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Abstract: This work reports the Carreau–Yasuda nanofluid flow over a non-linearly stretching sheet
viscous dissipation and chemical reaction effects. The coupled system of non-linear partial differential
equations are changed into a system of linear differential equations employing similarity equations.
The spectral quasi-linearization method was used to solve the linear differential equations numerically.
Error norms were used to authenticate the accuracy and convergence of the numerical method. The effects
of some thermophysical parameters of interest in this current study on the non-dimensional fluid velocity,
concentration and temperature, the skin friction, local Nusselt and Sherwood numbers are presented
graphically. Tables were used to depict the effects of selected parameters on the skin friction and
the Nusselt number.

Keywords: Carreau–Yasuda nanofluid; stretching sheet; chemical reaction; viscous dissipation; spectral
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1. Introduction

Researchers have recently shown a lot of interest towards the study of non-Newtonian fluids due
to their widespread applications in areas such as mining industries, where the handling of slurries
and mud is done, in biology and medicine. Unlike Newtonian fluids, non-Newtonian fluids do exist
abundantly in nature. Some typical examples of non-Newtonian fluids that occur commonly include
chyme, blood, oil, paints and lubricants. Non-Newtonian fluids cannot be modelled using the classical
Navier–Stokes equations due to the non-linear relationship between the shear stress and rate of strain at a
given temperature. It is also worth mentioning that non-Newtonian fluids are more complicated to handle
than Newtonian fluids, Kahshan et al. [1].

Detailed explanation and classification of non-Newtonian fluids can be found in Cioranescu et al. [2].
After viewing the demand of the required progression and viewing the nature, researchers have proposed
several non-Newtonian fluid models. Shear-thinning is one of the main behavior that is exhibited by most
non-Newtonian fluids. To that end, the influence of shear-thinning behavior is worth to be investigated.
This class of fluids have many applications in polymer processing and multiple emulsions. In an endeavor
to anticipate the rheological features of thinning fluids several models such as Ellis model, Kheyfets and
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Kieweg [3], cross model, Sochi [4], Carreau model, Hina et al. [5] and Carreau–Yasuda model, Mekheimes
and Abd Elmabound [6], have been proposed.

Carreau–Yasuda model is among the models which have an advantage over the power-law
fluid models. It is now regarded as the generalized form of the power-law model because it
has two parameters (k, n), whereas the Carreau–Yasuda is a five-parameter model (µ0, µ∞, n, a, λ),
Mahmood et al. [7]. The Carreau-Yasunda model occur in many real life and industrial applications. Since
it is a shearing–thinning model, the Carreau-Yasunda model can be used in physiology to replicate blood,
with blood being non-Newtonian fluid. The thinning and/or thickening property can be approximated
using this model with great accuracy. Andrade et al. [8] pioneered the study of the Carreau–Yasuda
model to compute the drag equation for turbulent flow in a pipe. In their study, they disclosed that these
five constants (µ0, µ∞, n, a, λ) control the turbulence in the flow within the boundary layer. They also
depicted that the Carreau–Yasuda model describes the viscocity (µ∞) at infinite shear stress and viscosity
(µ0) at zero shear stress. Hayat et al. [9] did a numerical study on the peristalsis of a Carreau-Yasunda
nanofluid by mainly focusing on the effects of Hall and Ohmic heating. Hayat et al. [10] developed
and simulated a non-linear mathematical model for a Carreau–Yasuda fluid in a curved channel with
slip effects. Abbasi et al. [11] analyzed the impact of applied magnetic field on the peristaltic field of
the Carreau–Yasuda fluid in a curved conduct.

Shamekhi and Sadeghy [12] in their study of a lid-driven cavity flow of a Carreau–Yasuda model
showed strong effect of shear-thinning behavior on its flow kinematics. Lashgari et al. [13] showed how
shear-thinning/shear-thickening destabilizes/stabilizes the flow significantly when the problem is scaled
with the reference zero-shear-rate viscosity when considering the Carreau–Yasuda fluids passing over
a circular cylinder. Zhao et al. [14] combined the Carreau–Yasuda model and Zheng’s model to study
mixed convection heat transfer of non-Newtonian fluids in a square cavity. Khan et al. [15] examined
MHD flow of Carreau–Yasuda nanofluid over a non-linearly stretching sheet considering slip conditions
with Joule heating and chemical reaction. Salahuddin et al. [16] numerically explored heat assignment
mechanisms in squeezed flow over a sensor surface of an electrically conducting Carreau–Yasuda
fluid. Hayat et al. [17] studied the mixed convective peristaltic transport of Carreau–Yasuda through
an inclined channel. Migtaa and Al-Khafajy [18] examined the influence of heat transfer on the MHD
oscillatory flow by Carreau–Yasuda through porous medium for shearing–thinning case in cavity and
cylindrical configuration.

Thermal conductivity of nanofluids has been widely investigated by many researchers in the past
three decades since the pioneering work by Choi and Eastman [19]. Nanofluids have been used in the fields
where heat transfer enhancement is required as is the case in many industrial applications. It is noted that
some fluids like ethylene glycol mixture, water and oil are poor heat transfer fluids, Nandkeolyar et al. [20].
Anuar and Bachok [21] investigated the classical problems of boundary layer flow and heat transfer
characteristics past a semi-infinite static flat plate and past a moving semi-based nanofluid. Prakash and
Suriyakumar [22] presented the influence of heat generation from two vertical plates on the hydromagnatic
convective flow of nanofluid. Sharma et al. [23] analyzed the effect of Hall current on the convection in
radiative magneto nanofluid. Astuti et al. [24] studied the natural convection of the nanofluids from a
vertical accelerated plate in the presence of the radiation flux and magnetic field.

Hady et al. [25] investigated the effects of thermal radiation and heat transfers on a viscous nanofluid
flowing over a sheet that is non-linearly stretching. Shateyi and Prakash [26] numerically analyzed heat
transfer and thermal radiation effects on MHD laminar boundary layer flow over a moving surface.
Krishnamurthy et al. [27] theoretically investigated the thermal radiation and chemical reaction effects on
boundary layer slip flow and melting heat transfer of nanofluid induced by a non-linear stretching sheet.
Elbashbeshy and Emam [28] studied the effects of thermal radiation and heat transfer over an unsteady
stretching surface embedded in a porous medium.
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Viscous dissipation or Joule heating refers to the generation of heat in a conductor due to the passage
of an electric current. The process has quite several applications in industry and engineering. A typical
example where Joule heating has found relevance is in electrical gadgets such as in light bulbs, electric
stoves, electric heaters and electric fuses. Khan et al. [29] studied Joule heating in an MHD Carreau
nanofluid flowing through an inclined stretching cylinder that is convective heated. Cheng and Wu [30]
numerically studied viscous dissipation effects on the onset of instability for longitudinal vertices in
the thermal entrance region of a horizontal parallel plate channel. Boubaker et al. [31] studied viscous
dissipation effects on the thermal boundary layer of Pseudoplastic power-law non-Newtonian fluids using
discretization method and the Boubaker polynomials expansion of schemes. Recently, Lund et al. [32]
analyzed the effects of viscous dissipation in heat transfer of MHD flow of micropolar fluid partial
slip conditions.

The main objective of this current study is to investigate the magnetohydrodynamic flow of
the Carreau–Yasuda nanofluid over a non-linear stretching sheet subjected to slip, convective and zero
normal flux conditions with viscous dissipation, thermal radiation and chemical reaction. As best known
by the authors of this work, there is no study that has been reported on this kind of physical phenomenon
for the Carreau–Yasuda model. Motivated by the above mentioned studies, the current study seeks to
fill the existing gaps in this field of research. Using well-chosen similarity transformations, the system of
the defining partial differential equations is transformed into a system of ordinary differential equations.
The transformed differential equations and the associated boundary conditions are solved numerically
using the spectral quasi-linearization method (SQLM) which was introduced by Motsa et al. [33].
The SQLM has been successfully used by researchers to solve coupled systems of non-linear differential
problems. Alharbey et al. [34] used the SQLM to investigate micropolar fluid over a horizontal plate
embedded in a non-Darcy porous medium. Pal et al. [35] successfully used the SQLM to analyze entropy
generation of a steady laminar two-dimensional convective magnetohydrodynamic Jeffrey nanofluid
flow over a linear stretching sheet. The spectral quasi-linearization method was used by Das et al. [36] to
study the Casson fluid with homogeneous heterogeneous reaction with non-linear thermal radiation over
an exponential stretching sheet. In all these studies, the SQLM was found to be accurate, computationally
efficient and reliable. It is due to these attributes of the numerical method that encouraged the authors of
this work to consider using the SQLM.

2. Mathematical Formulation

Considered in this present analysis, is a two-dimensional, steady MHD laminar incompressible flow
of a Carreau–Yasuda nanofluid flow over a stretching sheet under slip and convective boundary conditions.
As shown in Figure 1, the flow is taken on y > 0, y is vertical to the stretching plate and x is along the plate.
A transverse magnetic field is applied to the surface along the y axis. The non-Newtonian viscosity of a
Carreau–Yasuda fluid is defined by Khan et al. [15].

τ =

[
µ∞ + (µ0 − µ∞)(1 +

(
Γγ̇)d

) n−1
d
]

A1, (1)

where the Rivlin–Ericksen tensor A1 = [∇ ·V +∇ ·VT ] and the shear strain γ̇ is the shear strain defined as

γ̇ =

[
1
2

tr(A2
1)

] 1
2

. (2)

Assuming a zero value for infinite shear rate viscosity that is µ∞ = 0, Equation (1) becomes
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τ =

[
µ0

(
1 + (Γγ̇)d

) n−1
d
]

A1. (3)

In this current the velocity profile is given by V = [u(x, y), v(x, y), 0], the temperature distribution by
T = T(x, y) and the nanoparticle concentration by C = C(x, y). The continuity, momentum, energy and
concentration equations are given by:

∂u
∂x

+
∂v
∂y

= 0, (4)

u
∂u
∂x

+ v
∂u
∂y

= ν
∂2u
∂y2 + Γd

(
n− 1

d

)
(d + 1) ν

∂2u
∂y2

(
∂u
∂y

)d
+ gβ(T − T∞) + gβc(C− C∞)−

σB2
0u

ρ
, (5)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 + τ

(
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
)
+

µ

ρcρ

(
∂u
∂y

)2
+

σβ2
0u2

ρcρ
− 1

ρcp

∂qr

∂y
, (6)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DB
T∞

∂2T
∂y2 − K0(C− C∞), (7)

where τ = (ρc)p
(ρc) f is the ratio of the actual heat capability of nanoparticle to the base fluid.

x

y

β0

u = 0

T∞

C∞

Stretching sheet

u = cxn + g ∂u
∂y DB

∂C
∂y + DT

T∞
∂T
∂y = 0

u→ 0 T∞ → 0 C∞ → 0

Slit

u

v

Figure 1. Flow configuration and coordinate system.

The corresponding momentum, thermal and nanoparticle boundary conditions for the model under
consideration are:

u = cxn + g
∂u
∂y

, v = 0,−κ

(
∂T
∂y

)
= h f (Tw − T∞),

DT∂T
T∞∂y

+ D∞
∂c
∂y

= 0, at y = 0,

u→ 0, C → C∞, T → T∞, as y→ ∞. (8)

The bottom of the stretching sheet is excited by convection at temperature Tf which generates the heat
transmission h f and κ is the thermal conductivity.

An expression for the radiative heat flux qr is obtained using the Rosseland diffusion approximation,
which says
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qr =
4σ∗

3k∗
∂T4

∂y
.

Linear Taylor series approximation of T4 about T∞ gives T4 ≈ 4T3
∞T − 3T4

∞ so that

∂qr

∂y
= −16σ∗T3

∞
3k∗

∂2T
∂y2 . (9)

Substituting Equation (9) into Equation (10) we get

u
∂T
∂x

+ v
∂T
∂y

=

(
α +

16σ∗T3
∞

3ρcpk∗

)
∂2T
∂y2 + τ

(
DB

∂T
∂y

∂C
∂y

+
DT
T∞

(
∂T
∂y

)2
)
+

µ

ρcρ

(
∂u
∂y

)2
+

σβ2
0u2

ρcρ
. (10)

Similarity Transformations

Following Khan et al. [15], we introduce the following dimensionless variables for the velocity
components, temperature, nanoparticle absorption and the independent:

η = y
(

c(n + 1)
2ν

) 1
2

x
n−1

2 , u = cxn f ′(η), (11)

v = −x
n−1

2

(
f (η) + f ′(η)

n− 1
n + 1

η

)(
cν

(
n + 1

2

)) 1
2

, (12)

φ(η) =
C− C∞

Cw − C∞
, θ(η) =

T − T∞

Tw − T∞
. (13)

If we substitute the similarity variables and their derivatives into the governing equations results in
highly non-linear and coupled ordinary differently equations:[

1 + ( f ′′)d
(

n− 1
d

)
(1 + d)(We)d

]
f ′′′ − 2n

n + 1
f ′2 + f ′′ −M f ′ + λ1θ + λ2φ = 0, (14)

1
Pr

(
1 +

4R
3

)
θ′′ + f θ′ + Nbφ′θ′ + Nt(θ

′)2 + Ec M( f ′)2 + Ec( f ′′)2 = 0, (15)

φ′′ +
Nt

Nb
θ′′ + PrLe f φ′ − PrLeγφ = 0, (16)

where We = cΓ
(

c(n+1)
2ν

) 1
2 x

3n−1
2 , M =

2σB2
0

(n+1)ρcxn−1 , Nt = (Tw−T∞)
T∞ν DTτ, Nb = (Cw−C∞)

ν DBτ, Pr = cµ
k ,

Ec =
c2x2n

(Tw−T∞)cp
, R = 4σ∗T3

∞
k∗κ , λ1 = 2gβ(Tw−T∞)

c2(n+1)(x2n−1)
, λ2 = 2gβ(Cw−C∞)

c2(n+1)(x2n−1)
and γ = 2K0

c(n+1)xn−1 .

The corresponding boundary conditions become:

f ′(0) = 1 + S f ′′(0), f (0) = 0, θ′(0)− δθ(0) = −δ, Ntθ
′(0) + Nbφ′(0) = 0,

f ′ → 0, θ → 0, φ→ 0 as η → ∞. (17)

With S = g
(

c(n+1)
2ν

) 1
2 x

n−1
2 is the velocity slip parameter, δ = h f

kx
n−1

2
(

c(n+1)
2ν

) is the thermal

slip parameter.
The skin friction coefficient, heat transfer rate and the mass transfer rate which are expressed as follows
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C f =
τw

ρc2 , Nux =
qwx

κ(Tw − T∞)
, Shx =

qmx
κm(Cw − C∞)

, (18)

where τw is the shear stress, qw is the heat flux and qm is the mass flux. These quantities are expressed as:

τw = µ0

(
1 + Γd

(
n− 1

d

)(
∂u
∂y

))d (∂u
∂y

)
y=0

, qw = −
(

∂T
∂y

)
y=0

, qm = −
(

∂C
∂y

)
y=0

. (19)

Substituting these into the above expressions we have:

C f Re
1
2
x =

(
n + 1

2

)0.5 (
1 +

n− 1
d

( f ′′)d(We)d
)

f ′′(0), (20)

NuxRe
−1
2

x = −
(

n + 1
2

)0.5
θ′(0), ShxRe

−1
2

x = −
(

n + 1
2

)0.5
φ′(0), (21)

where Re is the local Reynolds number.

3. Method of Solution

The spectral quasi-linearization method is used to seek a numerical solution of the coupled
system of Equations (14)–(16), subject to prescribed boundary conditions. The SQLM is basically
a combination of two methods: (i) Quasi-linearization method (QLM) and (ii) Chebyshev spectral
collocation method (CSCM), Shateyi and Muzara [37]. The QLM, originally developed by Bellman
and Kalaba [38], is a Newton–Raphson-based quasi-linearization technique used to linearize the system of
non-linear differential equations into an iterative sequence of linear differential equations. Applying the
quasi-linearization formula to the system of Equations (14)–(16) gives:

a0,m f ′′′m+1 + a1,m f ′′m+1 + a2,m f ′m+1 + a3,m fm+1 + a4,mθm+1 + a5,mφm+1 = R1,m, (22)

b0,mθ′′m+1 + b1,mθ′m+1 + b2,m f ′′m+1 + b3,m f ′m+1 + b4,m fs+1 + b5,mφ′m+1 = R2,m, (23)

c0,mφ′′m+1 + c1,mφ′m+1 + c2,mφm+1 + c3,m fm+1 + c4,mθ′′m+1 = R3,m, (24)

subject to the boundary conditions

f ′m+1 = 1 + S f ′′m+1, fm+1 = 0, θ′m+1 = − (1− θm+1) δ, Ntθ
′
m+1 + Nbφ′m+1 = 0 at η = 0,

f ′m+1 = 0, θm+1 = 0, φm+1 = 0 as η → ∞. (25)

The variable coefficients have the following definitions:

a0,m = 1 +
(

n− 1
d

)
(1 + d)(We)d( f ′′m)

d, a1,m = (n− 1)(1 + d)Wed( f ′′s )
d−1 f ′′′s + fs,

a2,m = − 4n
n + 1

f ′m −M, a3,m = f ′′m, a4,m = λ1, a5,m = λ2, b0,m =
1

Pr

(
1 +

4R
3

)
,

b1,m = fm + Nbφ′m + 2Ntθ
′
m, b2,m = 2Ec f ′′m, b3,m = 2EcM f ′m, b4,m = θ′m,

b5,m = Nbθ′m, c0,m = 1, c1,m = PrLe fm, c2,m = −PrLeγ, c3,m = PrLeφ′m,

c4,s =
Nt

Nb
, R1,m = (n− 1)(1 + d)Wed( f ′′m)

d−1 f ′′m f ′′′m −
2n

n + 1
( f ′m)

2 + fm f ′′m,

R2,m = fmθ′m + Nbθ′sφ′s + Nt(θ
′
m)

2 + EcM( f ′m)
2 + Ec( f ′′s )

2, R3,m = PrLe fmφ′m.
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The sequence of linear differential Equations (22)–(24) is solved iteratively using CSCM. The linear
transformation η = 2

L∞
(1 + ζ) is used to migrate from the physical domain [0, L∞] to the computational

domain [−1, 1] where the CSCM can be implemented. With the CSCM, we approximate the unknown
functions fm+1, θm+1 and φs+1 by Chebyshev interpolating polynomials. The derivatives of
the approximating functions at Gauss–Lobatto collocation points gives

ζi = cos
(

πi
N

)
, i = 0, 1, · · ·N,

gives

dn fm+1(ζi)

dζ
=

N

∑
k=0

Dn
ik fm+1(ζk) = DnF, (26)

where D = L∞
2 D, D in an (N + 1)× (N + 1) Chebyshev differentiation matrix as defined by Trefethen [39],

and F = [ fm+1(ζ0), fm+1(ζ1), · · · , fm+1(ζN−1), fm+1(ζN)]
T . Similarly, expressions for the nth derivatives

of θm+1 and φm+1 are given by

dnθm+1(ζi)

dζ
= DnΘ and

dnφm+1(ζi)

dζ
= DnΦ, (27)

respectively. Evaluating Equations (22)–(24) at collocation points and substituting derivatives by
Equations (26) and (27) yields

A11Fm+1 + A12Θm+1 + A13Φm+1 = R1,m, (28)

A21Fm+1 + A22Θm+1 + A23Φm+1 = R2,m, (29)

A31Fm+1 + A32Θm+1 + A33Φm+1 = R3,m, (30)

where

A11 = diag[a0,m]D3 + diag[a1,m]D2 + diag[a2,m]D + diag[a3,m], A12 = a4,mI,

A13 = a5,mI, A21 = diag[b2,m]D2 + diag[b3,m]D + diag[b4,m],

A22 = diag[b0,m]D2 + diag[b1,m]D, A23 = diag[b5,m]D, A31 = diag[c3,m],

A32 = c4,mD2, A33 = c0,mD2 + diag[c1,m]D + diag[c2,m].

The identity matrix I is of order (N + 1)× (N + 1). When the spectral collocation method is applied
is applied to the boundary conditions (25) yields

n

∑
j=0

[DNj − SD2
Nj] fm+1(ζN) = 1, fm+1(ζN) = 0,

N

∑
j=0

θm+1(ζ j)DNj − δθm+1(ζN) = −δ,

N

∑
j=0

[Ntθm+1(ζ j) + Nbφm+1(ζ j)]DNj = 0,
N

∑
j=0
D0j fm+1, θm+1(ζ0) = 0, φm+1(ζ0) = 0. (31)

4. Results and Discussions

Discussed in this section are the numerical results of a coupled system of non-linear partial
differential equations that model the Carreau–Yasuda nanofluid flow over a non-linearly stretching
sheet in the presence of viscous dissipation and chemical reaction using SQLM. The linear system of
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Equations (28)–(30) together with boundary conditions (Equation (31)) is simplified using MATLAB 2016
(OPTI-NUM Solutions (Pty) Ltd, Johannesburg, South Africa). The influence of some physical parameters
on the dimensionless velocity, temperature and concentration, the skin friction coefficient, the heat transfer
rate and the mass transfer rate is shown by graphical representation. Tables are presented to portray
the effects of some selected parameters on skin friction coefficient and the local Nusselt number.

Using N = 60 collocation points in all the computations, solution-based errors were used to test for
convergence of the numerical method. A solution-based error is the difference between two successive
solutions, i.e., the solution at iteration level m and m + 1. A plot of the infinity norms of the solution-based
errors against the number of iterations is shown in Figure 2. A decrease of the error infinity norm with
the number of iterations confirms the convergence of the method. The method converges after six iterations.
Figure 3 is a plot of the residual error norms against the increasing number of iterations. It can be seen that
there is a sharp decrease in the error as the number of iterations increases. This proves the high accuracy
of the current method.

In all the numerical computations done in this work, the default parameters considered, unless
otherwise stated, as in Khan et al. [15], are M = 0.3, n = 1.0, We = 3.0, Pr = 1.1, Nb = 0.1, Nt = 0.1,
Ec = 0.1, Le = 2.1, γ = 0.2, d = 2.0, δ = 0.1, λ1 = 0.1, λ2 = 0.2, R = 0.1, S = 0.1.

Figure 4 shows the influence of the magnetic field parameter M on the nanofluid velocity. It is
observed that when magnetic field parameter is enhanced, there is a decrease in the velocity distribution
of the nanofluid. This is attributed to a Lorentz force that arise from the presence of a magnetic field that
opposes the motion of the fluid and tends to resist the velocity, hence slowing down the fluid. The effect
of the velocity slip parameter S on the fluid velocity is depicted in Figure 5. When the values of the slip
velocity parameters are increased, the slip velocity increases and the fluid velocity decreases. Figure 6
reveals that enhancing the thermal slip parameter slightly increases the velocity profiles. The Eckert
number relates the kinetic energy of the flow and the boundary layer enthalpy difference. As a result
of viscous dissipation due to increased positive values of Ec, there will be an increased fluid initial
temperature hence more thermal buoyancy effects that will induce more fluid flow. An increase in
the values of Ec results in an increase in the fluid velocity as shown in Figure 7. Figure 8 shows that
increasing the thermal buoyancy parameter λ1 increases the velocity of the nanofluid. Physically, increasing
the thermal buoyancy creates a temperature difference in the flow that causes a reduction in the boundary
layer and enhances the fluid velocity.

The effects of some thermophysical parameters namely the magnetic field parameter M, the Eckert
number Ec, the thermal slip parameter δ, the Prandtl number Pr, the thermal radiation parameter R,
and the thermal buoyancy parameter λ1 on the temperature profiles of the nanofluid are portrayed in
Figures 9–14. Figure 9 shows that increasing the magnetic field parameter increases the temperature
of the nanofluid. Increasing the magnetic field parameter tends to reduce the fluid velocity profiles
in the boundary and this will cause the thickening of the thermal boundary layer. The influence of
Ec on the temperature profiles is displayed in Figure 10. It is observed that increasing Ec increases
the temperature profiles. This is because of increased viscous dissipation due to internal friction. Figure 11
shows that increasing the thermal slip parameter has the effect of increasing the fluid temperature.
The Prandtl number has an opposite effect to that of δ as shown in Figure 12. Increasing the values
of Pr is equivalent to a reducing thermal conductivity and hence a reduced thermal boundary layer.
Figure 13 shows that increasing the thermal radiation parameter results in the increase in the temperature
of the nanofluid. This due to the fact by increasing the radiation more heat energy is released to the flow
thus enhancing temperature profiles. Increasing λ1 depresses the temperature profiles as depicted in
Figure 14.

The influence of the chemical reaction parameter γ, the Lewis number Le, Nt, Nb and Ec on
the fluid concentration is shown in Figures 15–18. As shown in Figure 15, the concentration profiles
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are decreased with an increase in the chemical reaction parameter. An increased chemical reaction causes
the concentration boundary layer to thin due to a reduced chemical molecular diffusion hence a reduced
mass diffusivity. The effect of the Lewis number Le on the concentration of the nanofluid is reported in
Figure 16. The Lewis number can be defined as the ratio of thermal diffusion rate to the species diffusion.
For values Le < 1, mass diffusion is rapid so the species boundary layer becomes thin. It is clear that
increasing Le causes an increase in the concentration profiles. Figures 17 and 18 show that an increment
in the Nt and Ec dwindles the concentration of the fluid. Figure 19 reveals that raising Nb results in
the concentration distribution and the identical boundary layer being increased.
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Figure 18. Influence of Ec on the fluid concentration.
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Figure 19. Influence of Nb on the fluid concentration.

Figure 20 depicts the effects of R through Nt on the skin friction. By increasing Nt(= 0.1, 0.3, 0.5, 0.7),
the skin friction increases. The influence of the thermal radiation parameter R on the local Nusselt number
for various values of the Prandtl number Pr(= 1.1, 1.2, 1.3, 1.4) is displayed in Figure 21. This is evident
because higher values of Pr means the thickness of the thermal boundary layer decreases which in turn
will result in an increase in wall temperature gradient. Also, an increase in thermal radiation parameter
leads to an increased heat transfer rate. It is shown that the heat transfer rate is increased by increasing
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R and Pr. Figure 22 reports that increasing the magnetic field parameter M through the thermophoresis
parameter Nt(= 0.1, 0.3, 0.5, 0.7) enhances the local Sherwood number.
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Figure 20. Influence of R and Nt on the skin friction.
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Figure 21. Influence of R and Pr on the heat transfer rate.
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Figure 22. Influence of M and Nt on the mass transfer.

Tables 1 and 2 depict the effects of some selected parameters on the skin friction coefficient and heat
transfer rate, respectively. From Table 1, we can infer that the skin friction coefficient is significantly and
slightly increased by increasing the magnetic field parameter M and the Eckert number Ec, respectively.
The table also shows that the slip velocity S heavily depress the skin friction coefficient. Increasing
the thermal buoyancy parameter slightly decreases the skin friction coefficient. Table 2 reflects that
increasing the thermal slip parameter δ and the Prandtl number Pr enhances the local Nusselt number

NuxRe−
1
2

x .

Table 1. Effects of selected parameters on the skin friction when n = 1.0, We = 3.0, Pr = 1.1, Nb = 0.1,
Nt = 0.1, Le = 2.1, γ = 0.2, d = 2.0, δ = 0.1, λ2 = 0.2, R = 0.1.

M Ec S λ1 C f Re
− 1

2
x

0.1 0.1 0.1 0.1 0.901165706578126
0.2 0.1 0.1 0.1 0.939430977283166
0.3 0.1 0.1 0.1 0.975901612948121
0.1 0.1 0.1 0.1 0.901165706578126
0.1 0.3 0.1 0.1 0.894342142778385
0.1 0.5 0.1 0.1 0.887855032025925
0.1 0.1 0.1 0.1 0.901165706578126
0.1 0.1 0.5 0.1 0.607698358897778
0.1 0.1 0.9 0.1 0.465481562823527
0.1 0.1 0.1 0.1 0.901165706578126
0.1 0.1 0.1 0.3 0.877937713382835
0.1 0.1 0.1 0.5 0.856014644415950
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Table 2. The values of NuxRe−
1
2

x for different values of selected parameters when n = 1.0, We = 3.0,
M = 0.3, Nb = 0.1, λ1 = 0.1, Ec = 0.1, Le = 2.1, γ = 0.2, d = 2.0, Ec = 0.1, λ2 = 0.2, S = 0.1.

Pr δ R Nt −NuxRe
1
2
x

1.1 0.1 0.1 0.1 0.078548380963099
1.2 0.1 0.1 0.1 0.079117794840876
1.3 0.1 0.1 0.1 0.079609418569888
1.1 0.1 0.1 0.1 0.078548380963099
1.1 0.3 0.1 0.1 0.179932397357334
1.1 0.5 0.1 0.1 0.242732064006873
1.1 0.1 0.1 0.1 0.078548380963099
1.1 0.1 0.3 0.1 0.077003538347739
1.1 0.1 0.5 0.1 0.075588054175029
1.1 0.1 0.1 0.1 0.078548380963099
1.1 0.1 0.1 0.3 0.077003538347739
1.1 0.1 0.1 0.5 0.075588054175029

5. Conclusions

This paper considers the Carreau–Yasuda nanofluid flow over a non-linear stretching sheet. The effects
of viscous dissipation and chemical reaction were taken into account. The system of coupled non-linear
partial differential equation describing the model were transformed into a coupled system of linear
differential equations using a suitable similarity transformation. The resulting linear differential equations
were numerically solved using the spectral quasi-linearization method. The convergence and accuracy of
the SQLM was determined by the error infinity norms and the residual error infinity norms, respectively.
Key findings from this study are the following:

1. The spectral quasi-linearization method is a very efficient and reliable method for solving non-linear
differential equations.

2. The fluid velocity and the momentum boundary layer increase with increasing Eckert number,
thermal buoyancy parameter, thermal slip parameter, and decrease with the magnetic field parameter,
and the velocity slip parameter.

3. The fluid temperature increases with increasing magnetic field parameter, Eckert number, thermal
slip parameter, and the thermal radiation parameter, and is decreased by raising the Prandtl number
and thermal buoyancy parameter.

4. The fluid concentration in enhanced by increasing the Lewis number and the Brownian motion
parameter while it is depressed by increased thermal reaction parameter, thermophoresis parameter
and the Eckert number.

5. The skin friction is increases with increasing magnetic field parameter and decreases when the Eckert
number, thermal buoyancy parameter and the velocity slip parameter are increased.

6. The local Nusselt number increases when the Prandtl number and the thermal slip parameter are
increased, while the opposite trend is observed when thermal radiation parameter and thermophoresis
parameter are increased.
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Abbreviations

The following abbreviations are used in this manuscript:

A1 Rivlin–Ericksen tensor
C concentration (kg m−3)
C f skin friction coefficient
Cw concentration at the wall (kg m−3)
C∞ ambient volume fraction (kg m−3)
cp specific heat
d Carreau–Yasuda parameter
DB Brownian diffusion coefficient
DT Thermophoresis diffusion coefficient
Ec Eckert number
f non-dimensional stream function
g acceleration due to gravity (m s−2)
k∗ mean absorption coefficient (W m−1 K−1)
K0 chemical reaction coefficient
M magnetic field parameter
n power-law index
Nb Brownian motion parameter
Nt thermophoresis parameter
Nux local Nusselt number
Pr Prandtl number
qr radiative heat flux (W m−2)
R thermal radiation parameter
S velocity slip parameter
Shx local Sherwood number
T temperature (K)
Tw wall temperature (K)
T∞ ambient surface temperature (K)
u horizontal velocity component (m s−1)
v vertical velocity component (m s−1)
We Weissenberg number
x horizontal coordinate (m)
y vertical coordinate (m)

Greek Symbols
σ∗ Stefan Boltzmann constant (W m−2 K−4)
σ electrical conductivity
α thermal diffusivity
β0 magnetic field strength
β thermal expansion coefficient
βc concentration expansion coefficient
κ thermal conductivity
λ1 thermal buoyancy parameter
λ2 solutal buoyancy parameter
η dimensionless radial coordinate
µ0 zeros shear viscosity
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µ∞ infinite shear viscosity
Γ material time constant
θ non-dimensional temperature
φ non-dimensional concentration
ρ base fluid density (kg m−3)
γ chemical reaction parameter
γ̇ shear strain
ν kinematic viscosity fluid
(ρc)p heat capacity of nanoparticle
(ρc) f heat capacity of base fluid

Subscripts
w surface conditions
∞ free stream conditions
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