

  mathematics-08-00890




mathematics-08-00890







Mathematics 2020, 8(6), 890; doi:10.3390/math8060890




Article



COVID-19 Pandemic Prediction for Hungary; A Hybrid Machine Learning Approach



Gergo Pinter 1, Imre Felde 1, Amir Mosavi 2,3,4,5,*[image: Orcid], Pedram Ghamisi 6[image: Orcid] and Richard Gloaguen 7[image: Orcid]





1



John von Neumann Faculty of Informatics, Obuda University, 1034 Budapest, Hungary






2



Faculty of Civil Engineering, Technische Universität Dresden, 01069 Dresden, Germany






3



Kalman Kando Faculty of Electrical Engineering, Obuda University, 1034 Budapest, Hungary






4



Thuringian Institute of Sustainability and Climate Protection, 07743 Jena, Germany






5



Department of Mathematics, J. Selye University, 94501 Komarno, Slovakia






6



Machine Learning Group, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany






7



Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, Chemnitzer Straße 40, 09599 Freiberg, Germany









*



Correspondence: amir.mosavi@mailbox.tu-dresden.de







Received: 7 May 2020 / Accepted: 26 May 2020 / Published: 2 June 2020



Abstract

:

Several epidemiological models are being used around the world to project the number of infected individuals and the mortality rates of the COVID-19 outbreak. Advancing accurate prediction models is of utmost importance to take proper actions. Due to the lack of essential data and uncertainty, the epidemiological models have been challenged regarding the delivery of higher accuracy for long-term prediction. As an alternative to the susceptible-infected-resistant (SIR)-based models, this study proposes a hybrid machine learning approach to predict the COVID-19, and we exemplify its potential using data from Hungary. The hybrid machine learning methods of adaptive network-based fuzzy inference system (ANFIS) and multi-layered perceptron-imperialist competitive algorithm (MLP-ICA) are proposed to predict time series of infected individuals and mortality rate. The models predict that by late May, the outbreak and the total morality will drop substantially. The validation is performed for 9 days with promising results, which confirms the model accuracy. It is expected that the model maintains its accuracy as long as no significant interruption occurs. This paper provides an initial benchmarking to demonstrate the potential of machine learning for future research.






Keywords:


machine learning; prediction model; COVID-19












1. Introduction


Severe acute respiratory syndrome coronavirus 2, also known as SARS-CoV-2, is reported as a virus strain causing the respiratory disease of COVID-19 [1]. The World Health Organization (WHO) and the global nations confirmed the coronavirus disease to be extremely contagious [2,3]. The COVID-19 pandemic has been widely recognized as a public health emergency of international concern [4]. To estimate the outbreak, identify the peak ahead of time, and also predict the mortality rate, epidemiological models have been widely used by officials and media. Outbreak prediction models have shown to be fundamental to provide insights into the damages caused by COVID-19. Furthermore, the prediction models are used as a reference to make new policies and to evaluate the conditions of curfew [5]. The COVID-19 pandemic has been reported to be extremely aggressive to spread [6]. Due to the uncertainty and complexity of the COVID-19 outbreak and its irregularity in different countries, the standard epidemiological models, i.e., susceptible-infected-resistant (SIR)-based models, have been challenged for delivering higher performance in individual nations. Furthermore, as the COVID-19 outbreak showed significant differences with the recent epidemics, e.g., swine fever, H1N1 influenza, Ebola, Cholera, dengue fever, and Zika, several advanced epidemiological models have emerged to provide higher accuracy [7]. Nevertheless, due to the involvement of numerous unknown factors, the outbreaks, various curfew strategies in different countries, and existing double standards for evaluation metrics, the model uncertainty for the COVID-19 is generally reported extensive [8,9,10]. As a result, SIR-based models are fundamentally challenged to provide reliable insight into the progress of COVID-19.



The general strategy behind the SIR-based models for predicting the COVID-19 outbreak, similar to other epidemics, is formed around the assumption of transmitting the contagious disease through social contacts. The SIR-based models assume that infection spreads through several groups, e.g., susceptible, exposed, infected, recovered, deceased, and immune [11]. For instance, the standard SIR-based models assume that an epidemic includes susceptible to infection (class S), infected (class I), and the removed population (class R). Such principal groups build the foundation of epidemiological modeling. Note that the definition of various classes of the outbreak may vary. For instance, R is often referred to as those that have recovered, developed immunity, been isolated, or passed away. However, in various countries, R may or may not be susceptible to infection again, and there exist uncertainties in allocating R a value. Advancing SIR-based models require several assumptions. Thus, modeling with SIR-based models may include several contradicting assumptions.



Nevertheless, in most epidemiological models, it is generally agreed that class I has a high probability of infecting class S. The transmission probability is proportional to the total social contacts. The transmission can be estimated through the implementation of basic differential equations as follows [12,13,14].


    d S   d t   = − α S I  



(1)




where     I  ,  S , and  α  represent the infected population, the susceptible population, and the daily reproduction rate, respectively. The time-series of   S ,   which is calculated by the differential equation, decreases gradually. However, it is observed that at the beginning of the pandemics, where the increment     d I   d t     is linear,   S ≈ 1  . Eventually, class I is estimated as follows.


    d I   d t   = α S I − β I  



(2)




where   β   represents the parameter of the daily rate of spread. Furthermore, the susceptible individuals excluded from the SIR-based models are calculated. Furthermore, the class R, representing individuals excluded from the spread of infection, is computed as follows:


    d R   d t   = β I  



(3)







Considering the above-mentioned assumptions, and under the unconstrained conditions of the excluded group, Equation (3), the outbreak modeling with SIR is finally stated as:


  I    ( t )  ≈    I  0     e x p    {   (  α − β ) }     .  



(4)







Furthermore, to evaluate the accuracy of the SIR-based models, the outbreak model’s median success function is used, which is represented as:


  f =   P r e d i c t i o n   T r u e   v a l u e   .  



(5)







Several analytical solutions to the SIR models have been provided in the literature [15,16]. As the different nations take different actions toward slowing down the outbreak, the SIR-based model must be adapted according to the local assumptions [17]. The inaccuracy of many SIR-based models in predicting the outbreak and mortality rate has been evidenced during the COVID-19 in many nations. The critical success of a SIR-based model relies on choosing the right model according to the context and the relevant assumptions. SIS (susceptible-infectious-susceptible), SIRD (susceptible-infected-recovered-deceased-model), MSIR (Maternally-derived-immunity-susceptible-infected-recovered), SEIR (Susceptible-exposed-infected-recovered), SEIS (Susceptible-exposed-infected- susceptible), MSEIR (Maternally-derived-immunity-susceptible-exposed-infected-recovered), and MSEIRS (Maternally-derived-immunity-susceptible- exposed-infected-recovered-susceptible) models are among the popular models used for predicting COVID-19 outbreaks worldwide. The more advanced variation of SIR-d models carefully considers the vital dynamics and constant population [16]. For instance, at the presence of the long-lasting immunity assumption when the immunity is not realized upon recovery from infection, the susceptible-infectious-susceptible (SIS) model was suggested [18]. In contrast, the susceptible-infected-recovered-deceased-model (SIRD) is used when immunity is assumed [19]. In the case of COVID-19, different nations took different approaches in this regard.



SEIR models have been reported among the most popular tools to predict the notable outbreaks. To advance an SEIR model, often, the incubation period of an infected person is carefully estimated to achieve more accurate predictions. In the case of Varicella and Zika outbreaks, the SEIR models showed increased model accuracy [20,21]. To do so, SEIR models might assign the incubation period to a random variable. Furthermore, similar to the standard SIR-based models, SEIR models work on the ideology of the disease-free-equilibrium [22,23]. However, it should be noted that SEIR models can not fit well where the contact network is non-stationary through time [24]. Social mixing as a critical factor of non-stationarity determines the reproductive number    R  0   ,   which is the number of susceptible individuals for infection. The value of    R  0     for COVID-19 was estimated to be 4, which greatly trigged the pandemic [1]. The lockdown measures aimed at reducing the    R  0     value down to 1. Nevertheless, the SEIR models are reported to be difficult to fit in the case of COVID-19 due to the non-stationarity of mixing caused by nudging intervention measures. Therefore, to develop more accurate SIR-based models, in-depth information about the social movement and the quality of lockdown measures would be essential. Another drawback of SIR-based models is the short lead-time. For long-term prediction, the accuracy of the most SIR-based models declines. For the COVID-19 outbreak case of Italy, for instance, the accuracy of the model drops significantly. The performance of   f = 1   for the lead-time of 120 h reduces to   f = 0.86   for 144 h lead time [17]. Overall, the SIR-based models would be accurate if firstly the status of social interactions is stable. Secondly, class R can be computed precisely. To better estimate class R, several data sources can be integrated with SIR-based models, e.g., CCTVs, social media, mobile apps, and call data records. Nevertheless, using such systems are reported to still associate with significant complexity and uncertainties [25,26,27,28,29,30,31,32]. Due to the high level of uncertainties involved in the advancement of SIR-based models, the generalization ability is yet to be improved to achieve a scalable model with high performance [33].



Due to the presence of uncertainties and a high degree of complexity in advancing epidemiological models of the outbreak, machine learning has increasingly been seen as a potential technology. ML has already shown promising results in a contribution to developing better SIR-based models with higher performance with generalization ability and robustness [34,35,36,37,38]. Machine learning has already been recognized as a computing technique with great potential in outbreak prediction. The notable machine learning algorithms include, e.g., random forest for swine fever [39,40], neural networks for H1N1 flu, dengue fever, and Oyster norovirus [11,41,42], genetic programming for Oyster norovirus [43], classification and regression tree (CART) for Dengue [44], Bayesian Network for Dengue and Aedes [45], LogitBoost for Dengue [46], multi-regression and Naïve Bayes for Dengue outbreak prediction [47]. Machine learning has often been used as a complementary computation tool to enhance SIR-based models [11,39,40,41,42,43,44,45,46,47,48,49]. Nevertheless, there is a gap in using machine learning in the case of COVID-19. However, several recent research works point out the enormous potential of machine learning for the fight against COVID-19 [49,50,51,52]. Machine learning delivered promising results in several aspects for mitigation and prevention and have been endorsed in the scientific community for, e.g., case identifications [53], classification of novel pathogens [54], modification of SIR-based models [55], diagnosis [56,57], survival prediction [58], and ICU demand prediction [59]. Furthermore, the non-peer reviewed sources suggest novel applications for fighting COVID-19 [60]. Among the applications of machine learning improvement of the existing models of prediction, identifying vulnerable groups, early diagnosis, the advancement of drugs delivery, evaluation of the probability of next pandemic, the advancement of the integrated systems for Spatio-temporal prediction, evaluating the risk of infection, advancing reliable biomedical knowledge graphs, and data mining the social networks are being noted.



As stated in our recent paper, machine learning can be used for data preprocessing. Improving the quality of data can particularly improve the quality of the SIR-based model. For instance, the number of cases reported by Worldometer is not precisely the number of infected cases (E in the SEIR model), or calculating the number of infectious people (I in SEIR) cannot be easily determined, as many people who might be infectious may not turn up for testing although the number of people who are admitted to hospital and deceased will not support R as most COVID-19 positive cases recover without entering the hospital. Considering this data problem, it is challenging to fit SEIR models satisfactorily. Considering such challenges, for future research, the ability of machine learning for estimation of the missing information on the number of exposed E or infected individuals can be evaluated. Along with the prediction of the outbreak, prediction of the total mortality rate (n(deaths)/n(infecteds)) is also essential to accurately estimate the number of potential patients in the critical situation and the required beds in intensive care units. Although the research is in the very early stage, the trend in outbreak prediction with machine learning can be classified in two directions. Firstly, improvement of the SIR-based models, e.g., [55,61], and secondly time-series prediction [62,63]. Consequently, the state-of-the-art machine learning methods for outbreak modeling suggest two major research gaps for machine learning to address. Firstly, the improvement of SIR-based models and secondly advancement in outbreak time series. Considering the drawbacks of the SIR-based models, machine learning should be able to contribute. This paper contributes to the advancement of time-series modeling and prediction of COVID-19. Although ML has been currently established in predicting several scientific phenomena [64,65,66,67,68], its advancement for pandemic modeling remains at the early stages [69]. More sophisticated ML methods are yet to be explored. A recent paper by Ardabili et al., [51] explored the potential of MLP and ANFIS in time series prediction of COVID-19 in several countries. The contribution of the present paper is to improve the quality of prediction by proposing a hybrid machine learning and compare the results with ANFIS. In the present paper, the time series of the total mortality is also included. This article continues as follows. Section 2 describes the methods and materials. The results are given in Section 3. Section 4 presents the conclusions.




2. Materials and Methods


2.1. Data


Dataset is related to the statistical reports of COVID-19 cases and mortality rate of Hungary, which is available online [70]. Figure 1 and Figure 2 represent the total and daily reports of COVID-19 statistics, respectively, from 4 March to 19 April. The actual dataset includes the daily cases and the number of deaths from 4 March to 28 April. The data of 4 March to 19 April has been used for training, and the data of 20–28 April has been solely used for validation.




2.2. Methods and Modeling Strategy


In the present study, modeling is performed by machine learning methods. Training is the basis of these methods, as well as many artificial intelligence (AI) methods [71]. According to psychological and social literiture, creatures interact with their surroundings through the trial and error approach to achieve the optimum performance [72]. Based on this theory and using the ability of computers to repeat a set of instructions, these conditions can be provided for computer programs to interact with the environment by updating values and optimizing functions, according to the results of interaction with the environment to solve a problem or achieve a specific goal. How to update values and parameters in successive repetitions by a computer is called a training algorithm [72,73,74]. One of these methods is Neural Networks (NN), according to which the modeling of the connection of neurons in the human brain, software programs were designed to solve various problems. To solve these problems, operational NN, such as classification, clustering, or function approximation is performed using appropriate learning methods [75,76]. The training of the algorithm is the initial and important step for developing a model [77,78]. Developing a predictive AI model requires a dataset categorized into two sections i.e., input(s) (as independent variable(s)) and output(s) (as dependent variable(s)) [79].



In the present study, time-series data have been considered as the independent variables for the prediction of COVID-19 cases and mortality rate (as dependent variables). The Time-series dataset was prepared based on two scenarios, as described in Table 1. The first scenario categorizes the time-series data into four inputs for the last four consequently odd days’ cases or mortality rate for the prediction of xt as the next day’s case or mortality rate, and the second scenario categorizes the time-series data into four inputs for the last four consequently even days’ cases or mortality rate for the prediction of xt as the next day’s case or mortality rate.



In the present study, the two robust hybrid methods of ANN algorithm, i.e., MLP-ICA and ANFIS, have been employed for developing the required models. The dataset is devised into two parts. One part is devoted to training and the second part, i.e., 20–28 April, is devoted to model validation.



2.2.1. Hybrid Multi-Layered Perceptron-Imperialist Competitive Algorithm (MLP-ICA)


Multi-layered-perceptron (MLP) is the frequently used ANN method for prediction and modeling purposes. This technique, as a single method, provides acceptable accuracy for prediction tasks in the simple and semi-complex datasets. However, in the case of doing modeling tasks in complex datasets, there is a need for more robust techniques [80,81]. For this reason, hybrid methods have been growing [80,81]. Hybrid methods contain a predictor and one or more optimizers [80,81]. The present study develops a hybrid MLP-ICA approach as a robust hybrid algorithm for generating a platform for predicting the COVID-19 cases and mortality rate in Hungary. The ICA is a method in the field of evolutionary calculations that seeks to find the optimal answer to various optimization problems. This algorithm, by mathematical modeling, provides a socio-political evolutionary algorithm for solving numerical optimization problems [82]. Like all algorithms in this category, the ICA constitutes an initial set of possible answers. These answers are known as countries in the ICA. The ICA gradually improves the initial responses and ultimately provides the appropriate solution to the optimization problem [82,83].



The algorithms are based on the policy of assimilation, imperialist competition, and revolution. This algorithm, by imitating the process of social, economic, and political development of countries and by mathematical modeling of parts of this process, provides operators in the form of a regular algorithm that can help to solve complex optimization problems [82,84]. In fact, this algorithm looks at the answers to the optimization problem in the form of countries and tries to gradually improve these answers during a repetitive process and eventually reach the optimal answer to the problem [82,84]. In the Nvar dimension optimization problem, a country is an array of Nvar × 1 length. This array is defined as follows:


  c o u n t r y =  [  p 1 ,   p 2 ,   … ,   p N v a r  ]   



(6)







To start the algorithm, the country’s initial number is gererated (Ncountry). To select the Nimp as the best members of the population (countries with the lowest amount of cost function) as imperialists. The rest of the Ncol countries form colonies, belonging to an empire. To divide the early colonies between the imperialists, imperialist owns a number of colonies, the number of which is proportional to its power [82,84]. The following figure symbolically shows how the colonies are divided among the colonial powers.



The integration of this model with the neural network causes the error in the network to be defined as a cost function, and with the changes in weights and biases, the output of the network improves, and the resulting error decreases [85]. The most important factors in training an ANN-ICA method contain the number of countries, imperialists, and decades and the number of neurons in the hidden layer, which can be defined in different ways. One of the common ways for defining them is trial and error.



In the present study, inputs and outputs of each scenario are imported into the model. The number of countries, imperialists, and decades have been defined by trial and error. For developing an MLP model, three architectures including 4–10-1, 4–14-1, and 4–18-1 (with 10, 14, and 18 neurons in the hidden layer, respectively) are used.




2.2.2. ANFIS


ANFIS falls as a member of the artificial neural networks (ANNs). The architecture of ANFIS is improved through the integration of the Takagi-Sugeno fuzzy system, i.e., a variation of fuzzy logic [86,87]. The ANFIS was coined in the early 90s and gained a widespread popularity within the research community for scientific modeling and estimation. This method was developed in the early 1990s. As ANFIS hybridizes the ANNs and Takagi-Sugeno fuzzy system, it benefits from the high performance of the both computing and learning technique for dealing with nonlinear functions [86,87]. Figure 3 presents the architecture of the developed ANFIS model.



As illustrated in Figure 3, ANFIS has five main layers [88,89,90]. The first layer is the inputs layer, which takes the parameters and imports them to the model. This layer is also called the input layer of the fuzzy system. The outputs of the first layer import to the second layer and carry prior values of membership functions (MFs). Fuzzy rules are concluded from the nodes on the second layer devoted to the degree of activity. Furthermore, the ANFIS’s third layer multiplies the degree of activity of any rules. The fourth layer nomalizes the functions and nodes and further produces the outputs [91] and sends them to the output layer. The important factors for determining the accuracy of ANFIS are the number and type of MFs, the optimum method, and the output MF type [92,93,94,95,96].



Model of ANFIS is implemented through MATLAB’s ANFIS toolbox. To initiliaze the model, the input parameters are set as the independent variables of each scenario, and the output variable was the number of cases or mortality rate. The ANFIS model was trained with three triangular, trapoizidal, and gaussian MFs. This step was performed in order to select the best MF. The output membership function type selected linear type because of its ability to further reduce errors. Training of FIS was done with optimum backpropagation (BP) method and 0 value of error tolerance.




2.2.3. Evaluation Criteria


Evaluations were conducted through calculating the standard values for determination coefficient, mean absolute percentage error root mean square error. These factors evaluate the target values and further estimate the model performance through calculating an index score. Such indexes are used to estimate the model accuracy [97,98]. Table 2 presents the evaluation criteria equations used in this study.



In the evaluation metrics, N represents the number of data. In addition, X and Y are the predicted and desired values, respectively.






3. Results


The performance of the proposed algorithm is evaluated using both training and validation data. The training data are used to train the algorithm and define the best set of parameters to be used in ANFIS and MLP-ICA. After that, the best setup for each algorithm is used to predict outbreaks on the validation samples. It is worth mentioning that due to the lack of adequate sample data to avoid overfitting, the training is used to evaluate the model with higher performance.



3.1. Training Results


The training step for ANFIS is performed by employing three MF types, i.e., Triangular, Trapezoidal, and Gaussian as shown in Table 3 and Table 4. Table 3 presents the training results of ANFIS for COVID-19 cases, and Table 4 presents the training results of ANFIS for the COVID-19 mortality rate in Hungary. The results have been compared using evaluation metrics of RMSE and MAPE. According to Table 3, Gaussian MF type with MF number 3, BP optimum method, and linear output MF provided the highest performance by the lowest value of RMSE. On the other hand, as is precise, scenario 1 provided the lowest RMSE in comparison with the scenario 2 for the selected MF. Therefore, it can be concluded that scenario 1 is suitable for modeling COVID-19 cases in contrast with scenario 2.



According to Table 4, it can be claimed that Gaussian MF provided the lowest error and highest accuracy compared with other MF types for the prediction of mortality rate. Also it can be claimed that, for the selected MF type, scenario 2 provides the highest performance compared with scenario 1 for the prediction of mortality rate.



Table 5 and Table 6 present results for the prediction of COVID-19 cases and mortality rate, respectively by MLP-ICA. According to Table 5, MLP architecture with 10 neurons in the hidden layer provided the highest accuracy for the prediction of the COVID-19 cases in the presence of both scenarios. However, Scenario 2 provided higher accuracy than scenario 1, according to the lowest RMSE value.



According to Table 6, neuron number 14 for scenario 1 and neuron number 18 for scenario 2 provided the highest accuracy in integrating by ICA method in comparison with other architectures. By comparing the evaluation criteria values, it can be concluded that scenario 1 is more suitable than scenario 2 for the prediction of mortality rate using MLP-ICA.



Figure 4 presents the plot diagram for the selected models according to Table 3, Table 4, Table 5 and Table 6. In these figures, the vertical axes represent the “target values”. In fact, the actual values and the horizontal axis is the “predicted values” or in another word the output value of the model. In these plots, the dash-line is the 1:1 line. The distance of each point from the dash-line discusses the accuracy of the prediction. Such that, points on the dash-line have the minimum error and increase the determination coefficient, and points that have distance from the dash line increase the error and reduce the accuracy in accordance with its distance and reduce the determination coefficient.



As is clear from Figure 5, ANN provides a higher determination coefficient (0.9963, 0.9963, 0.9987, and 0.9987, respectively for the prediction of COVID-19 cases and COVID-19 mortality rate in the presence of scenario 1 and scenario (see the Figure 5)) than ANFIS. Also, the ability of ANN in the prediction of the COVID-19 mortality rate is higher than that for the prediction of COVID-19 cases. However, ANFIS provides a little different behavior than ANN. Such that, in ANFIS, scenario 1 provides the highest determination coefficient for the prediction of COVID-19 cases but scenario 2 provides the highest correlation coefficient for the prediction of mortality rate (0.9689, 0.934, 0.8909 and 0.9427, respectively for the prediction of COVID-19 cases and COVID-19 mortality rate in the presence of scenario 1 and scenario (see the Figure 5)).



From considering Scen. 1 for mortality model using MLP-ICA method and Scen. 2 for mortality model using MLP-ICA method, the differences are negligible. It is, therefore, worth mentioning that using different scenarios for data sampling has a minimum effect on performance. Thus, using either odd or even days for data sampling gives relatively acceptable results. Furthermore, Figure 6 represents the deviation from target values for the COVID-19 cases from 4 March to 19 April. According to Figure 6, MLP-ICA scenario 2 provides a lower deviation from the target value followed by MLP-ICA in the presence of scenario 1 than the ANFIS in the presence of both scenarios.



Figure 7 presents the deviation from target values for the COVID-19 mortality rate from 4 March to 19 April. According to Figure 7, MLP-ICA in the presence of scenario 1 provides a lower deviation from the target value followed by MLP-ICA in the presence of scenario 2 than the ANFIS in the presence of both situations.



By evaluating the modeling methods in the last sections, it was decided to select the MLP-ICA in the presence of scenario 2 for the prediction of COVID-19 outbreak and MLP-ICA in the presence of scenario 1 for the prediction of COVID-19 mortality rate in Hungary. Predictions were performed in two stages. The first stage for total prediction and the second one for daily prediction. Figure 8 and Figure 9 present total cases and total mortality rate, respectively, and Figure 10 and Figure 11 present the daily Prediction of the results from 20 April to 30 July. Each figure has two sections, including the reported statistic (from 24 March to 19 April) and the predicted by the selected model (from 20 April to 30 July).




3.2. Validation


Table 7 represents the validation of the MPL-ICA and ANFIS models for the period of 20–28 April. The proposed model of MPL-ICA presented promising values for RMSE and determination coefficient for the prediction of both outbreak and total mortality.





4. Discussion


Considering uncertainties in modeling with the SIR-based models, the proposed approach shows the potential to outperform the commonly used prediction tools in the case of Hungary. More work is required to confirm if this technique is adequate in all cases and for different population types and sizes. Nonetheless, the learning approach could overcome imperfect input data. Incomplete catalogs can occur because infected persons are asymptotic, not tested, or not listed in databases. Tests in a closed environment such as large aircraft carriers in France and the US reported that up to 60% of the infected personnel might be asymptomatic. Of course, military personals are not representative of large and mixed populations. Nonetheless, it shows that false negatives can be abundant. In emerging countries, access to laboratory equipment required for testing is extremely limited. This will introduce a bias in the counting. Finally, it is unclear if all the cases are registered. In the UK, for example, it took public pressure for the government to make the casualties in retirement hospices known. In addition, there is still growing suspicion in the community that a few countries might have reported false data for political reasons. At the same time, national governments and local administrations implemented containment measures such as confinement and social distancing. These actions have a huge impact on transmissions and, thus, on cases and casualties. Access to modern medical facilities is also a parameter that will mainly influence the number of casualties. All these aspects will influence traditional estimation procedures, whereas learning algorithms might be able to adapt, especially if multiple datasets are available for a given region. Not only can our approach outperform the commonly used SIR-based models, but it requires fewer input data to estimate the trends. While we provide promising results for Hungarian data we need to further test such novel approaches on other databases. Nonetheless, the presented results are showing signs of success and should incite the community to implement these new tools rapidly.




5. Conclusions


Although SIR-based models been widely used for modeling the COVID-19 outbreak, they include some degree of uncertainties. Several advancements are emerging to improve the quality of SIR-based models suitable to the COVID-19 outbreak. As an alternative to the SIR-based models, this study proposed machine learning as a new trend in advancing outbreak models. The machine learning approach makes no assumption on the pandemic and spread of the infection. Instead, it predicts the time series of the infected cases as well as total mortality cases. In this study, the hybrid machine learning model of MLP-ICA and ANFIS is used to predict the COVID-19 outbreak in Hungary. The models predict that by late May, the outbreak and the total morality will drop substantially. Based on the promising results reported in this study, and due to the complex phenomenon of COVID-19 outbreak, this study, as an alternative modeling strategy, suggests machine learning as a potential technology to be considered to model the outbreak. However, further research would be essential to validate the results and improve the quality of prediction.



In this study, two scenarios were proposed for sampling the data. Scenario 1 considered sampling the odd days, and Scenario 2 used even days for training the data. Training the two machine learning models of ANFIS and MLP-ICA, were considered through using two scenarios. It is concluded that using different scenarios for data sampling has a minimum effect on the model performance. A detailed investigation was carried out to explore the most suitable number of neurons. Furthermore, the performance of the proposed algorithm is evaluated using both training and validation data. The training data are used to train the algorithm and define the best set of parameters to be used in ANFIS and MLP-ICA. After that, the best setup for each algorithm is used to predict outbreaks on the validation samples. The validation is performed for 9 days with promising results, which confirms the model accuracy. In this study, due to the lack of adequate sample data to avoid overfitting, the training is used to choose and evaluate the model with higher performance. In future research, as the COVID-19 progresses in time and with the availability of more sample data, further testing and validation can be used to better evaluate the models.



Both models showed promising results in terms of predicting the time series without the assumptions that epidemiological models require. Both machine learning models, as an alternative to epidemiological models, showed potential in predicting COVID-19 outbreak as well as estimating total mortality. Yet, MLP-ICA outperformed ANFIS with delivering accurate results on validation samples. Considering the availability of a small amount of training data, further investigation would be essential to explore the true capability of the proposed hybrid model. It is expected that the model maintains its accuracy as long as no major interruption occurs. For instance, if other outbreaks would initiate in the other cities, or the prevention regime changes, naturally the model will not maintain its accuracy. For future studies, advancing deep learning and deep reinforcement learning models is strongly encouraged for comparative studies on various ML models for individual countries.
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	ICA
	Random Forest
	RF



	Maternally-derived-immunity-susceptible- exposed-infected-recovered-susceptible
	MSEIRS
	Maternally-derived-immunity-susceptible-exposed-infected-recovered
	MSEIR



	Maternally-derived-immunity-susceptible-infected-recovered
	MSIR
	Susceptible-exposed-infected- susceptible
	SEIS



	Membership function
	MF
	Machine learning
	ML



	Particle swarm optimization
	PSO
	Neural Networks
	NN



	Susceptible-infected-recovered
	SIR
	Root mean square error
	RMSE



	Susceptible-infected-recovered-deceased
	SIRD
	Backpropagation
	BP
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Figure 1. Total statistics for the number of cases and mortality rate of COVID-19. 
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Figure 2. Daily statistics for the number of cases and mortality rate of COVID-19. 
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Figure 3. Architecture of the developed ANFIS. 
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Figure 4. The initial empires generation [82]. 
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Figure 5. Plot Diagrams for the prediction of COVID-19 cases and mortality rate. 
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Figure 6. Deviation from target value (Cases). 
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Figure 7. Deviation from target value (mortality rate). 
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Figure 8. Total outbreak prediction for MLP-ICA. 
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Figure 9. Total mortality rate prediction for MLP-ICA. 
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Figure 10. Daily outbreak prediction for MLP-ICA. 
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Figure 11. Daily mortality rate prediction for MLP-ICA. 
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Table 1. Two proposed scenarios for time-series prediction of COVID-19 in Hungary.






Table 1. Two proposed scenarios for time-series prediction of COVID-19 in Hungary.










	
	Inputs
	Outputs





	Scenario 1
	xt-1, xt-3, xt-5 and xt-7
	xt



	Scenario 2
	xt-2, xt-4, xt-6 and xt-8
	xt
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Table 2. Evaluation metrics used in this study.






Table 2. Evaluation metrics used in this study.





	Accuracy and Performance Index





	Determination coefficient =       N   ∑         ( X Y )     −   ∑         ( Y )       ∑         ( Y )         [ N   ∑        X 2  −   (   ∑       X )       2  ]   [ N   ∑        Y 2  −   (   ∑       X Y )       2  ]                 



	MAPE =    1 N   |    X − Y  X   |  × 100  



	RMSE =      1 N    ∑         ( A − P )  2     
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Table 3. ANFIS training results (cases).






Table 3. ANFIS training results (cases).





	

	
MF Type

	
No. of MFs

	
Optimum Method

	
Output MF

	
Epoch No.

	
RMSE

	
MAPE






	
Scenario 1

	
Triangular

	
3

	
BP

	
Linear

	
233

	
248.06

	
38.44




	
Trapezoidal

	
3

	
BP

	
Linear

	
253

	
158.59

	
35.67




	
Gaussian

	
3

	
BP

	
Linear

	
388

	
119.42

	
39.95




	
Scenario 2

	
Triangular

	
3

	
BP

	
Linear

	
266

	
250.26

	
37.75




	
Trapezoidal

	
3

	
BP

	
Linear

	
206

	
211.98

	
33.39




	
Gaussian

	
3

	
BP

	
Linear

	
285

	
182.76

	
34.6
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Table 4. ANFIS training results (mortality rate).






Table 4. ANFIS training results (mortality rate).





	

	
MF Type

	
No. of MFs

	
Optimum Method

	
Output MF

	
Epoch No.

	
RMSE

	
MAPE






	
Scenario 1

	
Triangular

	
3

	
Back-propagation

	
Linear

	
204

	
31.14

	
47.12




	
Trapezoidal

	
3

	
Back-propagation

	
Linear

	
135

	
31.09

	
44.36




	
Gaussian

	
3

	
Back-propagation

	
Linear

	
198

	
26.42

	
39.86




	
Scenario 2

	
Triangular

	
3

	
Back-propagation

	
Linear

	
245

	
32.69

	
45.56




	
Trapezoidal

	
3

	
Back-propagation

	
Linear

	
155

	
31.49

	
41.53




	
Gaussian

	
3

	
Back-propagation

	
Linear

	
260

	
23.95

	
33.95
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Table 5. MLP-ICA training results (cases).






Table 5. MLP-ICA training results (cases).





	

	
No. of Countries

	
No. of Decades

	
No. of Initial Imperialists

	
No. of Neurons

	
RMSE

	
MAPE (%)






	
Scenario 1

	
300

	
40

	
50

	
10

	
37.30

	
23.15




	
300

	
40

	
50

	
14

	
37.39

	
23.82




	
300

	
40

	
50

	
18

	
37.48

	
23.57




	
Scenario 2

	
300

	
40

	
50

	
10

	
37.24

	
23.47




	
300

	
40

	
50

	
14

	
37.43

	
23.63




	
300

	
40

	
50

	
18

	
38.29

	
22.15
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Table 6. MLP-ICA training results (mortality rate).






Table 6. MLP-ICA training results (mortality rate).





	

	
No. of Countries

	
No. of Decades

	
No. of Initial Imperialists

	
No. of Neurons

	
RMSE

	
MAPE






	
Scenario 1

	
250

	
55

	
70

	
10

	
1.902

	
37.1




	
250

	
55

	
70

	
14

	
1.9

	
36.99




	
250

	
55

	
70

	
18

	
1.901

	
36.99




	
Scenario 2

	
250

	
55

	
70

	
10

	
1.902

	
37.16




	
250

	
55

	
70

	
14

	
1.917

	
37.18




	
250

	
55

	
70

	
18

	
1.902

	
37.09
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Table 7. Validation of the models for 9 days.






Table 7. Validation of the models for 9 days.





	

	
Total Cases

	
Total Mortality Rate






	
For 20–28 April

	
MPL-ICA

	
ANFIS

	
MLP-ICA

	
ANFIS




	
RMSE

	
167.88

	
194.10

	
8.32

	
15.25




	
Determination coefficient

	
0.9971

	
0.9563

	
0.9986

	
0.7491
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