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Abstract: In the recent era, the need for modern smart grid system leads to the selection of optimized
analysis and planning for power generation and management. Renewable sources like wind energy
play a vital role to support the modern smart grid system. However, it requires a proper commitment
for scheduling of generating units, which needs proper load frequency control and unit commitment
problem. In this research area, a novel methodology has been suggested, named Harris hawks
optimizer (HHO), to solve the frequency constraint issues. The suggested algorithm was tested and
examined for several regular benchmark functions like unimodal, multi-modal, and fixed dimension
to solve the numerical optimization problem. The comparison was carried out for various existing
models and simulation results demonstrate that the projected algorithm illustrates better results
towards load frequency control problem of smart grid arrangement as compared with existing
optimization models.

Keywords: Harris hawks optimizer; load frequency control; sensitivity analysis; smart grid; particle
swarm optimization; genetic algorithm; meta-heuristics

1. Introduction

Optimization shows a critical role in various regions of science and technology. This is the method
through which the optimal solution can be found with the help of a wide range of search mechanisms
like primary, secondary, and tertiary controls [1]. With recent advancement in technology, novel
optimization methodologies are identified as meta-heuristic with concern of mathematical culture.
Meta-heuristic algorithms (MA) is a typical technique to get the best outcomes for the issue. It plays a
fictional role to find good specifications in an optimization matter [2].

Each real-life optimization problem required procedures which observe the examination zones
effectively to find most operative explanations. Moth-flame optimizer (MFO) is newly projected
meta-heuristics search algorithmic rule that is inspired by the direction-finding environment of
lepidopteron and its convergence in the direction of lightweight. However, like alternative similar
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strategies, MFO contributes to being stuck into sub-optimal segments, which is mirrored within the
procedure effort needed to search out the most effective rate. This case happens due to the developer
used for research not performing well to research the find house. In addition, no free lunch theorem
encourages planners to promote a new algorithmic rule or to boost the prevailing algorithmic rule.

The modern technology that balances the two-way communication between energy production
and consumption and sense the critical behavior of voltage, current, and frequency which makes an
electric grid as a smart grid. Smart grid is an opportunity in the growth of the country’s economy and
environmental health due to efficient electricity transmission, quicker restoration, reduced power cost,
and enhanced integration with renewable energy sources, which is possible through optimal gain
scheduling and the load frequency control method.

In earlier days, the load frequency control (LFC) problem was explained with respect to
conventional dispatching [3], whose objective was to maintain voltages and frequency within prescribed
limits. Today, LFC uses advanced numerical optimization techniques to solve constrained combinatorial
and diverse number optimization issues. The type of controller [4], its architecture and choice of
objective function play a very important role in enhancing achievement of the power system.

In the current scenario, the integral of time multiplied absolute error (ITAE) criteria is observed as
an impartial task which is stated as [5]:

J =

tsim∫
0

(|∆F1|+ |∆F2|+ |∆Ptie|).t.dt., (1)

where, ∆F1, ∆F2 indicate deviation of the frequency in both areas and the total simulation time
(in seconds) is denoted by ‘tsim’ and tie-line interchange [6] assessment is characterized by ∆Ptie.

The ITAE is implemented as a detached role to enhance gain of the PI controller in the present
investigation. The reduction of the ITAE index with the binary moth flame optimizer (BMFO) algorithm
offers augmented constraints of PI controllers which can be subjected to the following restraints [7–9]:
Minimize J,

KP
i min ≤ KP

≤ KP
i max, and KInt.

i min ≤ KInt.
≤ KInt.

i max,

where, KInt.
i and KP

i symbolize fundamental and comparative gain of PI controller of ith (i = 1, 2) area.
Our contributions in this work are as follows: First, we propose the two variants of binary moth

flame optimizers to solve the frequency constraint issues. We implemented two different binary
variants for improving performance of the moth flame optimizer (MFO) for discrete optimization
problems. In the first variant, i.e., binary moth flame optimizer (BMFO1), coin flipping-based selection
probability of binary numbers is used. We used the improved Sigmoid transformation in the second
variant called BMFO2. These binary MFO algorithms along with the Harris hawks optimizer (HHO)
algorithms are tested and analyzed for various unimodal, multi-modal, and fixed dimension numerical
optimization problem. Secondly, Section 2 explores various optimization methodologies, including
classical artificial intelligence techniques, modern intelligence techniques, hybrid artificial intelligence
techniques, and smart grid technologies which are tested using standard benchmarks and compared
with various algorithms. Lastly, in Section 3, all the latest used algorithms are evaluated and compared
in terms of standard testing benchmarks in which the proposed HHO model is having improved
results in terms of average and standard deviation. Finally, Section 4 concludes the paper.

2. Optimization Methodologies

In order to discover the mathematical design of load frequency control, numerous optimization
methodologies are classified into three foremost groups like traditional techniques [10], recent
techniques [11], and hybrid techniques [12].
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2.1. Traditional Techniques

The traditional methods may be further classified into artificial neural network, fuzzy logic
technique [13], and genetic algorithm.

2.1.1. Artificial Neural Network

The architecture of Artificial Neural Network (ANN) as shown in Figure 1 is promptly the
emerging zone of investigation, producing attention of predictors from a noble type of scientific field,
which gives a deviation of desired output and actual output as an error signal. An error signal acts like
a feedback to the neural network, which balances the desired and actual output.
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2.1.2. Fuzzy Logic Technique

The essential configuration of the scientific reasoning scheme in which the fuzzification [14]
boundary recreates the additional contribution into a fuzzy verbal input, and likewise shows an
significant character in the mathematical coherent [15] procedure as actual principles, which are
delivered from current sensors, are a forever crisp analytical equivalent as shown in Figure 2.
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2.1.3. Genetic Algorithm

The overall thoughts were conceived by a European country [16], whereas practicality of
persecution of exhausting it to untie innovative concerns was indisputable. It may be a soft computing
style, which implements strategies stimulated by usual hereditary knowledge to develop conclusions to
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matters [17]. Genetic Algorithm (GA) as shown in Figure 3 is refreshed by Darwin’s theory concerning
progression, which is useful to a vast variety of methodical and industrial problems like optimization,
machine learning, and automatic software design [18].
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2.2. Modern Intelligence Techniques

To solve the multi-disciplinary optimization problems [14], various modern practices are
established by the investigators. The modern intelligence techniques are explored in the
following sub-sections.

2.2.1. Differential Evolution Technique

It is a genetic-based algorithm [19] having identical operators corresponding to initialization,
mutation, crossover, and selection. In this method, all constraints are expressive in genetic measurable
by a genuine measurement [20]. The mathematical formulation of differential evolution is given below:

• Initialization

Firstly, whole vector of initial population is assigned any arbitrary assessment [21] starting with
its equivalent state:

X(0)
j,i = Xmin

j + µ j
(

Xmax
j −Xmin

j

)
, (2)

where µ j represents uniformly dispersed arbitrary numeral initialize with the array of [0, 1], generates
novel for all value of Xmin

j and Xmax
j are representing the uppermost and lowermost limits of the jth

parameter, correspondingly.

•Mutation

This operator [22] generates distorted vectors X′i by disturbing a randomly chosen vector ‘Xa’ and
dissimilarity randomly chosen vectors ‘Xb’ and ‘Xc’ as per the following equation:

X′(G)
i = X′(G)

a + a
(
X(G)

b + X(G)
c

)
i = 1, . . . ..N P, (3)

where ‘Xa’,‘Xb’, and ‘Xc’ represent the randomly selected vectors among set of population, and ‘α’
represents the scaling constant of the algorithm parameter which is used to regulate the size of the
mutation operator and find better results.
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• Crossover

Crossover operations [23] create trial vectors X′′i with integration of the parameters of the distorted
vectors X′i with its objective or parent vectors xi:

X′′j,i(G) =

 X′(G)
j,i i f p j ≤ CR or j = q

X(G)
j,i otherwise

, (4)

where pj represents consistently discrete unplanned integer [24] between the variety of 0 and 1 and
generates an extra for every value of j. q represents the random selected indicator {1, ..., NP} of the
trial vector [25] obtain one parameter as a distorted vector. CR representing the crossover operation
constant of algorithm parameters [26] that manage the variety of population and algorithm is run
absent as of local minima [27].

• Selection

Selection operator [28] develops the population by choosing the trial and parent vectors (precursor)
which presents a best fitness [29]:

X(G+1)
i =

 X
′′(G)
i i f f

(
X
′′(G)
i

)
≤ f

(
X′(G)

i

)
X(G)

i otherwise
i = 1, . . . . . . , N P. (5)

This optimization procedure is replicate to the number of generations to obtain superior fitness
functions because they required optimal values to explore the search space.

2.2.2. Biogeography Based Optimization

Biogeography Based Optimization (BBO) is the investigation of topographical propagation of
living classes which is based on mutation and migration procedures [30].

•Migration

The migration process is either leaving or entering the species from an island. Biogeography-based
optimization also used a population of candidate solution for optimization similar to partial swarm
optimization and another population-based search method [31]. Depiction of all candidate solutions
is complete as a vector of actual statistics. Now, all real statistics is considered in the population as
suitability index variable (SIV). SIV [32] is similar to the output power of generating components
in load frequency control. Few best solutions are the same in the resultant iterations; the migration
process arranges to avoid the best solutions from being changed. Emigration rate [33] and immigration
rate [34] for habitat contain ‘k’ species is express as:

λk = I
(
1−

K
η

)
, (6)

µk =
Ek
η

, (7)

where E represents the emigration rates, I represents the maximum immigration rates, and η represents
the maximum number of species, respectively.

•Mutation

The habitat suitability index (HSI) [35] can easily be modified with resultant in the breed
calculation to be different from the symmetry value, if a number of catastrophic actions occur. In
biogeography-based optimization, this procedure is modeled as SIV mutation and the mutation rates
of habitats may be intended to use the species add up probabilities known unexpected modification in
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weather of one habitat or additional occurrence will cause the unexpected modification in HSI (habitat).
This condition is replica in the form of unexpected modification in the value of the suitability index
variable in BBO. The probability of some organism [36] is calculated by this equation:

PS =


−(λS + µS)PS + µS+1PS+1 S = 0

−(λS + µS)PS + λS−1PS−1 + µS+1PS+1 1 ≤ S ≤ Smax−1

−(λS + µS)PS + λS−1PS−1 S = Smax

. (8)

The own probability of all members is one habitat. If probability of this is too low, and after that,
this result has more probability to mutilation [37]. In a similar way, if the probability of a result is
more, that result has a small probability to mutate. As a result, solutions with a low suitability index
variable and high suitability index variable have a small possibility to grow an improved SIV in the new
iteration. Dissimilar low suitability index variable and high suitability index [38] variable solutions,
middle HSI solutions have a bigger possibility to grow improved solutions after the mutation process.
By the use of equation mutation, all results can be calculated easily:

m(s) = mmax

(1− PS
Pmax

)
, (9)

where m(s) represent the mutation rate.

2.2.3. Dragonfly Algorithm (DA)

DA [39] is an exceptional optimization process planned by Seyedali. The most important purpose
of swarm is durability; thus, all individual must be unfocused outward, and opponents attracted
towards nourishment sources. Taking both behaviors in swarms [40], these are five major topographies
in position informing procedure of individuals. The numerical model of swarms actions as shown
below: The parting procedure [41] in DA informing as in the above equation:

Si = −
N∑

J=1

X −XJ, (10)

where N represents the amount of entities of neighboring, X represents the present situation of specific,
XJ indicates the location of Jth specific of the adjacent [42].

The orientation procedure in this approach can be rationalized by subsequent expression [43]:

Ai =

∑N
J=1 VJ

N
, (11)

where VJ represents velocity of Jth specific of the adjacent. The unity in DA can be intended by the
above evaluation:

Ci =

∑N
J=1 XJ

N
−X, (12)

where X represents the existing specific point, XJ is the spot of Jth specific of the adjacent, and N
indicates the amount of areas.

2.3. Hybrid Artificial Intelligence Techniques

2.3.1. Particle Swarm Optimization (PSO) and Gravitational Search Algorithm (GSA) Hybridization

The easiest technique to mongrelize PSO and GSA is to implement the strength separately in the
successive approach [44].
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Particle Swarm Optimization (PSO)

PSO is provoked with keen collective activities [45] accessible by a multiplicity of creatures, such
as the group of ants or net of birds. The particle position and velocity both are updated according to
the equations:

vd
i (t + 1) = w(t)vd

i (t) + c1Xr1X
(
pbestd

i − xd
i

)
+ c2 + r2, (13)

xd
i (t + 1) = xd

i (t + 1) + vd
i (t + 1), (14)

Wt = rand X
t

tmax
X(wmax −wmin) + wmin, (15)

where vd
i (t + 1) shows velocity of (dth) dimension at (t) reiteration of (ith) particle, xd

i (t + 1) is existing
position of (dth) dimensional iteration (t) of (ith) particle; c1 and c2 representing the acceleration
coefficients [46] which manage the pressure of gbest and pbest on the search procedure, r1 and r2

representing the arbitrary statistics in variety [0, 1]; pbestd
i represents finest point of (ith) element up

to now.

Gravitational Search Algorithm (GSA)

GSA is meta-heuristic population-centered approach inspired with directions of attraction and
quantity associations [47–49]. In this method, cause is dignified as article encompasses of unlike
multitudes and the enactment of this is considered via crowds.

2.3.2. Differential Evolution and Particle Swarm Optimization Hybrids

It is a population-based optimizer [50] alike the genetic algorithm, having identical operatives
corresponding to selection, mutation, and crossover. In this method, all constraints are expressive in
genetic measurable by a genuine measurement [20,51].

2.3.3. Binary Moth Flame Optimizer (BMFO1)

BMFO is a newly projected meta-heuristics search algorithm proposed by Seyedali Mirjalili [52,53]
which is refreshed by direction-finding behavior of moth and its converges near light. Although,
moths are having a robust capability to uphold a secure approach with respect to the moon and hold a
tolerable erection for nomadic in an orthodox mark for extensive distances. Besides, they are attentive
in a fatal/idle curved track over simulated basis of lights.

2.3.4. Modified SIGMOID Transformation (BMFO2)

The binary calibration of constant pursuit house and places of search representatives, resolutions
to binary exploration house could be the obligatory method for optimization of binary environmental
issues such as LFC. In the proposed research, a modified sigmoidal transfer function is adopted, which
has superior performance than another alternatives of sigmoidal transfer function as reported in [54].

2.3.5. Harris Hawks Optimizer

HHO [55] is gradient-free and populations-centered algorithm that comprises exploitative and
exploratory stages, which is fortified by astonishment swoop, the fauna of examination of a victim,
and diverse stratagems built on violent marvel of Harris hawks.

2.3.6. Smart Grid Applications

The modern smart grid system as shown in Figure 4 consists of various power generating
units consisting of thermal, hydro, nuclear, wind, and solar-based power producing elements. The
scheduling of every power producing in optimal condition is a tedious task and requires proper
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commitment schedule of generating units. Further, consideration of solar and wind-based energy
sources requires proper load frequency control [56].Mathematics 2020, 8, x FOR PEER REVIEW 8 of 25 
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An electric grid can easily be converted into a smart grid by balancing the voltage, current, and
frequency which is possible by the load frequency control method [57]. If incoming voltage, current,
and frequency is matched with the outgoing voltage, current, and frequency of an electric grid with the
help of optimal gain scheduling and load frequency control approach, then steady state error will be
near to zero or nil. In the proposed research, load frequency control is tested and validated with various
standard benchmarks simultaneously and mathematically depicted in the following sub-sections.

3. Standard Testing Benchmarks

The consequences for various benchmark issues [58] considering the LFC situation are deliberated
in the above-mentioned units.

Test System and Standard Benchmark

For confirmation of prospects of deliberate BMFO and HHO algorithms, CEC2005 benchmark
functions [59] have been taken into thought, which include unimodal, multi-modal, and fixed
dimensions benchmark issues and its mathematical formulation has been represented in Tables 1–3.
Table 1 interprets unimodal standard performance, Table 2 portrays multi-modal standard, and Table 3
interprets fixed dimensions standard issues.

To explain the random behavior of the expected BMFO2 logarithmic rule and confirm the
consequences, thirty trials were applied with all objective function check for average, variance, best
and worst values for justification of output from the probable algorithmic rule, unimodal benchmark
work f1, f2, f3, f4, f5, f6, and f7 are used. Table 4 (a) signifies the response of unimodal benchmark
function with BMFO1 logarithmic rule, Table 4 (b) characterizes the retort of unimodal benchmark
operate function by using the BMFO2 algorithmic rule and Table 4 (c) represents the answer of the
fixed dimension benchmark function by using HHO algorithmic instruction.
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Table 1. Unimodal benchmark.

Function Dim Range fmin

f1(x) =
n∑

i=1
x2

i 30 [−100, 100] 0

f2(x) =
n∑

i=1
|xi|+

n∏
i=1
|xi| 30 [−10,10] 0

f3(x) =
n∑

i=1
(

i∑
j−1

x j)
2

30 [−100, 100] 0

f4(x) = maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

f5(x) =
n−1∑
i=1

[
100

(
xi+1 − x2

i

)2
+ (xi − 1)2

]
30 [−30, 30] 0

f6(x) =
n∑

i=1
([xi + 0.5])2 30 [−100, 100] 0

f7(x) =
n∑

i=1
ix4

i + random [0, 1] 30 [−1.28, 1.28] 0

Table 2. Multimodal benchmark.

Function Dim Range fmin

f8(x) =
n∑

i=1
−xi sin(

√
|xi|) 30 [−500, 500] −418.98

f9(x) =
n∑

i=1

[
x2

i − 10 cos(2Πxi) + 10
]

30 [−5.12, 5.12] 0

f10(x) = −20 exp(−0.2
√

1
n

n∑
i=1

x2
i ) − exp( 1

n

n∑
i=1

cos(2Πx)i + 20 + c 30 [−32, 32] 0

f11(x) = 1
4000

n∑
i=1

x2
i −

n∏
i=1

cos( xi√
i
) + 1 30 [−600, 600] 0

f12(x) = Π
n

{
10 sin(Πy1) +

n−1∑
i=1

(yi − 1)2
[
1 + 10sin2(Πyi+1) + (yn − 1)2

]}
+

n∑
i=1

u(xi, 10, 100, 4)

where yi = 1 +
xi+1

4

u(xi, a, k, m) =


k(xi − a)m, xi > a

0, −a < xi < a
k(−xi − a)m xi < −a

30 [−50, 50] 0

f13(x) =

0.1{sin2(3Πxi) +
n∑

i=1
(xi − 1)2

[
1 + sin2(3Πxi + 1

]
+ (xm − 1)2

[
1 + sin2(2Πxm)

]
}+

n∑
i=1

u(xi,5,100,4)

30 [−50, 50] 0

f14(x) = −
n∑

i=1
sin(xi).

(
sin

(
ix2

i
Π

))2m
, m = 10 30 [0, π] −4.687

f15(x) =
[
e−

n∑
i=1

(xi/β)
2m
− 2e−

n∑
i=1

x2
i

]
−

n∏
i=1

cos2xi, m = 5 30 [−20, 20] −1

f16(x) =
{

n∑
i=1

sin2(xi) − exp
(
−

n∑
i=1

x2
i

)}
.exp

[
−

n∑
i=1

sin2 √
|xi|

]
30 [−10, 10] −1

It is analyzed from Table 4 that the unimodel benchmark functions f1 to f7 are tested using the
modern hybrid algorithms like BMFO 1, BMFO 2, and HHO, and found that Harris hawks optimizer
(HHO) produces optimal outcomes in terms of mean, standard deviation, best and worst value for all
functions as compared to other algorithms. The convergence curve and trial solutions for BMFO1,
BMFO2, and HHO for f1 to f7 unimodal benchmark functions are presented in Figure 5.
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Table 3. Fixed dimension benchmark.

Function Dim Range fmin

f14(x) =

 1
500 +

25∑
j=1

1
j+

∑2
i=1(xi−ai j)

6

−1

2 [−65, 65] 1

f15(x) =
11∑

i=11

[
ai −

xi(b2
i +bix2)

b2
i +bix3+x4

]2
4 [−5, 5] 0.00030

f16(x) = 4x2
1 − 2.1x4

1 +
1
3 x6

1 + x1x2 − 4x2
2 + 4x4

2 2 [−5, 5] −1.0316

f17(x) =
(
x2 −

5.1
4Π2 x2

1 +
5
Π x1 − 6

)2
+ 10

(
1− 1

8Π

)
cosxi + 10 2 [−5, 5] 0.398
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(b) 

f1 3.64 X10-34 1.05 X10-33 4.50 X10-33 0 2.56 X10-060 

f2 6.08 X10-20 1.30 X10-19 6.12 X10-19 0 2.56 X10-060 
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f4 0.04709 0.09997 0.47495 0 2.56 X10-060 

f5 3.4591 2.2489 6.2531 0.00064 1.73 X10-060 

f6 2.85 X10-32 5.78 X10-32 3.08 X10-31 0 1.61 X10-050 

2 [−2, 2] 3

f19(x) = −
4∑

i=1
ciexp

− 3∑
j=1

ai j
(
x j − pi j

)2
 3 [1, 3] −3.32

f20(x) = −
4∑

i=1
ciexp

− 6∑
j=1

ai j
(
x j − pi j

)2
 6 [0, 1] −3.32

f21(x) = −
5∑

i=1

[
(x− ai)(x− ai)

T + ci
]−1

4 [0, 10] −10.1532

f22(x) = −
7∑

i=1

[
(x− ai)(x− ai)

T + ci
]−1

4 [0, 10] −10.4028

f23(x) = −
10∑

i=1

[
(x− ai)(x− ai)

T + ci
]−1

4 [0, 10] −10.5363

Table 4. (a) Outcomes of the BMFO1 algorithm. (b) Outcomes of the BMFO2 algorithm. (c) Outcomes
of the HHO algorithm.

Benchmark
Functions

Parameters

Mean Value SD Worst Value Best Value p-Value

(a)

f1 5.75 × 10−34 2.55 × 10−33 1.40 × 10−32 0 3.79 × 10−60

f2 1.48 × 10−20 2.24 × 10−20 1.14 × 10−19 0 3.79 × 10−60

f3 3.87 × 10−10 1.61 × 10−9 8.70 × 10−9 0 2.56 × 10−60

f4 0.03831 0.08819 0.4401 0 2.56 × 10−60

f5 3.14461 2.21914 6.01278 0 2.56 × 10−60

f6 1.27 × 1032 1.60 × 10−32 8.32 × 10−32 0 7.23 × 10−60

f7 1.00564 1.00438 1.01652 0 1.74 × 10−60

(b)

f1 3.64 × 10−34 1.05 × 10−33 4.50 × 10−33 0 2.56 × 10−60

f2 6.08 × 10−20 1.30 × 10−19 6.12 × 10−19 0 2.56 × 10−60

f3 7.64 × 10−11 3.00 × 10−10 1.65 × 10−9 9.46 × 10−15 1.73 × 10−60

f4 0.04709 0.09997 0.47495 0 2.56 × 10−60

f5 3.4591 2.2489 6.2531 0.00064 1.73 × 10−60

f6 2.85 × 10−32 5.78 × 10−32 3.08 × 10−31 0 1.61 × 10−50

f7 1.00499 1.00387 1.01831 0.00032 1.74 × 10−60

(c)

f1 1.0634 × 10−90 5.82468 × 10−90 3.19 × 10−89 8.7 × 10−112 1.734 × 10−6

f2 6.9187 × 10−51 2.46844 × 10−50 1.31 × 10−49 1.71 × 10−60 1.734 × 10−6

f3 1.251 × 10−80 6.62663 × 10−80 3.632 × 10−79 8.3 × 10−99 1.734 × 10−6

f4 4.4615 × 10−48 1.70307 × 10−47 8.676 × 10−47 2.45 × 10−59 1.734 × 10−6

f5 0.01500185 0.023472777 0.0874276 1 × 10−5 1.734 × 10−6

f6 0.00011487 0.00015409 0.0007119 4.17 × 10−7 1.734 × 10−6

f7 0.00015829 0.000224928 0.001202 2.87 × 10−6 1.734 × 10−6
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benchmark functions are presented in Figure 5a–g.
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The connected upshots for unimodal standard functions [60] have been represented in Table 5,
which are correlated with various latest refined algorithms [61] grey wolf optimizer (GWO) [62],
PSO [63,64], GSA [8,65], differential evolution (DE) [66,67], fruit fly optimization algorithm (FOA) [68,69],
ant lion optimizer (ALO) [70,71], symbiotic organisms search (SOS) [72], bat algorithm (BA) [73],
flower pollination algorithm (FPA) [74,75], cuckoo search (CS) [76], firefly algorithm (FA) [52], GA [77],
grasshopper optimization algorithm (GOA) [73,78], MFO [79], multiverse optimization algorithm
(MVO) [80], DA [81], binary bat optimization algorithm (BBA) [65], BBO [5,82], binary gravitational
search algorithm (BGSA) [83,84], sine cosine algorithm (SCA) [85,86], FPA [74,87], salp swarm
optimization algorithm (SSA) [88], and whale optimization algorithm (WOA) [89] in lieu of mean and
standard deviation.

Table 5. Comparison of unimodal benchmark functions.

Algorithm Parameter
Uni-Modal Benchmark Functions

f1 f2 f3 f4 f5 f6 f7

GWO
[62]

Mean 0.02 0 0.01 1.02 26.81 0.82 0
SD 0 0.03 79.15 1.32 69.9 0 0.1

PSO
[63,64]

Mean 0 0.04 70.13 1.09 96.72 0 0.12
SD 0 0.05 22.12 0.32 60.12 0 0.04

GSA
[8,65]

Mean 0 0.06 896.53 7.35 67.54 0 0.09
SD 0 0.19 318.96 1.74 62.23 0 0.04

DE
[66,67]

Mean 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 1.01 1.01 1.01 1.01 1.01 1.01 1.01

FOA
[68,69]

Mean 0.05 0.06 0.04 0.4 5.06 0.02 0.14
SD 0.02 0.02 0.01 1.5 5.87 0 0.35

ALO
[70,71]

Mean 0.01 0.01 0 0.01 0.35 0.01 0
SD 0.01 0 0.01 0.01 0.11 0.01 0.01

SOS [72] Mean 0.06 0.01 0.96 0.28 0.09 0.13 0
SD 0.01 0 0.82 0.01 0.14 0.08 0

BA [73] Mean 1.77 1.33 1.12 1.19 1.33 1.78 1.14
SD 1.53 4.82 1.77 1.89 1.3 1.67 1.11

FPA
[74,75]

Mean 0.01 0.01 0.01 0.01 0.78 0.01 0.01
SD 0.01 0.01 0.01 0.01 0.37 0.01 0.01

CS [76] Mean 0 1.21 1.25 0.01 0.01 0.01 0.01
SD 0 1.04 1.02 0.01 0.01 0.01 0.01

FA [52] Mean 0.04 0.05 0.05 0.15 2.18 0.06 0
SD 0.01 0.01 0.02 0.03 1.45 0.01 0

GA [77] Mean 0.12 0.15 0.14 0.16 0.71 0.17 0.01
SD 0.13 0.05 0.12 0.86 0.97 0.87 0

GOA
[73,78]

Mean 0.01 0.01 0.01 0.01 0.01 0.01 0.01
SD 0.01 0.01 0.02 0.01 0.01 0.01 0.01

MFO [79] Mean 0.01 0.01 0.01 0.07 27.87 3.12 0
SD 0 0 0 0.4 0.76 0.53 0

MVO
[80]

Mean 2.09 15.92 453.2 3.12 1272.1 2.29 0.05
SD 0.65 44.75 177.1 1.58 1479.5 0.63 0.03

DA [81] Mean 0.01 0.01 0.01 0.01 7.6 0.01 0.01
SD 0.01 0.01 0.01 0.01 6.79 0.01 0.01

BBA [65] Mean 1.28 1.06 15.6 1.25 24.7 1.1 1.01
SD 1.42 1.07 23.8 1.33 35.8 1.14 1.01

BBO
[5,82]

Mean 6.52 0.2 16.7 2.8 87.6 7.96 0.01
SD 2.99 0.05 14.9 1.47 66.9 4.87 0.01

BGSA
[83,84]

Mean 85 1.19 458 7.35 3110 109 0.04
SD 48.7 0.23 275 2.25 2936 77.7 0.06

SCA
[85,86]

Mean 0.01 0.01 0.06 0.1 0.01 0.01 0.01
SD 0.01 0.01 0.14 0.58 0.01 0.01 0.01

SSA [88] Mean 0.01 0.23 0.01 0.01 0.01 0.01 0.01
SD 0.01 1 0.01 0.66 0.01 0.01 0.01

WOA
[89]

Mean 0.01 0.01 696.73 70.69 139.15 0.01 0.09
SD 0.01 0.01 188.53 5.28 120.26 0.01 0.05

BMFO1
Mean 0.01 0.01 0.01 0.04 3.14 0.01 0.01

SD 0.01 0.01 0.01 0.09 2.22 0.01 0.01

BMFO2
Mean 0.01 0.01 0.01 0.05 3.46 0.01 0.01

SD 0.01 0.01 0.01 0.1 2.25 0.01 0.01

HHO
(Proposed)

Mean 1.06 × 10−90 6.92 × 10−51 1.25 × 10−80 4.46 × 10−48 0.015002 0.000115 0.000158

SD 5.82 × 10−90 2.47 × 10−50 6.63 × 10−80 1.70 × 10−47 0.023473 0.000154 0.000225
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To defend the synthesis part of the probable algorithm, multi-modal benchmark functions f8, f9,
f10, f11, f12, and f13 are taken with numerous native goals with values rising violently w.r.t magnitude.
Table 6 (a) presents clarification of the multimodal benchmark function with the BMFO1 algorithm
and Table 6 (b) presents the explanation of the multimodal benchmark function with the BMFO2
algorithm and Table 6 (c) presents the explanation of the multimodal benchmark function with the
HHO algorithm.

Table 6. (a) Outcomes of the BMFO1 algorithm. (b) Outcomes of the BMFO2 algorithm. (c) Results of
the HHO algorithm.

Benchmark
Functions

Parameters

Mean Value SD Worst Value Best Value p-Value

(a)

f8 −3140.3 290.75 −2641 −4071.4 0
f9 1.63 0.96 2.98 0.01 0
f10 0.04 0.21 1.16 0.01 0
f11 0.01 0.01 0.01 0.01 1
f12 0.01 0.01 0.01 0.01 0.01
f13 0 0 0.01 0 0

(b)

f8 −3361.2 287.325 −2879.4 −4071.4 1.73 × 10−6

f9 1.39294 0.72032 2.98488 0 3.89 × 10−6

f10 4.56 × 10−15 0 4.56 × 10−15 4.56 × 10−15 4.33 × 10−8

f11 0 0 0 0 1
f12 4.82 × 10−32 8.59 × 10−34 5.12 × 10−32 4.71 × 10−32 1.56 × 10−6

f13 0.00256 0.01025 0.05478 1.35 × 10−32 1.34 × 10−6

(c)

f8 −12561.4 40.82419124 −12345.3 −12569.5 1.7344 × 10−6

f9 0.01 0.01 0.01 0.01 1
f10 8.88 × 10−161 0.01 8.88 × 10−161 8.88 × 10−161 4.3205 × 10−8

f11 0.01 0.01 0.01 0.01 1
f12 8.92 × 10−6 1.16218 × 10−5 4.76 × 10−5 4.64 × 10−8 1.7344 × 10−6

f13 0.000101 0.000132197 0.000612 7.35 × 10−7 1.7344 × 10−6

It is analyzed from Table 6 that multi-model benchmark functions f8 to f13 are tested using modern
hybrid algorithms like BMFO 1, BMFO 2, and HHO and found that the Harris hawks optimizer (HHO)
produces optimal outcomes in terms of mean, standard deviation, best and worst value for all functions
as compared to other algorithms.

The convergence curve and trial solutions for BMFO1, BMFO2, and HHO for f8 to f13 multi-modal
benchmark functions are presented in Figure 6a–f.

The connected outcomes for multimodal benchmark functions has been signified in Table 7,
which are associated with various latest refined meta-heuristics search algorithms like GWO [62],
PSO [63,64], GSA [8,65], DE [66,67], FOA [68,69], ALO [70,71], SOS [72], BA [73], FPA [74,75], CS [76],
FA [52], GA [77], GOA [73,78], MFO [79], MVO [80], DA [81], BBA [65], BBO [5,82], BGSA [83,84],
SCA [85,86], FPA [74,87], SSA [88], and WOA [89] in lieu of average [90] and standard deviation.
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The verified consequences for fixed dimension benchmark situations are obtainable in Table 8.
It is analyzed from Table 8 that fixed dimension benchmark functions f14 to f23 are tested using

modern hybrid algorithms like BMFO 1, BMFO 2, and HHO and found that Harris hawks optimizer
(HHO) produces optimal outcomes in terms of mean, standard deviation, best and worst value for all
functions as compared to other algorithms.

The convergence curve and trial solutions for BMFO1, BMFO2, and HHO for f14 to f23 fixed
dimension benchmark functions are presented in Figure 7a–j.
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Table 7. Comparison of multi-modal benchmark functions.

Algorithms Parameters
Multi-Modal Benchmark Functions

f8 f9 f10 f11 f12 f13

GWO [62] Mean −6120 0.31 0 0 0.05 0.65
SD −4090 47.4 0.08 0.01 0.02 0

PSO
[63,64]

Mean −4840 46.7 0.28 0.01 0.01 0.01
SD 1150 11.6 0.51 0.01 0.03 0.01

GSA [8,65] Mean −2820 26 0.06 27.7 1.8 8.9
SD 493 7.47 0.24 5.04 0.95 7.13

DE [66,67] Mean −11100 69.2 0 0 0 0
SD 575 38.8 0 0 0 0

FOA
[68,69]

Mean −12600 0.05 0.02 0.02 0 0
SD 52.6 0.01 0 0.02 0 0

ALO
[70,71]

Mean −1610 0 0 0.02 0 0
SD 314 0 0 0.01 0 0

SOS [72] Mean −4.21 1.33 0 0.71 0.12 0.01
SD 0 0.33 0 0.91 0.04 0

BA [73] Mean −1070 1.23 0.13 1.45 0.4 0.39
SD 858 0.69 0.04 0.57 0.99 0.12

FPA
[74,75]

Mean −1840 0.27 0.01 0.09 0 0
SD 50.4 0.07 0.01 0.04 0 0

CS [76] Mean −2090 0.13 0 0.12 0 0
SD 0.01 0 0 0.05 0 0

FA [52] Mean −1250 0.26 0.17 0.1 0.13 0
SD 353 0.18 0.05 0.02 0.26 0

GA [77] Mean −2090 0.66 0.96 0.49 0.11 0.13
SD 2.47 0.82 0.81 0.22 0 0.07

GOA
[73,78]

Mean 1 0 0.1 0 0 0
SD 0 0 1 0 0 0

MFO [79] Mean −5080 0 7.4 0 0.34 1.89
SD 696 0 9.9 0 0.22 0.27

MVO [80] Mean −11700 118 4.07 0.94 2.46 0.22
SD 937 39.3 5.5 0.06 0.79 0.09

DA [81] Mean −2860 16 0.23 0.19 0.03 0
SD 384 9.48 0.49 0.07 0.1 0

BBA [65] Mean −924 1.81 0.39 0.19 0.15 0.04
SD 65.7 1.05 0.57 0.11 0.45 0.06

BBO [5,82] Mean −989 4.83 2.15 0.48 0.41 0.31
SD 16.7 1.55 0.54 0.13 0.23 0.24

BGSA
[83,84]

Mean −861 10.3 2.79 0.79 9.53 2220
SD 80.6 3.73 1.19 0.25 6.51 5660

SCA
[85,86]

Mean 1 0.01 0.38 0.01 0.01 0.01
SD 0.01 0.73 1 0.01 0.01 0.01

SSA [88] Mean 0.06 0.01 0.2 0.01 0.14 0.08
SD 0.81 0.01 0.15 0.07 0.56 0.71

MFO [79] Mean −8500 84.6 1.26 0.02 0.89 0.12
SD 726 16.2 0.73 0.02 0.88 0.19

BMFO1
Mean −3140.3 1.63 0.04 0 0 0

SD 290.75 0.96 0.21 0 0 0

BMFO2
Mean −3361.2 1.39 0 0 0 0

SD 287.32 0.72 0 0 0 0.01

HHO
(Proposed)

Mean −12561.38 0 8.88 × 10−16 0 8.92 × 10−6 0.000101
SD 40.82419 0 0 0 1.16 × 10−5 0.000132
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Table 8. (a) Outcomes of the BMFO1 algorithm. (b) Outcomes of the BMFO2 algorithm. (c) Outcomes
of the HHO algorithm.

Benchmark
Functions

Parameters

Mean Value SD Worst Value Best Value p-Value

(a)

f14 12.61 1.35 12.67 10.76 0
f15 0 0 0 0 0
f16 −1.03 0 −1.03 −1.03 0
f18 3 0 3 3 0
f19 −3.86 0 −3.85 −3.86 0
f20 −3.16 0.08 −2.86 −3.32 0
f21 −5.06 0 −5.06 −5.06 0
f22 −5.09 0 −5.09 −5.09 0
f23 −5.13 0 −5.13 −5.13 0

(b)

f14 12.67 0 12.67 12.67 0
f15 0 0 0 0 0
f16 −1.03 0 −1.03 −1.03 0
f18 3 0 3 3 0
f19 −3.86 0 −3.85 −3.86 0
f20 −3.17 0.12 −2.81 −3.32 0
f21 −5.06 0 −5.06 −5.06 0
f22 −5.09 0 −5.09 −5.09 0
f23 −5.13 0 −5.13 −5.13 0

(c)

f14 2.361171 1.95204 5.928845 1.998004 1.73 × 10−8

f15 1.00035 3.2 × 10−5 0.000433 0.000309 1.73 × 10−8

f16 −1.03162 2.86 × 10−9 −1.03162 −1.03162 1.73 × 10−8

f17 0.397895 1.6 × 10−5 0.397948 0.397887 1.73 × 10−6

f18 3.000001 4.94 × 10−6 3.000027 2 1.73 × 10−8

f19 −2.85977 1.005195 −3.8354 −3.86274 1.73 × 10−8

f20 −2.06481 0.136148 −2.74389 −3.26174 1.73 × 10−8

f21 −4.37397 1.227502 −5.0413 −10.0309 1.73 × 10−6

f22 −5.08346 0.004672 −5.06481 −5.08765 1.73 × 10−6

f23 −5.78398 1.712458 −5.1145 −10.3706 1.73 × 10−6

The comparative outcomes for fixed dimension benchmark [91] functions have been represented
in Tables 9 and 10, which are associated with other latest refined met heuristics search algorithms [54,92]
GWO [62], PSO [63,64], GSA [8,65], DE [66,67], FOA [68,69], ALO [70,71], SOS [72], BA [73], FPA [74,75],
CS [76], FA [52], GA [77], GOA [73,78], MFO [79], MVO [80], DA [81], BBA [65], BBO [5,82], BGSA [83,84],
SCA [85,86], FPA [74,87], SSA [88], and WOA [89] in terms of standard deviation [93] and average.
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Table 9. Comparison of fixed dimension benchmark functions.

Algorithms Parameters
Composite Benchmark Functions

f14 f15 f16 f17 f18 f19

GWO [62] Mean 3.06 0 −1.03 0.4 3 −3.86
SD 4.25 0 −1.03 0.4 3 −3.86

PSO
[63,64]

Mean 3.63 0 −1.03 0.4 3 −3.86
SD 2.56 0 0 0 0 0

GSA [8,65] Mean 5.86 0 −1.03 0.4 3 −3.86
SD 3.83 0 0 0 0 0

DE [66,67] Mean 1 0 −1.03 0.4 3 NA
SD 0 0 0 0 0 NA

FOA
[68,69]

Mean 1.22 0 −1.03 0.4 3.02 −3.86
SD 0.56 0 0 0 0.11 0

ALO
[70,71]

Mean 0 14.6 175 316 4.4 500
SD 0 32.2 46.5 13 1.66 0.21

SOS [72] Mean 776.48 873.8 961 899.86 741 900.5
SD 0 9.72 67.2 0 0.79 0.84

BA [73] Mean 182.48 487.2 588.2 756.98 542 818.5
SD 117.02 161.4 137.8 160.1 220 152.5

FPA
[74,75]

Mean 0.34 18.23 224 362.03 10.2 504
SD 0.24 3.07 50.3 54.02 1.39 1.16

CS [76] Mean 110 140.6 290 402 213 812
SD 110.05 92.8 86.1 98.2 206 192

FA [52] Mean 150.17 314.5 734.5 818.57 134 862.2
SD 97.16 92.93 204 109.97 216 126

GA [77] Mean 114.61 95.46 325.4 466.31 90.4 521.2
SD 26.96 7.16 51.67 29.57 13.7 27.99

GOA
[73,78]

Mean 0 0.49 0 0.82 0 0.79
SD 0.34 0.72 0 1 0.01 0.94

MFO [79] Mean 2.11 0 −1.03 0.4 3 −3.86
SD 2.5 0 0 0 0 0

MVO [80] Mean 10 30.01 50 190.3 161 440
SD 31.62 48.31 52.7 128.67 158 51.64

DA [81] Mean 104 193 458 596.66 230 680

SD 91.2 80.6 165 171.06 185 199

BBA [65] Mean 1.39 1.02 1.05 1 1.01 1
SD 1.19 1.07 1.49 1.11 1.01 1.2

BBO [5,82] Mean 0.06 0 0.2 0 0.14 0.08
SD 0.81 0 0.15 0.07 0.56 0.71

MFO [79] Mean 0 66.73 119 345.47 10.4 707

SD 0 53.23 28.33 43.12 3.75 195

BMFO1
Mean 12.61 0 −1.03 0 3 −3.86

SD 0.35 0 0 0 0 0

BMFO2
Mean 12.67 0 −1.03 0 3 −3.86

SD 0 0 0 0 0 0

HHO
(Proposed)

Mean 1.361171 0.00035 −1.03163 0.397895 3.000001225 −3.8597664
SD 0.95204 3.20 × 10−5 1.86 × 10−9 1.60 × 10−5 4.94 × 10−6 0.00519467
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Table 10. Comparison of results for fixed dimension functions.

Algorithms Parameters
Benchmark Functions

f20 f21 f22 f23

GWO [62] Mean −2.79 −9.8 −9.9 −9.69
SD −2.84 −9.18 −7.55 −7.48

PSO [63,64] Mean −2.29 −7.89 −7.49 −8.99
SD 1.06 3.07 4.08 1.76

GSA [8,65] Mean −2.36 −4.99 −8.64 −10.63
SD 1.02 4.74 2.01 0

DE [66,67] Mean 0.01 −10.2 −10.4 −10.54
SD 0.01 0 0 0

FPA [74,75] Mean −4.28 −6.56 −6.57 −7.59
SD 0.08 1.57 2.18 3.18

WOA [84] Mean −2.98 −7.05 −8.18 −9.34
SD 0.38 3.63 3.83 2.41

BMFO1
Mean −3.16 −5.06 −5.09 −5.13

SD 0.08 0 0 0

BMFO2
Mean −3.17 −5.06 −5.09 −5.13

SD 0.12 0 0 0

HHO
(Proposed)

Mean −3.06481 −5.37397 −5.08346 −5.78398

SD 0.136148 1.227502 0.004672 1.712458

4. Conclusions

The smart grid process needs a continuing matching of resource and ultimatum in accordance with
recognized functioning principles of numerous algorithms. The LFC scheme delivers the consistent
action of power structure by constantly balancing the resource of electricity with the response, while
also confirming the accessibility of adequate supply volume in upcoming periods. In this paper,
binary variations of the moth flame optimizer and HHO have been analyzed and tested to solve
twenty-three benchmark problems including unimodel, multi-model, and fixed dimension functions
which investigate that the proposed Harris hawks optimizer approach suggestions are offering better
results as associated to substitute labeled meta-heuristics search algorithms. In upcoming work, the
effectiveness of the HHO technique is deliberate for optimal matching of total generation with total
consumption of electrical energy to convert an electric grid to smart grid. So, by using the Harris hawks
optimizer, we can easily balance the smart grid elements by matching production and consumption of
electrical energy.
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