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Abstract: This paper deals with discrete-time semi-Markov random evolutions (DTSMRE) in reduced
random media. The reduction can be done for ergodic and non ergodic media. Asymptotic approximations
of random evolutions living in reducible random media (random environment) are obtained. Namely,
averaging, diffusion approximation and normal deviation or diffusion approximation with equilibrium
by martingale weak convergence method are obtained. Applications of the above results to the additive
functionals and dynamical systems in discrete-time produce the above tree types of asymptotic results.
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1. Introduction

In order to simplify the analysis of complex systems, we consider stochastic approximation methods
where we not only simplify the system but also the random media. These address the fact that some
subsets of state space are weakly connected with the other subsets, that is, the transition probabilities
are very small compared to transition probabilities inside the considered subsets. This fact allows one to
proceed into an asymptotic reduction of the state space of system and also of the random medium.

In fact, the random medium, which is coming to perturb the considered system, or equivalently the
random evolution, can explore some subsets of its state space in a fast time, while some other subsets
of states are explored in a slow time. On the one hand, in the scale of fast time, the slow time explored
subsets take place as rare events. On the other hand, in the slow time scale, the fast time can be considered
as a unique merged state, since states into the fast subsets are undistinguishable from the point of view of
slow time scale.

Of course, the different kind of stochastic approximations of the random evolutions give us different
kind of results. Namely, the average approximation leave the same structure of the system but with a
simpler state space of the random medium and structure. In the diffusion approximation the structure of
the system is simplified to a switched diffusion process, and the switching random medium in a simpler
state space and structure. In the normal deviation, or equivalently in the merging with equilibrium,
the considered process is the difference of the initial process by the mean process obtained in the averaging
scheme and the limit is a switched diffusion process.

Concerning the state space of random media we may consider a finite or even uncountable factor
space of the state space on which we consider a supporting Markov chain and the original process is
considered as a perturbation of the above supporting Markov chain by a signed transition kernel.
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Results of this kind in continuous time have been presented in several works including those by
the authors of the present paper. This kind of results in semi-Markov setting were first presented by V.S.
Koroliuk and his collaborators [1–5]. Asymptotic merging called consolidation is also studied by Anisimov
[6]. See also results by Yin and Zhang [7]. Some recent papers are also dedicated to the above problems.
For the Markov switching models, see, for example, References [8,9], and for non equilibrium Markov
processes, see, for example, References [10,11].

Discrete-time semi-Markov random evolution have already been studied as the embedded Markov
process of semi-Markov processes, where in fact it turns out to be a Markov chain random evolution, see,
for example, References [1,2]. Discrete calendar time Markov evolution were introduced first by Keepler in
Reference [12]. In semi-Markov setting they have been introduced in Reference [13], and studied in depth
in Reference [14]. This paper presents new results as continuation of those presented in Reference [14];
they are different from the fact that the random media there were on fixed state space and not reducible as
in the present case. Nevertheless, for the first part, the merging of semi-Markov chain, we are using here
a different technique to obtain merging of the state space and asymptotic results for stochastic systems,
which is based on the compensating operator of the semi-Markov chain, see, for example, References
[1,15].

The limit results obtained here are in the weak functional sense in the Skorohod topology,
see, for example, References [15–21]. For works on random evolution see, for example,
in References [1–3,5,12,22,23], and references therein. Reference works for Markov chains see, for example,
References [24–28]. For semi-Markov processes see, for example, References [29–32]; and for discrete-time
see, for example, References [13,14,33]. Useful results in Banach space can be found in, for example,
References [14,34–39]. For applications to real problems of the type of results presented here see,
for example, References [4,16,40–42].

The paper is organized as follows. Section 2 includes the semi-Markov chain setting needed in the
sequel. Section 3 includes merging state space definition and results of asymptotic merging in the ergodic
and non ergodic cases. Section 4, includes discrete-time semi-Markov random evolution (DTSMRE)
definition and preliminary results. Section 5 presents the main results of this paper, that is average,
diffusion and diffusion with equilibrium approximation or normal deviation results for DTSMRE with
merging. Section 6 presents average, diffusion and diffusion with equilibrium approximation results for
particular systems: integral functionals and dynamical systems. Section 7 presents proofs of the theorems.
Finally, Section 8 contains concluding remarks.

2. Semi-Markov Chains with Merging

Let (E, E) be a measurable space with countably generated σ-algebra and (Ω,F , (Fn)n∈IN, P) be a
stochastic basis on which we consider a Markov renewal process (MRP), (xn, τn, n ∈ IN), in discrete time
k ∈ IN, with state space (E, E). It is worth noticing that k is the calendar time, while n is the number of
jumps, both are IN-valued. Notice that IN is the set of non-negative integer numbers. The semi-Markov
kernel q is defined by (see, e.g., Reference [33]),

q(x, B, k) := P(xn+1 ∈ B, τn+1 − τn = k | xn = x), x ∈ E, B ∈ E , k, n ∈ IN. (1)

We will also denote q(x, B, Γ) = ∑k∈Γ q(x, B, k), where Γ ⊂ IN. The process (xn) is the embedded
Markov chain (EMC) of the MRP (xn, τn) with transition kernel P(x, dy) on the state space (E, E).
The semi-Markov kernel q is written as

q(x, dy, k) = P(x, dy) fxy(k),
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where fxy(k) := P(τn+1 − τn = k | xn = x, xn+1 = y), the conditional distribution of the sojourn time in
state x given that the next visited state is y. We set q(·, ·, 0) ≡ 0.

Here for simplicity we do not consider dependence of the function fxy on the second state y, that is,
the sojourn time distribution in state x is independent of the arrival state y, and we will denote it as fx.
In fact, any semi-Markov process with x and y dependence can be transformed to one with dependence
only on x, see, for example, Reference [29]. So, there is no restriction to the generality.

Let νk = max{n : τn ≤ k} be the process which counts the jumps of the EMC xn, in the time interval
[0, k] ⊂ IN, and the discrete-time semi-Markov chain zk by zk = xνk , for k ∈ IN. Define now the backward
recurrence time process γk := k− τνk , k ≥ 0, and the filtration Fk := σ(z`, γ`; ` ≤ k), k ≥ 0.

The Markov chain (zk, γk), k ≥ 0, has the following transition probability operator on the real bounded
measurable functions defined on E× IN,

P]ϕ(x, k) =
1

Fx(k)

∫
E\{x}

q(x, dy, k + 1)ϕ(y, 0) +
Fx(k + 1)

Fx(k)
ϕ(x, k + 1). (2)

It is worth noticing that the above relation (2) can be written also in another interesting form as follows

P]ϕ(x, k) = ϕ(x, k + 1) + λx(k + 1)[Pϕ(x, 0)− ϕ(x, k + 1)],

where λx(k + 1) is the exit rate of the SMC from the state x ∈ E and time k + 1, given by Px(τ1 = k + 1 |
τ1 > k). Of course, as usually, the transition rate in discrete-time is a probability and not a positive
real-valued function as is the case in continuous-time. The above relation is similar to the generator of the
process (zt, γt) in the continuous-time, see, for example, References [1–3].

The stationary distribution of the process (zk, γk), if there exists, is given by

π](dx× {k}) = ρ(dx)Fx(k)/m,

where m(x) is the mean sojourn time in state x ∈ E, and

m :=
∫

E
ρ(dx)m(x), m(x) = ∑

k≥0
Fx(k),

and ρ(dx) is the stationary distribution of the EMC (xn), Fx(k) := q(x, E, [0, k]), and Fx(k) := 1− Fx(k) =
q(x, E, [k + 1, ∞)). The probability measure π defined by π(B) = π](B× IN) is the stationary probability
of the SMC (zk). From the above equality we get the following useful equality

π(dx) = ρ(dx)m(x)/m, (3)

which connect the stationary distribution of the semi-Markov chain, with the stationary distribution of the
embedded Markov chain, when they exist.

Define also the r-th moment of holding time in state x ∈ E,

mr(x) := ∑
k≥1

krq(x, E, k), r = 1, 2, ...

Of course, m(x) = m1(x), for any x ∈ E.
Define now the uniform integrability of the r-th moments of the sojourn time in states by

lim
M→∞

sup
x∈E

∑
k≥M

kr fx(k) = 0, (4)
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for any n ≥ 1.

3. Merging of Semi-Markov Chains

We present here the two cases: ergodic and non ergodic of the semi-Markov chain in merging scheme.

3.1. The Ergodic Case

Let us consider a family of ergodic semi-Markov chains zε
k, k ≥ 0, ε > 0, with semi-Markov kernel qε

and a fixed state space (E, E), a measurable space.
Let us consider the following partition (split) of the state space.

E = ∪d
j=1Ej, Ei ∩ Ej = Ø, i 6= j. (5)

Let us also consider the trace of σ−algebra E on Ej, denoted by Ej, for j = 1, ..., d.
The semi-Markov kernels have the following representation

qε(x, B, k) = Pε(x, B) fx(k), (6)

where the transition kernel of the EMC xε
n, n ≥ 0, has the representation

Pε(x, B) = P(x, B) + εP1(x, B). (7)

The transition kernel P determines a support Markov chain, say x0
n, n ≥ 0, and satisfies the following

relations

P(x, Ej) = 1j(x) ≡ 1Ej(x) =

{
1 if x ∈ Ej
0 if x 6∈ Ej,

(8)

for j = 1, ..., d. Of course, the signed perturbing kernel P1 satisfies the relation P1(x, E) = 0, and Pε(x, E) =
P(x, E) = 1.

The perturbing signed transition kernel, P1, provides transition probabilities between merged states.
Let v : E→ Ê be the merging onto function defined by v(j) = `, if j ∈ E`, ` ∈ Ê = {1, ..., d}.
Set k := [t/ε], where [x] is the integer part of the positive real number x, and define the split family

of processes
x̂ε

t := v(zε
[t/ε]), t ≥ 0, ε > 0. (9)

Define also the projector operator Π onto the null space, N (Q), of the operator Q := P− I by

Πϕ(x) = ϕ̂(v(x)), where ϕ̂(j) :=
∫

Ej

ρj(dx)ϕ(x). (10)

This operator satisfies the equations

ΠQ = QΠ = 0.

The potential operator of Q, denoted by R0, is defined by

R0 := (Q + Π)−1 −Π = ∑
k≥0

[Pk −Π].

Let us now consider the following assumptions needed in the sequel.
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C1: The transition kernel Pε(x, B) of the embedded Markov chain xε
n has the representation (7).

C2: The supporting Markov chain (x0
n) with transition kernel P is uniformly ergodic in each class Ej,

with stationary distribution ρj(dx), j ∈ Ê, that is,

ρj(B) =
∫

Ej

ρj(dx)P(x, B), and ρj(Ej) = 1, B ∈ Ej

C3: The average exit probabilities of the initial embedded Markov chain (xε
n) are positive, that is,

p̂j :=
∫

Ej

ρj(dx)P1(x, E \ Ej) > 0.

C4: The mean merged values are positive and bounded, that is,

0 < mj :=
∫

Ej

ρj(dx)m(x) < ∞.

From relation (3), we get directly,

πj(dx)q(x) = qjρj(dx), (11)

where q(x) := 1/m(x) and qj := 1/mj with mj :=
∫

Ej
ρj(dx)m(x).

Theorem 1. Under assumptions C1-C4, the following weak convergence takes place

x̂ε
t ⇒ x̂t as ε→ 0, (12)

where the limit merged process x̂t is a continuous-time Markov process determined on the state space Ê = {1, ..., d},
by the intensity matrix

Q̂ = (q̂ij; i, j ∈ Ê),

where:

q̂ij =

{
qi p̂ij, j 6= i
−qi p̂ii, j = i.

and p̂ij :=
∫

Ei
ρi(dx)P1(x, Ej), with i, j ∈ Ê, and qi :=

∫
Ei

πi(dx)q(x).

3.2. The Non-Ergodic Case

Let us consider a family of semi-Markov chains zε
k, k ≥ 0, ε > 0, with semi-Markov kernels qε and

a fixed state space (E′, E ′), a measurable space, which includes an absorbing state, say 0. Of course,
here state 0 can represent a final class, say E0, and the analysis presented here is the same.

Let us consider the following partition of the state space.

E′ = E ∪ {0}, E = ∪d
j=1Ej, Ei ∩ Ej = Ø, i 6= j. (13)

Let v : E′ → Ê0 be the merging onto function defined by v(j) = `, if j ∈ E`, ` ∈ Ê0 = {0, 1, ..., d},
and v(0) = 0.

We now need the following condition.
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C5: The average transition probabilities of the initial embedded Markov chain (xε
n) to state 0,

satisfy the following,

p̂j0 := −
∫

Ej

ρj(dx)P1(x, E) > 0

with partition of the state space as defined by (13).

Let us also define the absorption time to state 0, ζε, for any ε > 0,

ζε := inf{t ≥ 0 : zε
[t/ε] = 0}. (14)

Theorem 2. Under assumptions C1-C4, and C5 the following weak convergence takes place

x̂ε
t ⇒ x̂t as ε→ 0, (15)

where the limit merged process x̂t, 0 ≤ t ≤ ζ̂, is a continuous-time Markov process determined, on the state space
Ê = {0, 1, ..., d}, by the intensity matrix

Q̂ = (q̂ij; i, j ∈ Ê0),

where:

q̂ij =


qi p̂ij, j 6= i, i 6= 0
−qi p̂ii, j = i, i 6= 0

0, i = 0

and ζ̂ := inf{t ≥ 0 : x̂(t) = 0}.

4. Semi-Markov Random Evolution

Let us consider a separable Banach space B of real-valued measurable functions defined on E,
endowed with the sup norm ‖·‖ and denote by B its Borel σ-algebra. Let us given a family of bounded
contraction operators D(x), x ∈ E, defined on B, where the maps D(x)ϕ : E → B are E -measurable,
ϕ ∈ B. Denote by I the identity operator on B. For a discrete generator Q, on B, let ΠB = N (Q) be
the null space, and (I −Π)B = R(Q) be the range values space of operator Q. We will suppose here
that the Markov chain (xn, n ∈ IN), with discrete operator Q = P − I, is uniformly ergodic, that is,
‖(Pn −Π)ϕ‖ → 0, as n→ ∞, for any ϕ ∈ B. In that case, the transition operator is reducible-invertible on
B. Thus, we have B = N (Q)⊕R(Q), the direct sum of the two subspaces. The domain of an operator A
on B is D(A) := {ϕ ∈ B : Aϕ ∈ B}.

Let us define now a discrete-time semi-Markov random evolution (DTSMRE).
Let us define a (forward) discrete-time semi-Markov random evolution Φk, k ∈ IN, on B, by ([13,14]):

Φk ϕ = D(zk)D(zk−1) · · ·D(z2)D(z1)ϕ, k ≥ 1, and Φ0 = I. (16)

for any ϕ ∈ B0 := ∩x∈ED(D(x)). Thus we have Φk = D(zk)Φk−1.
For example, consider an additive functional of the SMC (zk), that is, αk := u + ∑k

`=1 a(z`), for k ≥ 1,
and α0 = u. Define now a family of operators D(x), x ∈ E, defined on B by D(x)ϕ(u) = ϕ(u + a(x)).
Then we can write Φk ϕ(u) = ∏k

`=1 D(z`)ϕ(u) = ϕ(u + ∑k
`=1 a(z`)) = ϕ(zk).

The process Mk defined by

Mk := Φk − I −
k−1

∑
`=0

E[Φ`+1 −Φ` | F`], (17)
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on B, is an Fk-martingale. The random evolution Φk can be written as follows

Φk := I +
k−1

∑
`=0

[D(z`+1)− I]Φ`,

and then, the martingale (17) can be written as follows

Mk := Φk − I −
k−1

∑
`=0

E[(D(z`+1)− I)Φ` | F`],

or

Mk := Φk − I −
k−1

∑
`=0

[E(D(z`+1) | F`)− I]Φ`.

Finally, as E[(D(z`+1)Φ`ϕ | F`)] = (P]D(·)Φ`ϕ)(z`, u`), one takes

Mk := Φk − I −
k−1

∑
`=0

[P]D(·)− I]Φ`.

Let us now define the average random evolution uk(x), x ∈ E, k ∈ IN, by

uk(x) := Ex[Φk ϕ(zk)]. (18)

Theorem 3. The random evolution uk(x) satisfy the following Markov renewal equation

uk(x) = F̄x(k)D(x)ϕ(x) +
k

∑
l=0

∫
E

q(x, dy, l)D(y)uk−l(y). (19)

5. Average and Diffusion Approximation with Merging

In this section we present average and diffusion approximation results for the discrete-time
semi-Markov random evolution, as well as diffusion approximation with equilibrium or normal deviation.

5.1. Averaging

Let us consider the continuous time process Mε
t

Mε
t := M[t/ε] = Φε

[t/ε] − I −
[t/ε]−1

∑
`=0

[P]Dε(·)− I]Φε
`.

We will prove here asymptotic results for this process as ε→ 0.
The following assumptions are needed for averaging.

A1: The MC (zk, γk, k ∈ IN) is uniformly ergodic in each class Ej, with ergodic distribution π]
j (B ×

{k}), B ∈ E ∩ Ej, k ∈ IN, and the projector operator Π is defined by relation (10).
A2: The moments m2(x), x ∈ E, are uniformly integrable, that is, relation (4) holds for r = 2.
A3: Let us assume that the perturbed operator Dε(x) has the following representation in B

Dε(x) = I + εD1(x) + εDε
0(x), (20)
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where operators D1(x) on B are closed and B0 := ∩x∈ED(D1(x)) is dense in B, B0 = B.
Operators Dε

0(x) are negligible, that is, limε→0
∥∥Dε

0(x)ϕ
∥∥ = 0 for ϕ ∈ B0.

A4: We have:
∫

E π(dx) ‖D1(x)ϕ‖2 < ∞.
A5: There exists Hilbert spaces H and H∗ such that compactly embedded in Banach spaces B and B∗,

respectively, where B∗ is a dual space to B.
A6: Operators Dε(z) and (Dε)∗(z) are contractive on Hilbert spaces H and H∗, respectively.

We note that if B = C0(IR), the space of continuous function on IR vanishing at infinity, then H =

W l,2(IR) is a Sobolev space, and W l,2(IR) ⊂ C0(IR) and this embedding is compact (see References
[34,43]). For the spaces B = L2(IR) and H = W l,2(IR) the situation is the same.

Theorem 4. Under assumptions A1-A6 and C1-C4 the following weak convergence takes place

Φε
[t/ε] =⇒ Φ̂(t), ε ↓ 0,

where the limit random evolution Φ̂(t) is determined by the following equation

Φ̂(t)ϕ̂(x̂t)− ϕ̂(u)−
∫ t

0
ÎLΦ̂(s)ϕ̂(x̂s)ds = 0, 0 ≤ t ≤ T, ϕ ∈ B0, (21)

with generator ÎL, defined by

ÎLΠ = ΠD1Π + ΠQ1Π (22)

and acting on test functions ϕ(x, v(x)). The operator Q1 is defined by

Q1 ϕ(x, k) = λx(k + 1)
∫

E
P(x, dy)ϕ(y, 0). (23)

Let us consider the average random evolution defined as Λx(t) := Ex[Φ̂(t)φ̂(u)], x ∈ E. Set D̂1Π =

ΠD1Π and Q̂Π = ΠQ1Π. For detailed description of operator Q̂ see Theorem 1.Then we have the
following straightforward result.

Corollary 1. The average random evolution Λx(t) satisfy the following Cauchy problem:{
dΛx
dt (t) = (Q̂ + D̂1)Λx(t)

Λx(0) = ϕ̂(u).

5.2. Diffusion Approximation

For the diffusion approximation we will consider a different time-scaling and some additional
assumptions. In this case, we replace relation (7) by the following one

Pε(x, B) = P(x, B) + ε2P1(x, B). (24)

D1: Let us assume that the perturbed operators Dε(x) have the following representation in B

Dε(x) = I + εD1(x) + ε2D2(x) + ε2Dε
0(x), (25)
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where operators D2(x) on B are closed and B0 := ∩x∈ED(D2(x)) is dense in B, B0 = B;
operators Dε

0(x) are a negligible operator, that is, limε↓0
∥∥Dε

0(x)ϕ
∥∥ = 0.

D2: The following balance condition holds

ΠD1(x)Π = 0. (26)

D3: The moments m3(x), x ∈ E, are uniformly integrable, that is, relation (4) holds for r = 3.

Theorem 5. Under Assumptions A1, A5-A6 and D1-D3, the following weak convergence takes place

Φε
[t/ε2] =⇒ Φ0(t), ε ↓ 0,

where the limit random evolution Φ0(t) is a diffusion random evolution determined by the following generator ÎL,

ÎLΠ = ΠD2Π + ΠD1R0D1Π−ΠD2
1Π + Q̂Π,

where the operator Q̂ is defined in Theorem 1.

5.3. Normal Deviation with Merging

We note, that averaged semi-Markov random evolutions can be considered as the first approximation
to the initial evolutions. The diffusion approximation of the semi-Markov random evolutions determine
the second approximation to the initial evolution, since the first approximation under balance condition
appears to be trivial.

Here we consider the algorithms of construction of the first and the second approximation in the
case when the balance condition in the diffusion approximation scheme is not fulfilled. We introduce the
deviated semi-Markov random evolution as the normalized difference between the initial and averaged
evolutions. In the limit, we obtain the diffusion approximation with equilibrium of the initial evolution
from the averaged one.

Let us consider the discrete-time semi-Markov random evolution Φε
[t/ε]

, averaged evolution Φ̂(t)
(see Section 5.1) and the deviated evolution

Ψε
t := ε−1/2[Φε

[t/ε] − Φ̂(t)]. (27)

Theorem 6. Under Assumptions A1, A5-A6 and D3, with operators Dε(x) in A3, instead of D1, the deviated
semi-Markov random evolution Ψε

t weakly convergence when ε→ 0 to the diffusion random evolution Ψ0
t defined by

the following generator

ÎLΠ = Π(D1 − D̂1)R0(D1 − D̂1)Π + Q̂Π,

where the operator Q̂ is defined in Theorem 1.

6. Application to Particular Systems

In this section we will apply the above Theorems 4–6 to obtain limit results for particular stochastic
systems, namely, additive functionals of semi-Markov chains and discrete-time dynamical systems
perturbed by semi-Markov chains.
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6.1. Integral Functionals

The integral functional of a semi-Markov chain considered here is defined by

yk :=
k

∑
l=0

a(zl), k ≥ 0, y0 = u,

where a is a real-valued measurable function defined on the state space E.
The perturbing operator Dε(x) is defined as follows

Dε(x)ϕ(u) = ϕ(u + εa(x)).

The perturbed operator Dε(x) has the asymptotic expansions (20), for averaging, and (25), for diffusion
approximation, with D1(x)ϕ(u) = a(x)ϕ′(u) and D2(x)ϕ(u) = 1

2 a(x)ϕ′′(u).

6.1.1. Average Approximation

In the averaging scheme the additive functional has the representation

yε
t := ε

[t/ε]

∑
l=0

a(zl), k ≥ 0, ε > 0, yε
0 = u. (28)

Theorem 7. Under conditions C1-C4 and A1-A2 the following weak convergence holds

yε
t =⇒ ŷt, as ε→ 0,

where the limit process is an integral functional, defined by

ŷt := u +
∫ t

0
â(x̂s)ds,

with â(j) =
∫

Ej
πj(dx)a(x). The Markov process x̂t, is defined on the state space Ê as in the previous section by the

generator Q̂, defined in Theorem 1

It is worth noticing here that the initial processes (28) are switched by a SMC, and the limit process by
a continuous-time Markov process on a finite state space, which is much simpler.

6.1.2. Diffusion Approximation

In the diffusion approximation the additive functional is time-rescaled as follows

ξε
t := ε

[t/ε2]

∑
l=0

a(zl), t ≥ 0, ε > 0, ξε
0 = u. (29)

Then we have the following result.

Theorem 8. Under conditions C1-C4, A1-A6 and D1-D2 the following weak convergence holds

ξε
t =⇒ ξ0

t , as ε→ 0,
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where the limit process is a switched diffusion process,

dξ0
t = b(x̂t)dWt, and ξ0

0 = u.

The process Wt, t ≥ 0, is a standard Brownian motion, and b2(j) := â0(j)− 1
2 â2(j). The coefficients are

â0(j) :=
∫

Ej

πj(dx)a(x)R0a(x), and â2(j) :=
∫

Ej

πj(dx)a2(x).

It is worth noticing that the generator of the diffusion ξ0(t) can be written as follows

ILϕ(u, x) =
1
2

d

∑
j=1

b2(j)ϕ̂′′j (u)1j(x). (30)

In fact the limit process is switched by the merged Markov process x̂t, defined in Theorem 1.

6.1.3. Normal Deviation

The diffusion approximation with equilibrium will be realized without balance condition D2. Let us
consider the stochastic processes ζε

t , t ≥ 0, ε > 0,

ζε
t := ε−1/2(yε

t − ŷt).

The process ŷt is the limit process in the averaging scheme.
Then we have the following weak convergence result.

Theorem 9. Under conditions C1-C4 and A1-A2 the following weak convergence holds

ζε
t =⇒ ζ0

t , as ε→ 0,

where the limit process is a switched diffusion process,

dζ0(t) = c(x̂t)dWt, and ζ0
0 = 0.

The process Wt, t ≥ 0, is a standard Brownian motion, and

c2(j) :=
∫

Ej

πj(dx)(â(j)− a(x))R0(â(j)− a(x)), 1 ≤ j ≤ d.

The limit process here is also switched by the merged Markov process x̂t.

6.2. Discrete Dynamical Systems

Let us consider the family of difference equations

yε
k+1 = yε

k + εC(yε
k; zk+1), k ≥ 0, and yε

0 = u, (31)

switched by the SMC (zk).
The perturbed operators Dε(x), x ∈ E, are defined now by

Dε(x)ϕ(u) = ϕ(u + εC(u, x)).
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The perturbed operator Dε(x) has the asymptotic expansions (20), for averaging, and (25), for diffusion
approximation, with D1(x)ϕ(u) = C(u, x)ϕ′(u) and D2(x)ϕ(u, x) = 1

2 C(u, x)ϕ′′(u).

6.2.1. Average Approximation

The time-scaled system considered here is

yε
t := yε

[t/ε]+1 = yε
[t/ε] + εC(yε

[t/ε]; z[t/ε]+1), t ≥ 0, and yε
0 = u. (32)

Theorem 10. Under conditions C1-C4 and A1-A2 the following weak convergence holds

yε
t =⇒ ŷt, as ε→ 0,

where the limit process is a continuous-time dynamical system, defined by

d
dt

ŷt := Ĉ(ŷt; x̂t), and ŷ0
0 = u

with Ĉ(u, j) =
∫

Ej
πj(dx)C(u, x).

6.2.2. Diffusion Approximation

The time-scaled dynamical system considered here is

ξε
t := yε

[t/ε2]+1 = yε
[t/ε2] + εC(yε

[t/ε2]; z[t/ε2]+1), t ≥ 0, and yε
0 = u. (33)

Theorem 11. Under conditions C1-C4, A1-A2 and D2 the following weak convergence holds

ξε
t =⇒ ξ0

t , as ε→ 0,

where the limit process is a switched diffusion process,

dξ0
t = c(x̂t)dWt, and ξ0

0 = u.

The process Wt, t ≥ 0, is a standard Brownian motion, and c2(j) := 1
2 Ĉ(u, j) + Ĉ0(u, j)− Ĉ2(u, j).

The coefficients are

Ĉ(u, j) :=
∫

Ej

πj(dx)C(u, x), Ĉ0(u, j) :=
∫

Ej

πj(dx)C(u, x)R0C(u, x),

and Ĉ2(u, j) :=
∫

Ej

πj(dx)C2(u, x).

6.2.3. Normal Deviation

The time-scaled system considered here is

ζε
t := ε−1/2(yε

[t/ε] − ŷt), t ≥ 0, and ζε
0 = u. (34)

Theorem 12. Under conditions C1-C4 and A1-A2 the following weak convergence holds

ζε
t =⇒ ζ0

t , as ε→ 0,
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where the limit process is a switched diffusion process,

dζ0
t = ce(x̂t)dWt, and ζ0

0 = u.

The process Wt, t ≥ 0, is a standard Brownian motion, and

c2
e (j) :=

∫
Ej

πj(dx)[C(u, x)− Ĉ(u, j)]R0[C(u, x)− Ĉ(u, j)].

7. Proofs

As the state space Ê of the switching process zk is a finite set, we do not consider the new component
v(zk), and the proofs of tightness in Reference [14] are also valuable here. So, we will only prove here the
finite dimensional distributions convergence concerned by the transition kernels.

7.1. Proof of Theorem 1

Proof. Let us consider the extended Markov renewal process

xε
n, v(xε

n), τε
n, t ≥ 0, ε > 0, (35)

where n := [t/ε], xε
n = zε(τε

n) and τε
n+1 = τε

n + [εθε
n+1].

The compensating operator of this process is defined by the following relation, (see Reference [1]),

ILε ϕ(x, v(x), k) = ε−1q(x)
{

E[ϕ(xε
1, v(xε

1), τε
1) | xε

0 = x, v(xε
0) = j, τε

0 = k]− ϕ(x, j, k)
}

. (36)

The compensating operator ILε acting on test functions ϕ(x, v(x)), x ∈ E, can be written as follows

ILε ϕ(x, v(x)) = ε−1q(x)
∫

E
Pε(x, dy)[ϕ(y, v(y))− ϕ(x, v(x))]. (37)

And now from (7), the operator ILε, can be written as follows

ILε = ε−1Q + Q1, (38)

where
Qϕ(x, v(x)) = q(x)

∫
E

P(x, dy)[ϕ(y, v(y))− ϕ(x, v(x))], (39)

and
Q1 ϕ(x, v(x)) = q(x)

∫
E

P1(x, dy)ϕ(y, v(y)). (40)

Now, by the following singular perturbation problem, on test functions ϕε(x, v(x)) = ϕ̂(v(x)) +
εϕ1(x, v(x)),

ILε ϕε(x, v(x)) = ILϕ(x) + εθε(x) (41)

and from Proposition 5.1 in Reference [1], we get the limit operator IL, whose the contracting form, ÎL,
defined by the relation

ΠQ1Π = ÎLΠ

provide us directly the generator Q̂ ≡ ÎL of the limit process x̂(t), and the prove is achieved.

Proof of Theorem 2 is the same as the previous one.
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7.2. Proof of Theorem 3

Proof. We have Ex[Φk ϕ(zk)1{τ1>k}] = F̄x(k)D(x)ϕ(x), and Ex[Φk ϕ(zk)1{τ1≤k}] =

∑k
l=0
∫

E q(x, dy, l)Ex[Φk ϕ(zk) | x1 = y, τ1 = l] = ∑k
l=0
∫

E q(x, dy, l)D(y)Ey[Φk−l ϕ(zk−l)], and the
result follows.

7.3. Proof of Theorem 4

Proof. The perturbed semi-Markov kernel qε, has the representation qε(x, B, k) = q(x, B, k) + εq1(x, B, k),
where q1(x, dy, k) := P1(x, dy) fx(k).

The discrete generators of the four component family of processes Φε
[t/ε]

ϕ, zε
[t/ε]

, v(zε
[t/ε]

), γε
[t/ε]

, t ≥ 0,
ε > 0, are

ILε ϕ(u, x, v(x), k) = ε−1
∫

E
P](x, k; dy, k + 1)[Dε(y)ϕ(u, y; v(y), k + 1)− ϕ(u, x, v(x), k)]. (42)

The asymptotic representation of the above operator acting on test functions ϕ(u, x, v(x), k) is given
by

ILε ϕ(u, x, v(x), k) = [ε−1Q],ε + P],εD1(·) + P],εDε
0(·)]ϕ(u, x, v(x), k), (43)

where Q],ε := P],ε − I.
Now from (2) the transition operator P],ε can be written as follows P],ε = P] + εQ1, where the operator

Q1 is defined by relation (23).
Finally, the asymptotic representation of the operator ILε can be written

ILε(x) = ε−1Q] + Q1 + P]D1(x) + θε(x) (44)

where Q] := P]− I, and the negligible operator θε(x) is given by θε(x) := P],εDε
0(x)+ εQ1(D1(x)+ Dε

0(x)].
From the singular perturbation problem ILε ϕ(u, x) = ILϕ(v(x)) + θε(x), with test functions ϕε =

ϕ + εϕ1, we get the limit operator defined by ÎLΠ = Π(P]D1(x) + Q1)Π, see, for example, Proposition 5.1
in Reference [1]. From this representation, we get

ÎL = D̂1 + Q̂

where D̂1Π = ΠD1(x)Π and Q̂Π = ΠQ1Π.

7.4. Proof of Theorem 5

Proof. The discrete generators of the four component family of processes Φε
[t/ε2]

ϕ, zε
[t/ε2]

, v(zε
[t/ε2]

), γε
[t/ε2]

,
t ≥ 0, ε > 0, are

ILε(x) = ε−2Q] + ε−1P]D1(x) + Q1 + P]D2(x)Θε(x). (45)

And solving singular perturbation problem ILε(x)ϕ(x, k) = ILϕ(v(x)) + θε(x, k), with test functions ϕε =

ϕ + εϕ1 + ε2 ϕ2, see, for example, Proposition 5.2 in Reference [1], we get the desired result.

The proof of Theorem 6 is similar to the previous ones.
Finally, the proofs of Theorems 7 to 12 are obtained directly as corollaries from Theorems 4 to 6.

8. Concluding Remarks

In this paper, we presented the semi-Markov random evolution in reduced random media, where the
main results were given in Sections 4 and 5. And their applications for integral functionals of semi-Markov
chains and dynamical systems perturbed by semi-Markov chains were given in Section 6. These kind of
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results have to be extended to many other stochastic systems, as in hidden semi-Markov chains, controlled
systems, epidemiology systems, and so forth.

For simplicity, we consider fixed initial conditions of processes, that is, independent of ε. This is
not a loss of generality since we can add dependent on ε initial conditions without any problem, see,
for example, References [1,2].

It is worth noticing that the discrete-time semi-Markov chains have to be developed, in parallel
with the continuous-time semi-Markov processes, as is the case with discrete-time Markov chains and
continuous-time Markov processes.
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