered operators Sin, KH and Chi;
the x-coordinate represents the standardized value of correctly identified edges, with values in the
unit interval.

Table 1. The standardized value of correctly identified edges with values in the unit interval for the
medical images Brain CT, Hand X-ray and Head CT with every considered operator on ACO.

Operator/Image Brain_CT Hand X-ray Head_CT

Ant Colony Optimization

Sin 0.2933 0.2942 0.3302
KH 0.2932 0.2539 0.2832
Chi 0.2782 0.2450 0.2788

4.2. Representation of Results

The following is the representation of medical images provided with identified edges on the
data-set of medical images using each considered operator from Equations (16)–(18). Figures 5–7 show
respectively the Brain CT, Hand X-ray and Head CT results of all considered operators when using
Ant Colony Optimization before and after Denoise Convolutional Neural Network (DnCNN).

Figure 5. Identified edges of Brain CT medical image using ACO (left) and ACO with Denoise
Convolutional Neural Network (DnCNN) (right) (a) Sin operator Equation (16), (b) KH operator
Equation (17), (c) Chi operator Equation (18).

Figure 6. Identified edges of Hand X-ray medical image using ACO (left) and ACO with DnCNN
(right) with operators: (a) Sin operator Equation (16), (b) KH operator Equation (17), (c) Chi operator
Equation (18).
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Figure 7. Identified edges of Head CT medical image using ACO (left) and ACO with DnCNN
(right) with operators: (a) Sin operator Equation (16), (b) KH operator Equation (17), (c) Chi operator
Equation (18).

4.3. Discussions

The main purpose of the current work is to study how the proposed operators influence the results
of the edge detection problem; thus, the impact during ACO solver is discussed. Furthermore the
influence of using the Denoise Convolutional Neural Network (DnCNN) for the quality of the final
medical images is presented.

Table 2 with the results of ACO and its specified operators when image edge detection problem
is solved shows the following: the highest values for means, 0.3059 is obtained for Sin and the same
for the lowest best value 0.2933. Nevertheless, ACO for edge detection shows its robustness as with
the Chi operator provides the lowest values for deviations results: standard deviations 0.0193 for
the average absolute deviation from median 0.0113. The KH operator shows stability during testing.

Table 2. Statistical values of the standardized value of correctly identified edges, with values in the
unit interval, based on Table 1: mean, median, standard deviation (Std.Dev.), maximal (High), minimal
(Low) and Average Absolute Deviation from median (Ave.Dev.) of overall results for ACO considering
operators Sin Equation (16), proposed KH-operator Equation (17) and proposed operator Chi-operator
Equation (18).

Mean Std.Dev. High Low Median Ave.Dev.

ACO-Sin 0.3059 0.0211 0.3302 0.2933 0.2942 0.0123
ACO-KH 0.2768 0.0204 0.2932 0.2539 0.2832 0.0131
ACO-Chi 0.2673 0.0193 0.2788 0.2450 0.2782 0.0113

In order to compare ACO operators’ results we make use of a similarity test. The higher similarity
is shown by the smaller value. As similarity, the norm of images differences, the norm() function from
MatLab is considered. Table 3 and Figure 8 illustrate similarities when comparing the similarities
between ACO operators: Sin, KH and Chi.

The most similar operators are Chi and KH-operator with the two lowest values out of the three
medical image results, 0.0726 for Hand X-ray and 0.0900 for Head CT. Less similar operators are Sin
and KH.

Table 4 and Figure 9 illustrate the medical image similarities within the initial ACO methods and
after using the pretrained Denoise Convolutional Neural Network (DnCNN) [37].

The most efficient operator, Chi, obtains the least changed image after DnCNN for Brain CT,
0.0612 value. The less efficient in this case was the Sin operator for Head CT, 0.0808.

Table 3. Similarity comparison of the standardized value of correctly identified edges for medical
images (Brain CT, Hand X-ray and Head CT with Sin, KH and Chi operators on ACO.

Operator/Image Brain_CT Hand X-ray Head_CT

Ant Colony Optimization

KH − Chi 0.1047 0.0726 0.0900
Sin − Chi 0.1090 0.1773 0.1774
Sin − KH 0.0867 0.1640 0.1745



Mathematics 2020, 8, 1040 10 of 13

Figure 8. Similarities between ACO operators Sin, KH and Chi for medical images: (Brain CT,
Hand X-ray and Head CT.

Table 4. Similarity comparison of the standardized value of correctly identified edges for medical
images (Brain CT, Hand X-ray and Head CT with Sin, KH and Chi operators on ACO, before and after
Denoise Convolutional Neural Network (DnCNN).

Operator/Image Brain_CT Hand X-ray Head_CT

Ant Colony Optimization

Sin − Sin_DnCNN 0.0670 0.0748 0.0808
KH − KH_DnCNN 0.0668 0.0762 0.0719
Chi − Chi_DnCNN 0.0612 0.0770 0.0712

Figure 9. Similarities before and after using the pretrained Denoise Convolutional Neural Network
(DnCNN) [37] for all considered operators Sin, KH and Chi Brain CT, Hand X-ray and Head CT.

Table 5 shows the ranks of operators when using Ant Colony Optimization to identify medical
edges and the most similar are KH and Chi.

Table 5. Similarity ranks comparison of the standardized value of correctly identified edges with values
in the unit interval for the medical images (Brain CT, Hand X-ray and Head CT with Sin, KH and Chi
operators on Ant Colony Optimization using the norm diference, before and after using Denoise
Convolutional Neural Network (DnCNN) [37].

Similarities Rank

ACO ACO with DnCNN

KH, Chi rank 1: most similar Chi− Chi_DnCNN rank 1: most similar
Sin, Chi rank 2 KH − KH_DnCNN rank 2
Sin, KH rank 3: less similar Sin− Sin_DnCNN rank 3: less similar

As the results suggested, the main advantages of the operators are the following:

• The Chi operator has the results similar with the Sin operator, so between Chi and KH,
Chi operator performs better for image edge detection with ACO (Table 5).

• Chi operator provides the best results for standard deviations and the average absolute deviation
from median when compared with Sin and KH operators The KH operator keeps its stability
during all the tests including with DnCNN (Tables 2 and 5).
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• The best paper results is that the newly introduced operators KH and Chi preserve better the edges
of the medical image during the image denoising process with DnCNN (Table 5).

Overall, the medical images edges obtained with the considered ACO operators shows reliability.

5. Conclusions

The health of people will be always a priority. In order to find out faster and with a high precision
bone injuries within medical images, frequently made through X-rays, different types of software
were implemented. Here, the meta-heuristic Ant Colony Optimization, ACO is used to identify
edges of medical images. The current study introduces two new operators. One of the proposals is
the KH-operator based on the Krasnoselskij admissible perturbation of a demicontractive operator.
The other one, is the admissible perturbation operator, the Chi, χ-operator obtained by applying a
function χ to an demicontractive mapping as specified by Rus in his work [1].

The use of different operators enhance the solution of the image edge detection problem.
The motivation of the study was to see the behavior of demicontractive operators in edge detection
algorithms, in particular with ACO. The results show the beneficent stability of the ACO operators and
especially when using Denoise Convolutional Neural Network, DnCNN, to obtain medical images.
An analysis is provided for both perspectives based on the imaged edge detection problem results:
from operators perspective for ACO with and without using DnCNN denoise technique.

The promising results of the proposed operators could further empower other techniques, in order
to identify better solutions not only just for medical image edge detection but as well as for other
similar difficult problems. The study hopefully opens new directions for further studies in this area.
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12. Dorigo, M.; Stŭtzle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004.
13. Chira, C.; Pintea, C.M.; Dumitrescu, D. Learning sensitive stigmergic agents for solving complex problems.

Comput. Inform. 2010, 29, 337–356.
14. Pintea, C.-M.; Pop, P.C.; Chira, C.; Dumitrescu, D. A Hybrid Ant-Based System for Gate Assignment Problem.

Lect. Notes Comp. Sci. 2008, 5271, 273–280.
15. Crisan, G.C.; Nechita, E.; Palade, V. Ant-based system analysis on the traveling salesman problem under

real-world settings. In Combinations of Intelligent Methods and Applications; Springer: Cham, Switzerland,
2016; pp. 39–59.

16. Bella, J.E.; McMullen, P.R. Ant colony optimization techniques for the vehicle routing problem Adv. Eng. Inf.
2004, 18, 41–48. [CrossRef]

17. Pintea, C.M.; Pop, P.C.; Dumitrescu, D. An ant-based technique for the dynamic generalized travelling
salesman problem. In Proceedings of the 7th International Conference on Systems Theory and Scientific
Computation, Athens, Greece, 24–26 August 2007; pp. 255–259.

18. Zhang, D.Y.; Zhao, H. Research of Generalized Ant Colony Algorithm for Logistics and Distribution.
Appl. Mech. Mater. 2014, 513–517, 691–694. [CrossRef]

19. Pintea, C.-M.; Pop, P.C.; Chira, C. The generalized traveling salesman problem solved with ant algorithms.
Complex Adapt. Syst. Model. 2017, 5, 8. [CrossRef]

20. Chowdhury, S.; Marufuzzaman, M.; Tunc, H.; Bian, L.; Bullington, W. A modified Ant Colony Optimization
algorithm to solve a dynamic traveling salesman problem: A case study with drones for wildlife surveillance.
J. Comput. Des. Eng. 2019, 6, 368–386. [CrossRef]

21. Shi, Q.; An, J.; Gagnon, K.K.; Cao, R.; Xie, H. Image Edge Detection Based on the Canny Edge and the
Ant Colony Optimization Algorithm. In Proceedings of the International Congress on Image and Signal
Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019;
pp. 1–6.

22. Mahalingam, T.; Subramoniam, M. ACO–MKFCM: An Optimized Object Detection and Tracking Using
DNN and Gravitational Search Algorithm. Wirel. Pers. Commun. 2020, 110, 1567–1604. [CrossRef]

23. Yu, Y.; Deng, Q.; Ren, L.; Tashi, N. Memristor Crossbar Array Based ACO for Image Edge Detection.
Neural Process Lett. 2020, 51, 1891–1905. [CrossRef]

24. Rundo, L.; Militello, C.; Vitabile, S.; Russo, G.; Sala, E.; Gilardi, M.C. A Survey on Nature-Inspired Medical
Image Analysis: A Step Further in Biomedical Data Integration. Fundam. Inf. 2020, 171, 345–365. [CrossRef]

25. Lahrichi, N.; Crainic, T.G.; Gendreau, M.; Rei, W.; Crişan, G.C.; Vidal, T. An integrative cooperative search
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