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Abstract: Homogeneous random fractals form a probabilistic generalisation of self-similar sets with
more dependencies than in random recursive constructions. Under the Uniform Strong Open Set
Condition we show that the mean D-dimensional (average) Minkowski content is positive and finite,
where the mean Minkowski dimension D is, in general, greater than its almost sure variant. Moreover,
an integral representation extending that from the special deterministic case is derived.
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1. Introduction

In fractal geometry and analysis, the D-dimensional Minkowski content, and its average version,
of a nonempty compact set K ⊂ Rd are respectively defined as

lim
ε→0

εD−dLd(Kε) , and lim
δ→0

1
| ln δ|

∫ 1

δ
εD−dLd(Kε)

1
ε

dε ,

provided the corresponding limit exists, where Kε denotes the parallel set of K of distance ε. K is said
to be Minkowski measurable if the first limit is positive and finite. In this case, D is a determined
number called the Minkowski dimension of K. These notions have been considered in the literature
for several classes of fractal sets. In [1] and the references therein relationships to spectral analysis,
certain Zeta functions and fractal drums are established. Another approach is based on the application
of renewal theorems from probability theory in order to determine related geometric quantities.

For self-similar sets satisfying the Open Set Condition, as introduced in [2], this idea goes back
to [3]. The Minkowski content of such sets was determined in [4] under the stronger separation
condition and in [5] for the general case. (For local versions see also [6], Chapter 10.) Note that here the
Hausdorff dimension of the sets coincides with their Minkowski dimension, which was shown before
(for references see, e.g., [7]). In [8], where these results are extended to fractal versions of higher order
mean curvatures, explicit numerical values are calculated for the examples of the Sierpinski gasket
and variants of the Sierpinski carpet.

For stochastically self-similar sets in the sense of [9–11], the almost sure (average) Minkowski
content was determined in [5], where a renewal theorem for branching random walks was used as
a main tool. Again, for this model, the a.s. Hausdorff dimension coincides with the a.s. Minkowski
dimension. Moreover, the mean Minkowski content agrees with the almost sure variant, i.e., the latter
is constant. Extensions to the geometric higher order mean curvatures can be found in [12].

The above random sets are also called random recursive fractals. Homogeneous random fractals
have much more dependencies in their construction. A first special case was studied [13], in particular,
the a.s. Hausdorff dimension was determined and shown to be equal to the a.s. Minkowski dimension.
From the results in [14,15], respectively, this follows for the general case.

V-variable random fractals in the sense of [16] and preceding parts provide a certain interpolation
between homogeneous random fractals as special case V = 1 and random recursive constructions
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(V = ∞). In [16] the corresponding a.s. Hausdorff dimension was determined. However, recently it
has been shown in [17] that—in distinction to the random recursive case—no related gauge function
provides a positive and finite Hausdorff measure. We conjecture that an a.s. positive and finite
Minkowski content also does not exist.

In order to find geometric parameters for such sets, too, it makes sense to consider mean values
in the probabilistic sense. In the present paper, we show under some general conditions, that the
(average) mean Minkowski content of a homogeneous random fractal exists. Moreover, we derive a
formula in terms of expectations, which is the same as that for the included deterministic self-similar
sets. Extensions to fractal curvatures in the sense of [8,12] are possible. Some basic techniques of proof
are close to those from the former variants. In particular, we use the classical Renewal theorem in the
sense of [18]. It turns out that the a.s. Minkowski dimension of such sets is, in general, less than the
associated mean Minkowski dimension.

2. Construction of Homogeneous Random Fractals and Statement of the Results

For fixed 0 < rmin < rmax < 1 let Sim be the set of contractive similarities f : Rd → Rd with
contraction ratios rmin ≤ r ≤ rmax equipped with the topology given by uniform convergence on
compact sets. B denotes the associated Borel σ-algebra. The space Ω0 := ∪∞

k=1 Simk together with the
σ-algebra F0 :=

{
A ⊂ Ω0 : A ∩ Simk ∈ ⊗k

i=1B for all k ∈ N
}

, and with a distribution P0 on it provide
the primary probability space [Ω0,F0,P0]. (Here and in the following the symbol ⊂ is used for ⊆.)
The basic probability space for the random construction model is the product space

[Ω,F ,P] :=
∞⊗

n=1

[Ω0,F0,P0] (1)

and the expectation symbol E will be used for integration with respect to P.
The elements of Ω are denoted by

ω = ω1, ω2, . . . := ( f1(1), . . . , fN(1)(1)), ( f1(2), . . . , fN(2)(2)), . . . ,

and ri(n) are the contraction ratios of the similarities fi(n). For fi(1), ri(1) and N(1) we will often
write fi, ri and N, resp. Below we will use the measurable mapping

θ : Ω→ Ω with θ(ω1, ω2, ω3, . . .) := ω2, ω3, . . . ,

and for a random element ξ(ω) we will write

ξn(ω) := ξ(θn(ω)) .

(If it is clear from the context, the argument ω will be omitted.)
The above random similarities ( f1(n), . . . , fN(n)(n)) with distribution P0 play the role of the

random iterated function system (IFS) of random length N(n) in the n-th construction step. For different
n they are independent of each other.

Throughout the paper, we suppose the Uniform Open Set Condition (UOSC), i.e., there exists a
nonempty bounded open set O ⊂ Rd such that a.s. with respect to P0 we have

N⋃
i=1

fi(O) ⊂ O and fi(O) ∩ f j(O) = ∅ , i 6= j . (2)

Then with P-probability 1 all IFS in the product space fulfil this (UOSC).
As usual, the corresponding random fractal set is introduced by means of a random coding

tree: Σn = Σn(ω) := {σ1 . . . σn : 1 ≤ σi ≤ N(i), i = 1, . . . , n} is the set of all nodes at level n and
Σ∗ :=

⋃∞
n=0 Σn is the set of all nodes of the tree, where Σ0 denotes the empty code at level 0.
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Recall that Σk
l (ω) = Σl(θ

kω). For σ = σ1 . . . σk ∈ Σk and τ = τ1 . . . τl ∈ Σk
l we write στ :=

σ1 . . . σkτ1 . . . τl ∈ Σk+l for the concatenation of these codes. If σ = σ1 . . . σn ∈ Σn and 0 ≤ k ≤ n,
then σ|k := σ1 . . . σk denotes the restriction to the first k components of σ, and |σ| := n is the length
of σ. With each such σ we associate the same random IFS ( f1(n + 1), . . . , fN(n+1)(n + 1)), where n =

0, 1, 2, . . .. This leads to the homogeneous structure. (In the V-variable case these random IFS are chosen
by means of V different types. Here we have V = 1, and in the case of random recursive constructions,
where V = ∞, for different σ ∈ Σn the IFS are i.i.d.) Furthermore we define the random mappings

fσ = fσ(ω) := fσ1(1) ◦ fσ2(2) ◦ · · · ◦ fσn(n)

with contraction ratios rσ = rσ(ω) := rσ1(1)rσ2(2) . . . rσn(n).
Then the random compact subset of O

F = F(ω) :=
∞⋂

n=1

⋃
σ∈Σn

fσ(O) (3)

is P-a.s. determined and measurable with respect to the Borel σ-algebra B(K) determined by the
Hausdorff distance dH on the space K of nonempty compact subsets of Rd. It is called the associate
homogeneous random fractal. F is stochastically self-similar in the following sense (recall that Fn(ω) =

F(θn(ω))).

F =
N⋃

i=1

fi(1)(F1) , P − a.s. .

More generally, for all n ∈ N,

F =
⋃

σ∈Σn

fσ(Fn) , P − a.s. , (4)

where the random compact set Fn is independent of the random mappings { fσ, σ ∈ Σn} and has the
same distribution as F.

In the sequel, many relationships between random elements are fulfilled only with probability 1. We will
not mention this if it can be seen from the context.

In order to treat the mean Minkowski content of F we need the following notions. For r > 0 the
r-parallel set of K ∈ K is given by

Kr := {x ∈ Rd : min
y∈K
|x− y| ≤ r} ,

and the inner r-parallel set of a bounded open set G by

G−r := {x ∈ G : min
y∈∂G

|x− y| ≥ r} ,

where ∂G means the topological boundary of G.
The measurability properties of the random elements used in the sequel follow easily from

their definitions or together with the next result, which will be proved at the end of the next section.
(Note that the Hausdorff metric generates the so-called hit and miss topology on K. For more details
see, e.g., Matheron [19].)
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Lemma 1. The following mappings are continuous with respect to the corresponding (product) metrics:

(i) (r, (K11, . . . , Kk1), (K12, . . . , Kk2), . . . , (K1l , . . . , Kkl)) 7→ Ld
( k⋃

i=1

l⋂
j=1

(Kij)r

)
from (0, ∞)×Kk·l into (0, ∞) .

(ii) r 7→ ELd(Kr) from (0, ∞) into (0, ∞) for any random nonempty compact

set K = K(ω) with diam(K) ≤ c w.p.1 for some constant c .

In order to formulate the main results concerning the Minkowski content suppose now that
1 < EN < ∞ and let D be the number determined by

E
N

∑
i=1

rD
i = 1 . (5)

(The (UOSC) implies that D ≤ d.)

µ := E
( N

∑
i=1

1(·)(| ln ri|) rD
i
)

(6)

is an associated probability distribution for the logarithmic contraction ratios ri of the primary random
IFS. The corresponding mean value is denoted by

η := E
( N

∑
i=1
| ln ri| rD

i
)
. (7)

By definition, the random set F satisfies the Uniform Strong Open Set Condition (USOSC) if (UOSC)
(see Equation (2)) is fulfilled and P(F ∩O 6= ∅) > 0.

Then we get the following. In the sequel we will use the notation ϕ(ε) := ELd(Fε).

Theorem 1. Suppose (USOSC) for the homogeneous random fractal set F and 1 < EN < ∞.

(i) If the measure µ is non-arithmetic, then the finite limit

lim
ε→0

εD−d ELd(Fε)

exists and equals

MD(F) =
1
η

∫ 1

0
εD−d−1R(ε) dε ,

where the function R(ε) is given by

R(ε) = ϕ(ε)−E
N

∑
i=1

(
1(0,ri ]

(ε) rd
i ϕ(

ε

ri
)
)

.

(ii) For general µ we get for the average limit

lim
δ→0

1
| ln δ|

∫ 1

δ
εD−d ELd(Fε)

1
ε

dε = MD(F) .

Theorem 2. Under the conditions of Theorem 1 the constant MD(F) is positive.
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These two theorems show that MD(F) can be interpreted as the mean D-dimensional Minkowski
content of the homogeneous random fractal F.

Note that according to Hambly [13] (for a special case) the almost sure Hausdorff dimension DH of
F is given by the equation

E ln
( N

∑
i=1

rDH
i
)
= 0 .

The general case can be included in an approach from the theory of dynamical systems by Roy
and Urbanski [14], see also Barnsley, Hutchinson and Stenflo [16] in the context of V-variable fractals
for V = 1. In [13] and in Troscheit [15] for the general case it is shown that DH coincides with the a.s.
box counting dimension. It is well known that the box counting dimension always agrees with the
Minkowski dimension. By the above formulas DH ≤ D, where the equality is not valid in general
and hence, the a.s. Minkowski dimension can be less than the mean version in the sense of the above
theorems. (Note that in the deterministic case we have DH = D.)

3. Proofs

Proof of Theorem 1. Recall that ϕ(ε) = ELd(Fε) and

R(ε) = 1[0,1](ε)ϕ(ε)−E
N

∑
i=1

(1(0,ri ]
(ε)rd

i ϕ
( ε

ri

))
.

By the scaling property of the Lebesgue measure and using that the random set F1 is
independent of the random contraction ratios (r1, . . . , rN) and has the same distribution as F we
get the representation

R(ε) = 1(0,1](ε)ELd(Fε)−E
N

∑
i=1

(
1(0,ri ]

(ε)Ld( fi(F1)ε)
)

. (8)

Substituting ε = e−t we infer from the definition of R(ε) that

1[0,∞)(t)e
(d−D)t ϕ(e−t)

= E
N

∑
i=1

(
1[0,∞)(t− | ln ri|)e(d−D)(t−| ln ri |)ϕ(e−(t−| ln ri |)) rD

i

)
+e(d−D)tR(e−t) .

Denoting Z(t) := 1[0,∞)(t)e(d−D)t ϕ(e−t) and z(t) := e(d−D)tR(e−t), i.e., z(t) = 0 for t < 0,
the above equation can be rewritten as

Z(t) =
∫ t

0
Z(t− s)µ(ds) + z(t) .

Thus, the function Z(t) satisfies the renewal equation with respect to the distribution µ. In view
of Lemma 1 and dominated convergence, the function z(t) is right continuous with left limits. Hence,
it is Lebesgue-a.e. continuous. Below we will show that

|z(t)| ≤ c e−tδ (9)
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for some constants c and δ > 0, i.e., z is bounded by a directly Riemann integrable function.
According to Asmussen ([20] Prop. 4.1, p. 118) z is then directly Riemann integrable, too. Therefore
the classical Renewal theorem in Feller ([18] p. 363) can be applied. In the non-arithmetic case we get

lim
t→∞

Z(t) =
1
η

∫ ∞

0
z(t) dt =

1
η

∫ ∞

0
e(d−D)tR(e−t) dt ,

i.e., assertion (i) after substituting ε = e−t under the integral.
Since Z(t) is bounded on finite intervals, in the non-arithmetic case the corresponding average

limit in (ii) is a consequence. In the lattice case, the Renewal theorem provides the limit in discrete
steps with respect to the lattice constant. This implies the average convergence. (For more details see
the end of the proof of Theorem 2.3 in Gatzouras [5].)

Now it remains to prove Equation (9), i.e., in view of Equation (8) that

∣∣ELd(Fε)−E
( N

∑
i=1

1(0,ri ]
(ε)Ld( fi(F1)ε)

)∣∣ ≤ c εd−D+δ ,

for some constants c and δ > 0. For this it suffices to show that

∣∣E(Ld(Fε)−
N

∑
i=1
Ld( fi(F1)ε)

)∣∣ ≤ c εd−D+δ , (10)

since
∣∣E(∑N

i=1 1(ri ,1](ε)L
d( fi(F1)ε)

)∣∣ for ε > rmin is uniformly bounded.
To this aim we consider the auxiliary random sets

A(ε) :=
⋃

i,j∈{1,...,N},i 6=j

fi(O)ε ∩ f j(O)ε ,

Bi(ε) := fi(F1)ε \ A(ε) .

Then Fε =
⋃N

i=1 Bi(ε) ∪ Fε ∩ A(ε) is a disjoint union and thus,

Ld(Fε) =
N

∑
i=1
Ld(Fε ∩ Bi(ε)) + Ld(Fε ∩ A(ε)) .

Similarly,
Ld( fi(F1)ε) = Ld( fi(F1)ε ∩ Bi(ε)) + Ld( fi(F1)ε ∩ A(ε)) ,

since Bi(ε) ∩ f j(F1)ε = ∅ for i 6= j. Furthermore, Fε ∩ Bi(ε) = fi(F1)ε ∩ Bi(ε), so that

Ld(Fε) =
N

∑
i=1
Ld( fi(F1)ε ∩ Bi(ε)) + Ld(Fε ∩ A(ε)) .

Substituting the last two relationships in the left hand side of Equation (10) we obtain

∣∣E(Ld(Fε)−
N

∑
i=1
Ld( fi(F1)ε)

)∣∣
=
∣∣ELd(Fε ∩ A(ε))−

N

∑
i=1

ELd(( fi(F1)ε) ∩ A(ε))
∣∣

≤ ELd(Fε ∩ A(ε)) +E
N

∑
i=1
Ld(( fi(F1)ε) ∩ A(ε)) =: S1(ε) + S2(ε) .
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Denote

f (O) :=
N⋃

i=1

fi(O) . (11)

Taking into regard that A(ε) ⊂ ( f (O)c)ε, which follows from (UOSC), Lemma 2 below provides
the estimate

sup
ε

S1(ε)

εd−D+δ
≤ E sup

ε

Ld(Fε ∩ ( f (O)c)ε)

εd−D+δ
< ∞

with some δ > 0. For the above summand S2(ε) the problem can also be reduced to Lemma 2 by the
following arguments. Using the scaling property of Ld and f−1

i (A(ε)) ⊂ (Oc)ε/ri
we get for δ < D,

sup
ε

S2(ε)

εd−D+δ
≤ E sup

ε

N

∑
i=1

Ld(( fi(F1)ε) ∩ A(ε))

εd−D+δ

= E sup
ε

N

∑
i=1

rd
i

εd−D+δ
Ld(F1

ε/ri
∩ f−1

i (A(ε))
)

≤ E sup
ε

N

∑
i=1

rD−δ
i

rd−D+δ
i

εd−D+δ
Ld(F1

ε/ri
∩ ((Oc)ε/ri

)
)

≤ E
N

∑
i=1

rD−δ
i sup

ε

Ld(F1
ε ∩ (Oc)ε)

εd−D+δ

≤ EN E sup
ε

Ld(Fε ∩ (Oc)ε)

εd−D+δ
≤ EN E sup

ε

Ld(Fε ∩ ( f (O)c)ε)

εd−D+δ
.

In the last two inequalities we have used that the random set F1 is independent of the random
number N and has the same distribution as F, and then the set inclusion Oc ⊂ f (O)c. In view of
Lemma 2 below the last expression is finite for some δ > 0, which completes the proof of (10).

Lemma 2. There exists some 0 < δ < D such that

E sup
ε

ε−(d−D+δ)Ld(Fε ∩ ( f (O)c)ε

)
< ∞ .

In the proof of this lemma we will use special random Markov stoppings for the coding tree Σ∗, i.e.,

Σ(r) := {σ ∈ Σ∗ : rσ ≤ r < rσ||σ|−1} , r > 0 . (12)

From the construction of the random fractal F it follows easily that for all r > 0,

F =
⋃

σ∈Σ(r)

fσ(F|σ|) , a.s. . (13)

Furthermore, Σ(r) satisfies the following.

Proposition 1.
E ∑

σ∈Σ(r)
rD

σ = 1 .

Proof. From Equation (5) and the product structure of the basis probability space we get for all
k ∈ N that

E ∑
σ∈Σk

(rσ)
D = 1 ,
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since ∑σ∈Σk
(rσ)D = ∏k

n=1 ∑σ∈Σn
1
(rσ)D is the product of n independent random variables, each with

expectation 1. (Recall the notation Σn
l (ω) = Σl(θ

nω) and rn
σ′(ω) = rσ′(θ

nω), l, n ∈ N.) Then we infer
for M ≥ | ln r|(ln rmax|)−1 + 1,

1 = E ∑
σ∈ΣM

(rσ)
D = E

( M−1

∑
n=1

∑
σ∈Σ(r),|σ|=n

(rσ)
D ∑

σ′∈Σn
M−n

(rn
σ′)

D)
=

M−1

∑
n=1

E
(

∑
σ∈Σ(r),|σ|=n

(rσ)
D ∑

σ′∈Σn
M−n

(rn
σ′)

D)
=

M−1

∑
n=1

E ∑
σ∈Σ(r),|σ|=n

(rσ)
D E ∑

σ′∈Σn
M−n

(rn
σ′)

D

=
M−1

∑
n=1

E ∑
σ∈Σ(r),|σ|=n

(rσ)
D = E

M−1

∑
n=1

∑
σ∈Σ(r),|σ|=n

(rσ)
D = E ∑

σ∈Σ(r)
(rσ)

D ,

where we have used in the fourth equation that in the product under the expectation the second sum
∑σ′∈Σn

M−n
(rn

σ′)
D is independent of the first one and after this that

E ∑
σ′∈Σn

M−n

(rn
σ′)

D = E ∑
σ′∈ΣM−n

(rσ′)
D = 1 .

Then the above equalities lead to the assertion.

Proof of Lemma 2. Equation (13) implies

Ld(Fε ∩ ( f (O)c)ε

)
≤ ∑

σ∈Σ(ε∗)
Ld( fσ(F|σ|)ε ∩ ( f (O)c)ε

)
≤ ∑

σ∈Σb(ε)

Ld( fσ(F|σ|)ε) ,

where the random boundary code tree Σb(ε) is defined as

Σb(ε) :=
{

σ ∈ Σ(ε∗) : fσ(F|σ|)ε ∩ ( f (O)c)ε 6= ∅
}

, (14)

and ε∗ := c ε for some constant c > 0, which will be determined below (see Equation (18)).
For σ ∈ Σ(ε∗) we get

Ld( fσ(F|σ|)ε

)
= rd

σ Ld((F|σ|)ε/rσ

)
≤ const εd ,

since (F|σ|)ε/rσ
⊂ O1/crmin . Therefore, the right hand side of the above estimates does not exceed

const #(Σb(ε)) εd, where #(·) denotes the number of elements of a finite set, and #(∅) := 0.
Hence, it suffices to show that

sup
ε

εD−δ E#(Σb(ε)) < ∞ for some δ > 0 . (15)

To this end we now will use (USOSC), i.e., (UOSC) and P(F ∩O 6= ∅) > 0, which implies that
there exist some constants α > 0 and 0 < ρ < 1 such that

P(Σ(ρ, α) 6= ∅) > 0 for Σ(ρ, α) := {τ ∈ Σ(ρ) : d(x, ∂O) > α , x ∈ fτ(F|τ|)} . (16)

(Otherwise, by construction, the random fractal set F would concentrate on the boundary of O, which is
a contradiction.)
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Recall from Proposition 1 that E∑τ∈Σ(ρ) rD
τ = 1. Then let δ be determined by

E
(

∑
τ∈Σ(ρ)\Σ(ρ,α)

rD−δ
τ

)
= 1 . (17)

We now choose
ε∗ := 2(αrmin)

−1ε . (18)

Then we get for i = 1, . . . , N and iσ ∈ Σ(ε∗) with σ = τσ′ for some τ ∈ Σ1(ρ, α) that

fiσ(F|iσ|)ε ∩ ( f (O)c)ε = ∅ .

(To see this note that for any x ∈ fiσ(F|iσ|)ε there exists a y ∈ fiσ(F|iσ|) such that |x − y| ≤ ε.
Furthermore, y ∈ fiσ(F|iσ|) ⊂ fi(F1) ⊂ fi(O) ⊂ f (O), and d(y, ∂ f (O)) ≥ d(y, fi(O)) > riα > riσα >

ε∗rminα = 2ε. Consequently, d(x, ∂ f (O)c) ≥ d(y, ∂ f (O)c)− |x− y| > 2ε− ε = ε, i.e., x /∈ ( f (O)c)ε.)
From this we obtain

#(Σb(ε)) =
N

∑
i=1

#({w ∈ Σ(ε∗) : w = iσ, σ ∈ Ξ1(ε∗/ri)}) ,

where the random sets Ξ(r), r > 0, are defined as

Ξ(r) := Σ(r) \ {σ ∈ Σ(r) : σ = τσ′ for some τ ∈ Σ(ρ, α)} .

With these notations we get

εD−δE#(Σb(ε)) ≤ εD−δE
N

∑
i=1

#(Ξ1(ε∗/ri))

= 1/2(αrmin)
D−δE

N

∑
i=1

rD−δ
i (ε∗/ri)

D−δ#(Ξ1(ε∗/ri))

= 1/2(αrmin)
D−δE

N

∑
i=1

rD−δ
i (ε∗/ri)

D−δE#(Ξ1(ε∗/ri))

= constE
N

∑
i=1

rD−δ
i ψ(ε∗/ri) ,

where we have used that Ξ1 is independent of the events in the first step and has the same distribution
as Ξ and then the notation ψ(r) := rD−δE#(Ξ(r). Now it suffices to show that the function ψ

is bounded.
Similarly as above, using Equation (16) and the definition of Ξ(ε) we infer for sufficiently large M

and ε < ρ,

ψ(ε) = E ∑
τ∈Σ(ρ)\Σ(ρ,α)

rD−δ
τ (ε/rτ)

D−δ#(Ξ|τ|(ε/rτ))

=
M

∑
n=1

E ∑
τ∈Σ(ρ)\Σ(ρ,α),|τ|=n

rD−δ
τ (ε/rτ)

D−δ#(Ξn(ε/rτ))

=
M

∑
n=1

E ∑
τ∈Σ(ρ)\Σ(ρ,α),|τ|=n

rD−δ
τ ϕ(ε/rτ) = E ∑

τ∈Σ(ρ)\Σ(ρ,α)
rD−δ

τ ϕ(ε/rτ)

≤ E ∑
τ∈Σ(ρ)\Σ(ρ,α)

rD−δ
τ sup

ε′≥ε/ρ

ψ(ε′) = sup
ε′≥ε/ρ

ψ(ε′) ,
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where we have used that the random sets Ξn(r) are independent of the behaviour of the system
up to the step n via conditional expectation, that they have the same distribution as Ξ(r), and then
Equation (17). Hence, ψ(ε) ≤ supε′≥ε/ρ ψ(ε′) for any ε < ρ, which implies

sup
ε≥ρk+1

ψ(ε) ≤ sup
ε≥ρk

ψ(ε) for all k .

Since the function ψ is bounded on any interval away from zero it is bounded on (0, ∞).
This completes the proof of Equation (15).

Proof of Theorem 2. Recall that O−r is the inner parallel set of O of distance r. Suppose that ε0 <

diam O and C ⊂ O−ε0 for some non-empty random compact set C defined on our basic probability
space. By (UOSC) for different σ ∈ Σ(r) the random sets fσ(C|σ|) ⊂ fσ(O−ε0) are disjoint and hence,

Ld(Fε) ≥ ∑
σ∈Σ(r)

Ld(Fε ∩ fσ(C|σ|)) =: S .

Choosing now
r = ε∗ := (rminε0)

−1ε

we get for all σ ∈ Σ(ε∗) that rσ ≤ (rminε0)
−1ε < rσ(rmin)

−1, i.e., ε < rσε0, and thus,

fσ(C|σ|) ⊂ fσ(O−ε0) = fσ(O)−rσε0 ⊂ fσ(O)−ε .

Furthermore, Fε ∩ fσ(O)−ε = fσ(F|σ|)ε ∩ fσ(O)−ε. Therefore,

Fε ∩ fσ(C|σ|) = fσ(F|σ|)ε ∩ fσ(C|σ|) .

Hence,
Ld(Fε ∩ fσ(C|σ|)) = Ld( fσ(F|σ|)ε ∩ fσ(C|σ|)) ,

and for M ≥ | ln ε∗|(| ln rmax|)−1 + 1 the above sum is equal to

S = ∑
σ∈Σ(ε∗)

Ld( fσ(F|σ|)ε ∩ fσ(C|σ|)) = ∑
σ∈Σ(ε∗)

rd
σLd((F|σ|)ε/rσ

∩ C|σ|)

=
M

∑
n=1

∑
σ∈Σ(ε∗),|σ|=n

rd
σLd((Fn)ε/rσ

∩ Cn) .

Using that ε/rσ ≥ rminε0 and rσ > ε/ε0 for σ ∈ Σ(ε∗) we infer the following.

ELd(Fε) ≥
M

∑
n=1

E ∑
σ∈Σ(ε∗),|σ|=n

rd
σLd((Fn)rminε0 ∩ Cn)

= E( ∑
σ∈Σ(ε∗)

rd
σ)ELd(Frminε0 ∩ C)

≥ (ε/ε0)
dE(#(Σ(ε∗)))ELd(Frminε0 ∩ C)

≥ εd−D const ELd(Frminε0 ∩ C) ,

where we have used that the random sets Fn and Cn are independent of the behaviour of the system
up to the step n and in the last inequality that

E#(Σ(ε∗)) ≥ const ε−D
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which follows from
1 = E ∑

σ∈Σ(ε∗)
(rσ)

D ≤ εD constE#(Σ(ε∗)) .

(Here and below, const stands for different positive constants.) Therefore, it remains to show that

ELd(Frminε0 ∩ C) > 0 (19)

for some ε0 < diam O and some random compact set C ⊂ O−ε0 .
Recall Equation (16) for the definition of the code set Σ(ρ.α). Choose ε0 := α(1 + rmin)

−1, where
α in Equation (16) can be taken such that ε0 < diam(O), and

C :=
⋃

τ∈Σ(ρ,α)

fτ(F|τ|)rminε0 .

Since F|τ| ⊂ O−α for τ ∈ Σ(ρ.α) and α− rminε0 = ε0, we obtain that C ⊂ O−ε0 . Furthermore,

ELd(Frminε0 ∩ C) ≥ const(rminε0)
dP(Σ(ρ, α) 6= ∅) > 0 .

Consequently, our C and ε0 satisfy Equation (19).

Proof of Lemma 1. Recall that the Hausdorff distance between two nonempty compact sets K and L
in Rd is given by

dH(K, L) := max
(

max
x∈K

d(x, L), max
y∈L

d(y, K)
)

,

where d(x, L) := miny∈L |x− y|, or equivalently by

dH(K, L) = min{r ≥ 0 : K ⊂ Lr, L ⊂ Kr} .

In order to prove (i) let for ε < r the sets Ki,j(ε), Li,j ∈ K, 1 ≤ i ≤ k, 1 ≤ j ≤ l, be such that

max
i,j

dH(Ki,j(ε), Li,j) < ε .

Then we get
k⋃

i=1

l⋂
j=1

(Li,j)r−ε ⊂
k⋃

i=1

l⋂
j=1

(Ki,j(ε))r ⊂
k⋃

i=1

l⋂
j=1

(Li,j)r+ε

and consequently,

Ld( k⋃
i=1

l⋂
j=1

(Li,j)r−ε

)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)r
)

≤ Ld( k⋃
i=1

l⋂
j=1

(Ki,j(ε))r
)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)r
)

≤ Ld( k⋃
i=1

l⋂
j=1

(Li,j)r+ε

)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)r
)

.
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Using Rataj and Winter ([21] Prop. 2.3) one obtains that the boundary of the set
⋃k

i=1
⋂l

j=1(Li,j)r

is (d− 1)-rectifiable, and thus it has vanishing Lebesgue measure. Therefore, the left and right hand
sides of the above inequalities tend to zero as ε→ 0. Hence,

lim
ε→0

∣∣Ld( k⋃
i=1

l⋂
j=1

(Ki,j(ε))r
)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)r
)∣∣ = 0 .

Similarly one infers

lim
s→r

∣∣Ld( k⋃
i=1

l⋂
j=1

(Li,j)r
)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)s
)∣∣ = 0 .

Finally,

∣∣Ld( k⋃
i=1

l⋂
j=1

(Ki,j(ε))r
)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)s
)∣∣

≤
∣∣Ld( k⋃

i=1

l⋂
j=1

(Ki,j(ε))r
)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)r
)∣∣

+
∣∣Ld( k⋃

i=1

l⋂
j=1

(Li,j)r
)
−Ld( k⋃

i=1

l⋂
j=1

(Li,j)s
)∣∣ ,

which tends to zero as ε→ 0 and s→ r by the above arguments. This proves (i).
In order to show (ii) we apply (i) for k = l = 1 to the random set K in order to see the continuity

of the random function r 7→ Ld(Kr) and thus, that of r 7→ ELd(Kr), since diam(K) ≤ c and thus
Ld(Kr) ≤ const(c + r)d with probability 1.

Funding: This research received no external funding.

Acknowledgments: This work was supported by DFG Grant ZA 242/8-1.

Conflicts of Interest: The author declares no conflict of interest.

References
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