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Abstract: Existing methods for forecasting the productivity of a factory are subject to a major 

drawback—the lower and upper bounds of productivity are usually determined by a few extreme 

cases, which unacceptably widens the productivity range. To address this drawback, an interval 

fuzzy number (IFN)-based mixed binary quadratic programming (MBQP)–ordered weighted 

average (OWA) approach is proposed in this study for modeling an uncertain productivity learning 

process. In the proposed methodology, the productivity range is divided into the inner and outer 

sections, which correspond to the lower and upper membership functions of an IFN-based fuzzy 

productivity forecast, respectively. In this manner, all actual values are included in the outer section, 

whereas most of the values are included within the inner section to fulfill different managerial 

purposes. According to the percentages of outlier cases, a suitable forecasting strategy can be 

selected. To derive the values of parameters in the IFN-based fuzzy productivity learning model, an 

MBQP model is proposed and optimized. Subsequently, according to the selected forecasting 

strategy, the OWA method is applied to defuzzify a fuzzy productivity forecast. The proposed 

methodology has been applied to the real case of a dynamic random access memory factory to 

evaluate its effectiveness. The experimental results indicate that the proposed methodology was 

superior to several existing methods, especially in terms of mean absolute error, mean absolute 

percentage error, and root mean square error in evaluating the forecasting accuracy. The forecasting 

precision achieved using the proposed methodology was also satisfactory.  

Keywords: productivity; learning; interval fuzzy number; mixed binary quadratic programming; 

ordered weighted average  

 

1. Introduction 

Productivity is a measure of how efficient a system is in converting inputs into outputs and is 

usually measured by dividing the quantity or value of outputs by that of inputs [1–3]. Productivity 

can be measured at different levels, such as for a factory (or store), city, or even country [4]. This 

study focuses on the productivity of a factory. In a factory, productivity increases with time because 

of operators becoming more familiar with their tasks, equipment engineers becoming skilled in 

maintaining and repairing machines, product engineers becoming more experienced in solving 

product quality problems, and other reasons [5]. 

Factories are adopting an increasing number of information technologies (ITs) that include 

software, hardware, and artificial intelligence [6,7]. For example, factories rely on transaction 

processing systems (TPSs) to automate routine operations, which obviously elevates productivity [8–

11]. Consequently, human workers are now trained to be familiar with MISs rather than with routine 
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operations. The emergence of Industry 4.0 has created opportunities for further enhancing 

productivity. For example, when wireless sensors are incorporated in a machine, the sensors can 

detect abnormal operating conditions before a serious shutdown that results in the loss of 

productivity, thereby enabling predictive maintenance [12]. Although some researchers have 

asserted that artificial intelligence will eventually replace human workers for performing many tasks, 

the applications of artificial intelligence do not necessarily enhance productivity due to reasons such 

as false hopes, mismeasurement, redistribution, and implementation lags [13]. Nevertheless, 

productivity improves as users learn to master IT. Although productivity improves by conducting 

activities involving substantial human intervention, productivity is subject to considerable 

uncertainty [14,15]. To address this problem, fuzzy logic [16] has been extensively applied to model 

productivity. For example, in a study by Hougaard [17], the inputs and outputs of a production plan 

were given in or estimated with fuzzy numbers. After enumerating all possible values of fuzzy inputs 

and outputs, the  cuts of fuzzy productivity were derived. Finally, a triangular fuzzy number was 

used to approximate fuzzy productivity. Similarly, Emrouznejad et al. [18] modeled inputs, outputs, 

and prices through fuzzy numbers. The  cuts of fuzzy parameters were fed as interval data into a 

data envelopment analysis model to calculate the overall profit Malmquist productivity index. Wang 

and Chen [19] proposed a fuzzy collaborative forecasting approach for forecasting the productivity 

of a factory. In the fuzzy collaborative forecasting approach, multiple experts fitted a fuzzy 

productivity learning process with quadratic or nonlinear programming models to forecast 

productivity. The fuzzy productivity forecasts by experts were aggregated using fuzzy intersection. 

Then, the aggregation result was defuzzified using a back propagation network. In a study by Chen 

and Wang [20], fuzzy productivity forecasts were compared with a competitive region to assess the 

productivity competitiveness of a factory. Recently, Chen et al. [21] proposed a heterogeneous fuzzy 

collaborative forecasting approach in which experts constructed either mathematical programming 

models or artificial neural networks to forecast productivity. The adoption of different fuzzy 

forecasting methods contributed to the diversification of fuzzy productivity forecasts, which was 

considered a favorable property for a multiple-expert forecasting problem. 

However, a problem associated with existing methods is that the lower and upper bounds on a 

fuzzy productivity forecast are usually determined by a few extreme cases [20]. Moreover, other cases 

may lie considerably close to cores (or centers), which unreasonably widens the range of a fuzzy 

productivity forecast, as illustrated in Figure 1, in which red circles represent extreme cases. There 

exist two types of extreme cases, namely better-than-anticipated (BTA) and poorer-than-expected 

(PTE) cases. 

 

Figure 1. Lower and upper bounds determined by extreme cases. 
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Therefore, a desirable option is to form a narrow interval that contains most of the collected data 

by excluding extreme cases, as illustrated in Figure 2. To this end, an interval fuzzy number (IFN) 

[22–24] is a viable option. There exist two membership functions in an IFN, one of which is suitable 

for modeling the inner part of a fuzzy productivity forecast, whereas the other is suitable for 

modeling the outer part. 

 

Figure 2. Narrow interval that contains most of the collected data. 

Due to the aforementioned reasons, an IFN-based mixed binary quadratic programming 

(MBQP)–ordered weighted average (OWA) approach is proposed in this study for modeling an 

uncertain productivity learning process by distinguishing between BTA and PTE cases. The motives 

for this study are explained as follows: 

(1) Owing to the existence of extreme cases, fuzzy productivity forecasts generated using an existing 

fuzzy forecasting method are not sufficiently precise. 

(2) Fuzzy productivity forecasts generated using existing fuzzy forecasting methods are usually 

type-1 fuzzy numbers [2,15,19]. Compared with type-1 fuzzy numbers, IFNs can better consider 

uncertainty [25,26]. However, fuzzy forecasting methods that generate IFN-based fuzzy 

productivity forecasts are not widely used. 

(3) A special defuzzifier needs to be proposed for an IFN-based fuzzy productivity forecast that 

separates extreme cases from normal cases. 

To the best of our knowledge, the present study is the first attempt of its kind. The parameters 

of the IFN-based fuzzy productivity learning model are given in the form of IFNs. Consequently, 

fuzzy productivity forecasts generated by the IFN-based fuzzy productivity learning model are also 

in the form of IFNs. In the proposed methodology, the range of productivity is divided into the inner 

and outer sections that correspond to the lower and upper membership functions of an IFN-based 

fuzzy productivity forecast, respectively. In this manner, all actual values are included in the outer 

section, whereas most of the values lie within the inner section. Moreover, the ratio of the number of 

PTE cases to the number of BTA cases is a useful factor for selecting a suitable forecasting strategy. 

To derive the values of parameters in the IFN-based fuzzy productivity learning model, an MBQP 

model is proposed and optimized. Finally, according to the selected forecasting strategy, the OWA 

method [27] was applied to defuzzify a fuzzy productivity forecast. 

The remainder of this paper is organized as follows. First, some arithmetic operations on IFNs 

are introduced in Section 2. The proposed methodology is detailed in Section 3. To illustrate the 

applicability of the proposed methodology, a real case is discussed in Section 4. The performance of 

the proposed methodology is also compared with those of several existing methods. Finally, the 

conclusions of this study and some directions for future research are provided in Section 5. 
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2. Preliminary 

IFNs have been extensively applied in multiple-criteria decision-making problems. For example, 

Hu et al. [28] considered a multiple-criteria decision-making problem in which criteria took the values 

of IFNs. Moreover, some of the weights assigned to criteria were unknown. To address this problem, 

an expected value function was optimized through a maximizing deviation method. However, in 

existing studies on IFN applications, the motives for adopting IFNs are not clear or strong. By 

contrast, in this study, the motive for adopting an IFN to represent a fuzzy productivity forecast is 

clear. 

This section introduces some arithmetic operations on IFNs. First, the definition of an IFN is 

given as follows [29]: 

Definition 1. An IFN A  is a subset of real numbers R and is defined as the set of ordered pairs A  = {(x, 

( )A x  )| x ( )A x   R}, where ( )A x  : R  [0, 1] is the interval-valued membership function of A . 

If A  is Moore-continuous, then there exist two membership functions for A , namely the lower 

membership function (LMF) ( )
lA
x  and the upper membership function (UMF) ( )

uA
x  , 

such that ( ) [ ( ), ( )]
l uA A Ax x x     . An IFN is a special case of type-II fuzzy sets [30]. 

Some attributes of an IFN are defined as follows: 

Definition 2. The inner support, outer support, and core of an IFN A  of R are defined, respectively, as 

follows: 

{ | ( ) 0}
lA Aisupp x x  R   (1) 

{ | ( ) 0}
uA Aosupp x x  R   (2) 

{ | ( ) ( ) 1}
l uA A Acore x x x    R    (3) 

Definition 3. An IFN A  is an interval triangular fuzzy number (ITFN) if both the LMF and UMF of A  

are triangular functions, 

1
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  (5) 

A  can be briefly denoted by (( 1 2 3, ,l lA A A ), ( 1 2 3, ,u uA A A )) or ( 1 1 2 3 3, , , ,u l l uA A A A A ). 

An ITFN is shown in Figure 3, in which A  = ((5, 9, 12), (2, 8, 13)) or (2, 5, 9, 12, 13). 
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Figure 3. An ITFN. 

Property 1. The inner support, outer support, and core of an ITFN A  can be derived as follows: 

1 3[ , ]l lAisupp A A  (6) 

1 3[ , ]u uAosupp A A  (7) 

2Acore A  (8) 

Some arithmetic operations on ITFNs are summarized in the following theorem [31–33]. 

Theorem 1. (Arithmetic Operations on ITFNs) 

(1) Fuzzy addition: 1 1 1 1 2 2 3 3 3 3( ) ( , , , , )u u l l l l u uA B A B A B A B A B A B        . 

(2) Fuzzy subtraction: 1 3 1 3 2 2 3 1 3 1( ) ( , , , , )u u l l l l u uA B A B A B A B A B A B        . 

(3) Fuzzy product (or multiplication): 1 1 1 1 2 2 3 3 3 3( ) ( , , , , )u u l l l l u uA B A B A B A B A B A B    whenever 0 B  . 

(4) Fuzzy division: 1 3 1 3 2 2 3 1 3 1(/) ( / , / , / , / , / )u u l l l l u uA B A B A B A B A B A B   whenever 0 B  . 

(5) Exponential function: 1 1 3 32( , , , , )u l l uA A A AAAe e e e e e


. 

(6) Logarithmic function: 1 1 2 3 3ln (ln , ln , ln , ln , ln )u l l uA A A A A A  whenever 1 0uA  . 

3. Proposed Methodology 

The proposed methodology comprises the following steps. First, the collected productivity data 

are analyzed to make sure that a productivity learning process exists. Subsequently, all parameters 

in the productivity learning model are fuzzified as IFNs to consider uncertainty. To derive the values 

of IFN-based fuzzy parameters, an MBQP model is proposed and optimized. Finally, the OWA 

method is applied to defuzzify an IFN-based fuzzy productivity forecast. IFNs, rather than general 

type-2 fuzzy numbers, are adopted in the proposed methodology because the mathematics needed 

for IFNs, primarily interval arithmetic, is much simpler than that needed for general type-2 fuzzy 

numbers [34]. 

3.1. Data Preanalysis 

In a factory, many performance measures exhibit learning phenomena [35–37]. However, the 

fuzzy learning model of productivity is different from that of other performance measures, such as 

yield or unit cost, because the asymptotic or final value of productivity is unbounded, whereas that 

of yield or unit cost is bounded. 

Productivity  ; yield  100%; the unit cost  0 

Therefore, before applying the proposed methodology, it should be ensured that the collected 

productivity data follow a learning process: 
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( )

0

b
r t

t
tP P e

 
  (9) 

where tP  is the productivity forecast at time period t (t = 1 – T); 0P  is the asymptotic or final 

productivity; b > 0 is the learning constant; and r(t) is a homoscedastical and serially uncorrelated 

error term that is often ignored. Taking the logarithmic values of both sides gives the following 

Equation: 

0ln ln ( )t
b

P P r t
t

    (10) 

A linear regression model is presented in the aforementioned Equation, whose validity can be 

measured in terms of the coefficient of determination R2, which is given as follows: 
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2R  is expected to approach a value of 1 if the collected productivity data follow a learning process. 

3.2. IFN-Based Fuzzy Productivity Learning Model 

The IFN-based fuzzy productivity learning model is proposed by defining the parameters in (8) 

with ITFNs. 

( )

0 ( )

b
r t

t
tP P e

 
 



   (15) 

where 

1 1 2 3 3( , , , , )t tu tl t t l tuP P P P P P  (16) 

0 0 1 0 1 0 2 0 3 0 3( , , , , )u l l uP P P P P P  (17) 

1 1 2 3 3( , , , , )u l l ub b b b b b  (18) 

An IFN-based fuzzy productivity forecast is meaningful in practice. The interpretation of (16) is that, 

according to a historical experience, the productivity within the t-th period would be within 0 1uP and 

0 3uP . If this range is very wide, then a narrower range (from 0 1lP  to 0 3uP ) is very likely to contain 

actual value. 

Because t  0, according to the formula of fuzzy division, dividing b  by −t gives the following 

Equation: 



Mathematics 2020, 8, 998 7 of 18 

 

3 3 1 12( , , , , )u l l ub b b bbb

t t t t t t
      


 (19) 

By taking the exponential of (19), we obtain the following Equation: 

3 3 1 12

( , , , , )
u l l ub b b bbb

t t t t t te e e e e e
     





 (20) 

tP
  can be derived by multiplying 

0P
  to both sides of (20) by using the formula of fuzzy 

multiplication: 

3 3 1 12

0 0 1 0 1 02 0 3 0 3( ) ( , , , , )
u l l ub b b bbb

t t t t t t
t u l l uP P e P e P e P e P e P e

     
  



   (21) 

 

3.3. MBQP Model for Deriving the Values of Fuzzy Parameters 

Mathematical programming models involving type-2 or other types of fuzzy numbers have been 

extensively applied in the literature [38–40]. By taking the logarithm of (15), we obtain the following 

Equation: 

3 3 1 12
0 1 0 1 02 0 3 0 3ln (ln , ln , ln , ln , ln )u l l u

t u l l u
b b b bb

P P P P P P
t t t t t

       (22) 

The following MBQP model is optimized to derive the values of fuzzy parameters. 

Model MBQP: 

Min 1 3 1 3
0 3 0 1 0 3 0 1

1

(ln ln ln ln )
T

u u l l
u u l l

t

b b b b
Z P P P P

t t t t


         (23) 

subject to 

3 2
0 1 0 2ln (1 )(ln ) (ln )u u

t u u
b b

P s P s P
t t

     ; t = 1 ~ T (24) 

1 2
0 3 0 2ln (1 )(ln ) (ln )u u

t u u
b b

P s P s P
t t

     ; t = 1 ~ T (25) 

1 2
1 (1 )

T

t t
t

X X

T
  


 

(26) 

3
1 0 1ln (ln )lt t l

b
P X P

t
  ; t = 1 ~ T (27) 

1
2 0 3ln (ln )lt t l

b
P X P

t
  ; t = 1 ~ T (28) 

1 2, {0, 1}t tX X  ; t = 1 ~ T (29) 

0 1 0 1 02 0 3 0 3ln ln ln ln lnu l l uP P P P P     (30) 

1 1 2 3 30 u l l ub b b b b      (31) 

The objective function minimizes the sum of the widths of fuzzy productivity forecasts by 

considering both LMF and UMF, thereby narrowing both the ranges of LMF and UMF (Figure 4) to 

maximize the forecasting precision [41]. Constraints (24) and (25) suggest that the membership of an 

actual value in the corresponding fuzzy forecast should be higher than the satisfaction level (s) based 

on UMF. 1tX  and 2tX  are binary variables, as defined in (29). When both 1tX  and 2tX  are equal 
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to 1, an actual value lies within the range of LMF, as suggested by Constraints (27) and (28). Otherwise, 

the actual value lies outside the LMF range. In this manner, the inclusion level [42] is higher than 

100(1 − )% (Figure 5), as required by Constraint (26). Constraints (26)–(29) are quadratic constraints 

or can be converted into quadratic constraints. Constraints (30) and (31) define the sequences of 

endpoints in the ITFNs. The MBQP model has one linear objective function, 2T + 6 variables, 4T + 9 

linear constraints, and 2T + 1 quadratic constraints. 

By moving variables independent of t out of the summation function, the objective function 

changes as follows: 

Min 1 3 1 3
0 3 0 1 0 3 0 1

1

ln ln ln ln ( )
T

u u l l
u u l l

t

b b b b
Z T P T P T P T P

t t t t


          (32) 

Let 

1

1T

t

K
t



  (33) 

Then, 

0 3 0 1 0 3 0 1 1 3 1 3ln ln ln lnu u l l u u l lZ T P T P T P T P Kb Kb Kb Kb         (34) 

Note that (33) is a divergent harmonic series [43]. 

 

Figure 4. Effects of the objective function. 

 

 

Figure 5. Inclusion interval constructed by solving the MBQP problem. 
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3.4. OWA for Defuzzifying a Fuzzy Productivity Forecast 

In the literature, various formulas have been proposed to defuzzify an ITFN. For example, 

according to Dahooie et al. [44], an ITFN A  can be defuzzified as follows: 

1 1 2 3 3
1( )

5
u l l uA A A A A

D A
   

  (35) 

which is an extension of the center-of-gravity (COG) formula or 

1 1 2 3 3
2

(1 ) (1 )
( )

3
u l l uA A A A A

D A
        

 ;   [0,1] (36) 

Lee et al. [31] proposed the following formula: 

1 1 2 3 3
3

4
( )

8
u l l uA A A A A

D A
   

  (37) 

However, existing defuzzification formulas consider PTE and BTA cases likely, which is questionable 

because they have distinct meanings in practice. 

Definition 4. A PTE case is a case that lies outside the LMF on the left-hand side, that is, 1t tlP P . 

Definition 5. A BTA case is a case that lies outside the LMF on the right-hand side, that is, 3t tlP P . 

To address the aforementioned problem, the concept of OWA is applied in the proposed 

methodology. The rationale for applying OWA to defuzzify an IFN-based fuzzy productivity forecast 

is explained as follows: 

(1) Using existing defuzzification methods, the defuzzification result of an IFN-based fuzzy 

productivity forecast is usually the weighted sum of its endpoints. OWA also calculates the 

weighted sum of data. 

(2) OWA aggregates data that have been sorted. The endpoints of an IFN-based fuzzy productivity 

forecast, from the leftmost to the rightmost, also form a sorted series. 

There exist five decision strategies in OWA that assign unequal weights to different attributes 

according to their performances. The five strategies are optimistic, moderately optimistic, neutral, 

moderately pessimistic, and pessimistic strategies [44,45]. Most formulas for defuzzifying an ITFN 

also assign weights to its endpoints. Therefore, assigning weights to the endpoints of tP
  according 

to their possibilities is reasonable. In the training data, if the number of PTE cases is considerably 

higher than that of BTA cases, then the “pessimistic” strategy appears to be suitable. By contrast, if 

the number of BTA cases is considerably higher than that of PTE cases, then the “pessimistic” strategy 

can be selected. On the basis of these beliefs, a fuzzy productivity forecast is defuzzified according to 

the selected forecasting strategy, as presented in Table 1. These strategies are subjective selections 

based on objective historical statistics [46]. 

Table 1. Defuzzification method based on the forecasting strategy. 

Strategy D4(
tP
 ) 

Optimistic 0 0 0 0 11 1 2 3 3P P P P Ptu tl t tl tu     

Moderately Optimistic 0.06 0.08 0.10 0.14 0.621 1 2 3 3P P P P Ptu tl t tl tu     

Neutral 0.2 0.2 0.2 0.2 0.21 1 2 3 3P P P P Ptu tl t tl tu     

Moderately Pessimistic 0.49 0.30 0.15 0.06 0.011 1 2 3 3P P P P Ptu tl t tl tu     

Pessimistic 0.89 0.10 0.01 0 01 1 2 3 3P P P P Ptu tl t tl tu     

Property 2. The “neutral” forecasting strategy is equivalent to the COG defuzzification method. 
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4. Application of the Proposed Methodology to a Real Case 

The effectiveness of the proposed methodology was evaluated by applying it for forecasting the 

productivity of a real dynamic random access memory (DRAM) factory. This case was first 

investigated by Wang and Chen [19]. In this case, the multi-item productivity of the DRAM factory, 

which was derived by dividing the monetary value of outputs by that of inputs, was recorded for 14 

periods. The recorded data are displayed in Figure 6. Wang and Chen [19] proposed a fuzzy 

collaborative forecasting approach to forecast the future productivity. For the same purpose, Chen et 

al. [21] proposed a fuzzy polynomial fitting and mathematical programming approach. The 

differences between the two approaches and the proposed methodology are summarized in Table 2. 

The most obvious difference is that only the proposed methodology forecasts productivity with an 

IFN, thereby differentiating between extreme cases and normal cases to construct a narrow interval 

of productivity. 

 

Figure 6. Real case. 

Table 2. Differences between the two approaches and the proposed methodology. 

Method 

Type of 

Productivity 

Forecast 

Optimization 

Models 

Discriminating 

Extreme Cases 

Number of 

Experts Required 

Wang and Chen 

[19] 
Fuzzy number NLP, QP No Multiple 

Chen et al. [21] Fuzzy number PP No One 

The proposed 

methodology 
IFN MBQP Yes One 

The productivity data were divided into two parts, the training data (including the data of the 

first 10 periods) and test data (including the remaining data). First, to ensure that the collected data 

followed a learning process, the coefficient of determination (R2) was calculated. R2 was found to be 

0.87, which was sufficiently high to ensure that the collected data followed a learning process. 

Subsequently, the training data were used to build the MBQP model, which was solved using a 

branch-and-bound algorithm [47–50] on a personal computer with Intel core i7-7700 CPU @ 3.60 GHz 

and 8 GB RAM in 10 s. Moreover,  was set to 0.2 so that an 80% inclusion interval was constructed. 

The satisfaction level s was set to 0.3. The optimal solution was 

*
0 (1.267,1.343,1.343,1.569,1.683)P   

* (0.990, 0.990, 0.990,1.260,1.260)b   

The optimal objective function value *Z  was 5.972. The forecasting results are displayed in 

Figure 7. The average width of the ranges of LMFs was 0.234. As expected, the ranges of LMFs were 

too narrow to include all actual values. Nevertheless, most actual values could be contained in such 

narrow ranges, which is very advantageous for practical applications. The productivity at the eighth 

period was a PTE case (the purple circle in Figure 7) because the actual value was below the LMF 
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curve, as illustrated in Figure 8. By contrast, no BTA case was observed, which implied that the 

pessimistic or moderately pessimistic strategy may be suitable. 

 

Figure 7. Forecasting results using the proposed methodology. 

 

Figure 8. IFN-based fuzzy productivity forecast for t = 8. 

After applying the proposed methodology to test data, the hit rate was 25%. Subsequently, 

various formulas were applied to defuzzify interval-valued fuzzy productivity forecasts for test data 

to evaluate the forecasting accuracy of the proposed methodology in terms of mean absolute error 

(MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE). The results are 

summarized in Table 3. The defuzzification formula D4 (the moderately pessimistic strategy) 

exhibited the best performance. 

Table 3. Forecasting accuracy achieved using the proposed methodology (for test data). 

Defuzzification Formula MAE MAPE RMSE 
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D3 0.240 23.3% 0.250 
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artificial neural network (ANN) method of Chen [54], and the PP method of Chen et al. [21] were 

applied to the real case for comparison. Similar to the proposed methodology, all the aforementioned 

methods are based on a single expert’s forecast. 

Tanaka and Watada’s LP method minimized the sum of the ranges of fuzzy productivity 

forecasts. The satisfaction level (s) was set to 0.3 for a fair comparison. By contrast, Peters’ QP method 
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maximized the forecasting accuracy in terms of the average satisfaction level by requesting the 

average range of fuzzy productivity forecasts to be less than d = 1. To simultaneously optimize the 

forecasting accuracy and precision, the QP method of Donoso et al. minimized the weighted sum of 

the squared deviations from the core as well as the squared deviations from the estimated spreads. 

In this case, the two weights 1w  and 2w  were set to 0.45 and 0.55, respectively. Chen and Lin’s two 

NLP models were extensions of Tanaka and Watada’s LP model and Peters’s QP model, respectively. 

The two NLP methods adopted the following high-order objectives and/or constraints: o = 2, s = 0.15, 

m = 2, and d = 1.2, where o and m are the orders of the two objective functions, respectively. In Chen’s 

ANN method, the initial values of the network parameters were set as follows: the connection weight 

(w) = (0.10, 0.77, 1.15); the threshold () = (−0.18, −0.12, 0.26); and the learning rate () = 0.25. The 

training of the ANN was completed in 10 epochs. The PP method of Chen et al. overcame the global 

optimality problem of Chen and Lin’s NLP method by converting the NLP models into PP models, 

for which the Karush–Kuhn–Tucker conditions were easy to solve. The performance of existing 

methods is summarized in Table 4. A comparison of the performances of existing methods and the 

proposed methodology is displayed in Figure 9. The “moderately pessimistic” strategy was adopted 

in the proposed methodology. 

Table 4. Forecasting performances of existing methods for test data. 

Method MAE MAPE RMSE Hit Rate Average Range 

Tanaka and Watada’s LP method 0.283 27.4% 0.292 25% 0.346 

Peters’s QP method 0.487 47.0% 0.492 25% 1.233 

Donoso et al.’s QP method 0.269 26.1% 0.278 0% 0.273 

Chen and Lin’s NLP I model 0.276 26.8% 0.285 0% 0.288 

Chen and Lin’s NLP II model 0.282 27.4% 0.290 100% 1.006 

Chen’s ANN method 0.185 18.1% 0.198 100% 0.803 

Chen et al.’s PP method 0.168 16.4% 0.181 0% 0.249 
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Figure 9. Comparison between the performances of various methods. 
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(2) The proposed methodology outperformed existing methods in terms of MAE, MAPE, and RMSE 

in evaluating the forecasting accuracy. The detection of PTE and BTA cases enabled the selection 
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MAPE. 
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(3) Conversely, the proposed methodology optimized the forecasting precision measured in terms 

of the average range. Despite such a narrow average range, the hit rate achieved using the 

proposed methodology was also satisfactory. 

(4) To ascertain whether the differences between the performances of various methods were 

statistically significant, the sums of ranks of all methods were compared [55–57]. The results are 

presented in Table 5. For example, the proposed methodology ranked the first among the 

compared methods in reducing MAE, MAPE, RMSE, and the average range, and ranked the fifth 

in elevating the hit rate. As a result, the sum of ranks was 9 for the proposed methodology. The 

ranks of methods that performed equally well were averaged. For example, Donoso et al.’s QP 

method and Chen and Li’s NLP I method performed equally well in elevating the hit rate and 

outperformed the other methods. Therefore, both of their ranks were (1 + 2)/2 = 1.5. According 

to the sums of ranks achieved by these methods, the proposed methodology ranked first, 

followed by the PP method of Chen et al., the QP method of Donoso et al., and the ANN method 

of Chen. 

Table 5. Comparing the sums of ranks of various methods. 

Method Rank (MAE) Rank (MAPE) Rank (RMSE) 
Rank 

(Hit Rate) 

Rank 

(Average Range) 
Sum of Ranks 

Tanaka and Watada’s LP 7 7 7 5 5 31 

Peters’s QP 8 8 8 5 8 37 

Donoso et al.’s QP 4 4 4 1.5 3 16.5 

Chen and Lin’s NLP I 5 5 5 1.5 4 20.5 

Chen and Lin’s NLP I 6 7 6 7.5 7 33.5 

Chen’s ANN 3 3 3 7.5 6 22.5 

Chen et al.’s PP 2 2 2 3 2 11 

The proposed methodology 1 1 1 5 1 9 

(5) To further elaborate the effectiveness of the proposed methodology, it has been applied to 

another case of forecasting the productivity of a factory. This case was first investigated by 

Akano and Asaolu [58], in which four factors (preventive maintenance time, off-duty time, 

machine downtime, and power failure time) were considered to be influential to the productivity 

of a factory. To forecast the productivity, Akano and Asaolu constructed an adaptive network-

based fuzzy inference system (ANFIS), which resulted in a MAPE of up to 34%. In this study, an 

expert applied the IFN-based MBQP–OWA approach to forecast productivity, for which the 

neutral strategy was adopted. The forecasting results are shown in Figure 10. The forecasting 

accuracy, in terms of MAPE, was elevated by 19%. 

 

Figure 10. Forecasting results using the IFN-based MBQP–OWA approach. 
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5. Conclusions 

An IFN-based MBQP–OWA approach is proposed in this study to model an uncertain 

productivity learning process. This study aims to resolve a problem of existing methods, that is, a 

few extreme (PTE and BTA) cases determine the lower and upper bounds on productivity. This 

problem causes the range of productivity to be unacceptably wide. To solve this problem, the range 

of productivity is divided into inner and outer sections that correspond to the LMF and UMF of an 

IFN-based fuzzy productivity forecast, respectively. In this manner, all actual values are included in 

the outer section, whereas most of the values lie within the inner section. Moreover, a suitable 

forecasting strategy can be determined according to the percentages of PTE and BTA cases. To derive 

the values of parameters in the IFN-based fuzzy productivity learning model, an MBQP model is 

proposed and optimized. Subsequently, the OWA method based on the selected forecasting strategy 

is applied to defuzzify the fuzzy productivity forecast. The contribution of this study resides in the 

following: 

(1) Using the characteristics of IFNs, a systematic mechanism was established to avoid extreme 

cases from widening the ranges of fuzzy productivity forecasts. 

(2) An innovative idea was proposed to defuzzify an IFN-based fuzzy productivity forecast using 

OWA. 

The IFN-based MBQP–OWA approach has been applied to a real case of a DRAM factory to 

evaluate its effectiveness. According to the experiment results, the following findings are obtained: 

(1) In terms of MAE, MAPE, and RMSE, the accuracy of the forecasted productivity obtained using 

the proposed methodology was superior to those obtained using several existing methods. 

(2) The forecasting precision achieved using the proposed methodology was also satisfactory, 

especially for minimizing the average range of fuzzy productivity forecasts. 

(3) By identifying PTE and BTA cases, an expert was able to select a suitable forecasting strategy, 

which further enhanced the forecasting precision and accuracy. 

The proposed methodology has several advantages, but there are also some drawbacks. For 

example, extreme cases may affect the range of productivity in different ways in the future. 

Nevertheless, in future studies, other types of fuzzy numbers, such as interval-valued intuitionistic 

fuzzy numbers [59], hesitant IFNs [60,61], Pythagorean fuzzy numbers [62], and interval-valued 

Pythagorean fuzzy numbers [63,64] can be adopted to model uncertain productivity instead. The 

proposed methodology can also be applied to other learning processes in various fields that are 

subject to uncertainty, such as unit cost learning [65] and energy efficiency learning [66]. Another 

interesting topic is how to build the IFN-based fuzzy productivity learning model if the collected 

productivity data are incomplete [67]. The proposed methodology can also be extended to fulfill a 

multiple-expert collaborative forecasting task [68–72]. 
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