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Abstract: In this paper, a reaction-diffusion prey-predator system including the fear effect of predator
on prey population and group defense has been considered. The conditions for the onset of
cross-diffusion-driven instability are obtained by linear stability analysis. The technique of multiple
time scales is employed to deduce the amplitude equation near Turing bifurcation threshold by
choosing the cross-diffusion coefficient as a bifurcation parameter. The stability analysis of these
amplitude equations leads to the identification of various Turing patterns driven by the cross-diffusion,
which are also investigated through numerical simulations.
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1. Introduction

The dynamics of interacting predator–prey models have been extensively studied by several
researchers interested in characterizing the long-term behavior of the species. Most of the predator–prey
models are based on classical Lotka–Volterra formalism. Predators can influence the evolution of their
prey directly by eating them, but also indirectly by altering the behavior and physiology of survivors.
Theoretical biologists have highlighted that indirect effects caused by anti-predator behaviors of prey
can be comparable or even larger than the direct effects. In recent studies on terrestrial vertebrates it
emerged that the fear of predators on prey deeply influences the anti-predator defenses and lowers
prey fecundity or survival. Animals facing the threat of predation may show several anti-predator
responses, ranging from change in habitat usage or foraging behaviors to vigilance and physiological
changes [1,2]. Because of fear of predators, prey indeed spend more time being vigilant rather than
foraging or searching for higher quality food or low-risk habitats. Among the many experimental
confirmations, let us just mention a few: Drosophila melanogaster showing anti-predator behaviors
to the odor of a mantid, including reduced activity in all simulated seasons [3]; a recent experiment
on song sparrows Melospiza Melodia showed how the predation fear alone, without direct killing,
was able to reduce offspring production by up to 40% [4]. In the presence of predators, snowshoe
hares shift to less profitable but safer microhabitats. This habitat shift, however, has significant costs
on reproduction because it lowers the overall body condition of female hares [5]. Breeding birds
perceiving predation risk may fly away from nests and leave juvenile birds unprotected [1]. Therefore,
a more realistic formulation of predator–prey interactions cannot be reduced to the simple description
of direct predation effects; it also requires the modelling of non-consumptive effects of predators
(also named as fear effects, risk effects, indirect effects, nonlethal effects). Some observations indicate
the presence of another biological phenomenon called group defense in predator–prey interactions.
In these circumstances, predation is decreased or prevented because of the prey tendency to group
together to better defend or make it hard for predators to single out individuals. As a consequence,
predators are less attracted to areas with very large prey density [6]. While pairs of musk-oxen can be
successfully attacked by wolves, groups rarely are [7]. When herds remain well coordinated even under
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attack, all individuals may benefit from the alertness and communication. Indeed, a lion’s hunting
success declines when prey form large groups [8]. The cheetah prefers to hunt single animals. The main
advantage of this prey grouping lies in the advance predator detection, even if increasing the defense
is costly, so that selection will favor individuals able to optimally balance costs and benefits of the risk
reduction. Group defense has often been incorporated into predator–prey systems, and it is shown that
the inclusion of this biological phenomenon has a significant impact on the dynamics of the system.
Several group defense response functionals have been considered in population dynamics (Ivlev type
function [9], Monod–Haldane function, Holling type IV and III [10]); an additional approach considers
the population to occur mostly on the perimeter of the herd, which is modeled by a square root term [11].
In Holling type IV functional response, predators cannot survive above some upper threshold of prey
density. To incorporate these effects into predator–prey interactions, many predator–prey models have
been proposed (e.g., [12–17], just to mention a few). Recently, in [18], the authors have considered
a model describing the predator–prey interaction, introducing the group defense of prey through
the Holling type IV functional response and the reduction of prey growth rate, represented as a fear
factor, in the presence of group defense through Monod–Haldane type functional response. In this
formulation there is an interesting link between the cost due to fear and the benefit due to group
defense through the parameter α describing the predator–taxis sensitivity. This parameter usually
measures the impact of predator density on prey movement. In the proposed model, in particular, if
prey are engaged in group defense their reproduction rate could decrease. In addition, when prey
are more sensitive to predation—that is the predator–taxis sensitivity increases—they will increase
their group defense and consequently the successful predation rate will decrease. Naturally, as a
consequence, their reproduction rate also decreases. The corresponding predator–prey model is

dx
dt

=
rx

1 + ηαy
− d1x− d2x2 − βxy

a + bαx + x2 =: f (x, y)

dy
dt

=
cβxy

a + bαx + x2 −my =: g(x, y)
(1)

where x, y are the density of prey and predator population respectively, r is the birth rate of prey, η

the level of fear, α the predator–taxis sensitivity, d1 the natural death rate of prey, d2 death due to
intra-prey competition, β rate of predation, a half-saturation constant, b tolerance limit of predation,
c conversion efficiency of biomass, m natural death rate of predator. Details on both the derivation
of (1) and the biological meaning of parameters can be found in [18]. In the present paper we have
extended [18], introducing self- and cross-diffusion terms. The spatial diffusion plays an important
role in the process of population evolution, not only in ecology but also in many other fields of
applied mathematics such as biochemistry or economics and the effect of self- and cross-diffusion
on the population dynamics has been widely investigated theoretically by many mathematicians
([19–24] and references therein). Self-diffusion terms model the random movement of individuals
in both prey and predator populations. Of course, in coupled dynamics, this movement cannot be
considered as just random. Instead, it is conditioned by the presence or absence, abundance or scarcity
of individuals belonging to the other species. To take into account this influence, spatio-temporal
population models can include cross-diffusion terms in addition to self-diffusion ones. Diffusion-driven
Turing patterns have been studied for a long time [25] and the effect of self-diffusion on many models
is well known, particularly when one species diffuses much faster than the other one. Experimental
findings have demonstrated that cross-diffusion can play a significant role in pattern formation [26],
also in models where self-diffusion alone does not induce spatial instability. Spatial patterns are
of fundamental importance, as they can help correctly describe the space and time distribution of
the populations, thus providing insights on the evolution of ecological communities. In particular,
diffusion-driven instability, commonly known as Turing instability, leads to the occurrence of the
so-called Turing patterns. The study of these patterns in spatial population models has recently seen
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an increasing activity and interest ([14,15,23,27–30]). Motivated by all these considerations, we include
both self-diffusion and cross-diffusion into (1) and study the following system

∂x
∂t

=
rx

1 + ηαy
− d1x− d2x2 − βxy

a + bαx + x2 + γ11∆x + γ12∆y

∂y
∂t

=
cβxy

a + bαx + x2 −my + γ21∆x + γ22∆y
(2)

with the coercivity condition, that is we assume that there exists d > 0 such that, ∀ ξi, ξ j

2

∑
i,j=1

γijξiξ j ≥ d|ξ|2, ξ = (ξ1, ξ2) (3)

where Φ : (x, t) ∈ Ω× R+ → Φ(x, t) ∈ R, Φ = x, y, x = (u, v), Ω a bounded domain in R2 with
smooth boundary ∂Ω, ∆ the usual Laplacian operator. The self-diffusion coefficients γii (i = 1, 2) are
assumed as positive, while the constant cross-diffusion coefficients γ12, γ21 may be positive, negative,
or zero. A positive cross-diffusion coefficient describes the movement of that species in the direction of
lower concentration of the other one; on the contrary, a negative cross-diffusion coefficient denotes that
one species tends to diffuse towards a higher concentration of the other. Here we assume γ12 > 0 and
γ21 > 0 in order to describe the tendency of the prey species to avoid high density areas of predators
and the tendency of predators to prefer low-density areas of preys for hunting. To (2) we append the
initial conditions

x(x, 0) = x0(x), y(x, 0) = y0(x) x ∈ Ω, (4)

and the homogeneous Neumann (no-flux) boundary conditions

∇x · n = 0, ∇y · n = 0, (5)

on ∂Ω × R+. It should be noticed here that the literature investigating pattern formation in
reaction-diffusion systems indeed includes two approaches—linear and nonlinear cross-diffusion
modeling. A comparison in an intuitive way between them can be found in [31]. A first well-known
example of nonlinear cross-diffusion term is presented by Shigesada et al. [32] to model spatial
segregation for competing species. Successively, the same model has been studied and Turing
instability has been highlighted due to cross-diffusion. However, many findings have shown that
linear cross-diffusion coefficients (even if relatively small) lead and facilitate pattern formation, when
the diffusion is coupled with both linear and nonlinear kinetics [26,33]. In addition, in [31,34] it has
been highlighted that, with non-linear cross-diffusion terms, to obtain pattern formation the inhibitor
has to diffuse faster than the activator. On the contrary, when linear cross-diffusion terms are included,
this request is no longer needed. The purpose of this article is to analytically and numerically explore
the stability of the positive equilibrium of (2)–(5) and the effect of linear cross-diffusion on the spatial
patterns. The linear stability analysis shows how the formation of spatial patterns is essentially related
to cross-diffusion. Then, cross-diffusion-driven spatial patterns are studied by deriving through
multiple scale analysis the amplitude equation. This is the tool of choice to understand the spatial
dynamics of a reaction-diffusion system for parameter values in the vicinity of a Turing bifurcation
point. This approach can be extended to other interacting models with different functional responses,
and also in other fields of applied mathematics where nonlinear mathematical models having a similar
structure are considered ([35,36]) and a comparative study of the pattern formation scenario can be
explored. The paper is arranged as follows. Section 2 is devoted to the linear stability analysis in order
to obtain the cross-diffusion-driven instability conditions and find the corresponding Turing instability
parameter space. In Section 3 the weakly nonlinear multiple scale analysis is employed to derive the
amplitude equations and obtain the conditions for different types of pattern to occur. After Section 4,
where numerical simulations are employed to confirm the theoretical findings, Section 5 concludes
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with a short discussion and summary of the obtained results. Details of the derivation of amplitude
equations are given in Appendix A.

2. Linearized Analysis: Stability and Diffusion-Driven Turing Instability

Constant steady states are the non-negative solutions of the system
x
(

r
1 + ηαy

− d1 − d2x− βy
a + bαx + x2

)
= 0

y
(

cβx
a + bαx + x2 −m

)
= 0.

(6)

Apart from the solution E0 = (0, 0), corresponding to extinction of both prey and predator
populations, that always exists and is stable for r < d1, if r > d1, system (6) admits the boundary

equilibrium E1 = (
r− d1

d2
, 0). It can also admit coexistence equilibria E∗ = (x∗, y∗) with

x∗ =
(cβ−mbα)±

√
(cβ−mbα)2 − 4m2a
2m

(7)

and y∗ solution of
Ay2 + B(x∗)y + C(x∗) = 0 (8)

where
A = βηα, B(x∗) = ηα(a + bαx∗ + x∗2)(d2x∗ + d1) + β,

C(x∗) = (a + bαx∗ + x∗2)(d2x∗ + d1 − r).

It is worth noting that the fear level η does not affect the prey equilibrium value x∗; on the contrary,
its increase leads to a lower value of the predator’s equilibrium y∗.

We are interested in positive solutions (x∗, y∗); since x∗ > 0 implies B(x∗) > 0 then it must occur
that C(x∗) < 0. From (6)2 we have mx∗2 = (cβ−mbα)x∗ −ma, then

C(x∗) =
cβ

m2 {d2[(cβ−mbα)x∗ −ma]−m(r− d1)x∗} < 0

for (cβ−mbα) < m(r−d1)
d2

+ ma
x∗ .

Therefore, under the above condition, Equation (8) always admits only one positive solution y∗ at
the values of x∗ > 0 given by (7).

By analyzing (7) it follows that for

2m
√

a < cβ−mbα <
m(r− d1)

d2
+

ma
x∗

we obtain two solutions, while for

2m
√

a = cβ−mbα <
m(r− d1)

d2
+

ma
x∗

we obtain one solution.
Stability conditions for all the equilibria of the ODEs model (1) and investigations on the possible

occurrence of a Hopf bifurcation at the interior equilibrium E∗ can be found in [18]. Based on their
findings, we report that, in the case of two solutions of (7), the bigger one always results in an unstable
equilibrium; for the smaller one conditions are found to characterize the stability region. The linearized
system in the neighborhood of E∗ = (x∗, y∗) is
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∂X
∂t

= LX +D∆X, X =

(
x− x∗

y− y∗

)
(9)

where

L =

(
a11 a12

a21 a22

)
, D =

(
γ11 γ12

γ21 γ22

)
(10)



a11 = x∗
(

βy∗(bα + 2x∗)
(a + bαx∗ + x∗2)2

− d2

)
,

a12 = −x∗
(

kαr
(1 + ηαy∗)2 +

β

(a + bαx∗ + x∗2)

)
,

a21 =
cβy∗(a− x∗2)

(a + bαx∗ + x∗2)2
, a22 = 0

(11)

and (
x
y

)
=

(
x∗

y∗

)
+

(
xk
yk

)
exp(λt + i(k · r)) (12)

with k = (ku, kv), k = |k| =
√

k2
u + k2

v wave number, r = (u, v) the two-dimensional spatial vector.
We recall that, in the absence of diffusion, the necessary and sufficient condition guaranteeing the
linear stability of E∗ is {tr(L) = T0 = a11 < 0, det(L) > 0} [37].

The dispersion relation, which gives the eigenvalue λ as a function of the wavenumber k, reads

λ2 − Tkλ + h(k2) = 0 (13)

where {
Tk = tr(L)− k2tr(D) = T0 − k2(γ11 + γ22)

h(k2) = det(D)k4 + qk2 + det(L), q = a12γ21 + a21γ12 − a11γ22.
(14)

As it is evident that T0 < 0 ⇒ Tk < 0, ∀k 6= 0, the only possibility for an instability to occur
is by requiring h(k2) < 0 for some value of k. Precisely, the conditions guaranteeing that E∗, stable
in the absence of diffusion, becomes unstable in the presence of diffusion necessarily lead to Turing
instability. In this section we shall investigate the conditions on system (2)–(5) for the onset of Turing
instability. First, we notice that in the presence of self-diffusion alone, i.e., when {γ12 = γ21 = 0}
diffusion-driven Turing instability cannot occur for (2)–(5), then we analytically explore the effect of
cross-diffusion.

We are looking for those modes k 6= 0 for which h(k2) < 0. The only possibility for h(k2) < 0 is
requiring q < 0. Thus, the only potential destabilizing mechanism is the presence of cross-diffusion
terms, while predator linear diffusion plays a stabilizing role. The condition for the marginal stability

at some k2 = k2
cr is min(h(k2

cr)) = 0 and the minimum of h is reached at k2
cr = −

q
2det(D) . In addition,

h(k2
cr) < 0 provides

(a12γ21 + a21γ12 − a11γ22)
2

4(γ11γ22 − γ12γ21)
+ a12a21 > 0. (15)

The above results can be summarized in the following theorem.

Theorem 1. The conditions for cross-diffusion-driven instability of system (2)–(5) around the homogeneous
steady state E∗ are given by

a11 < 0, a12a21 < 0

a12γ21 + a21γ12 − a11γ22 < 0, γ11γ22 − γ12γ21 > 0,

(a12γ21 + a21γ12 − a11γ22)
2 > −4(γ11γ22 − γ12γ21)a12a21.

(16)
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In the forthcoming section, γ21 is considered to be the bifurcation parameter and γ21 = γcr
21 is

the Turing threshold which can be numerically evaluated from the condition h(k2
cr) = 0. Bifurcation

happens at the critical value

γcr
21 =

(a12a21γ12 + a11a12γ22) + 2a12
√

γ22a21(a12γ11 + a11γ12)

a2
12

(17)

in correspondence with the critical wavenumber

k2
cr =

√
−a12a21

γ11γ22 − γ12γ21
6= 0. (18)

For γ21 > γcr
21 the system admits a finite k pattern-forming stationary instability. The unstable

wavenumbers stay in between the roots of h(k2) = 0, denoted by k2
− and k2

+. Hence, to guarantee the
emergence of spatial pattern, at least one of the modes allowed by the boundary conditions has to fall
within the interval [k2

−, k2
+].

3. Weakly Nonlinear Analysis

To highlight the different kinds of spatially inhomogeneous distribution of both populations on
the whole domain, it is necessary to derive the amplitude equations. Close to the Turing bifurcation
threshold, the dynamics of the system change slowly. Using multiple scale perturbation analysis
we derive the amplitude equations and study the stability and selection of various patterns. First
we approximate the model (2) by using the perturbations x̄ = x − x∗ and ȳ = y − y∗ around the
homogeneous steady-state E∗ = (x∗, y∗) and omitting the bar sign for simplicity, we get

∂

∂t

(
x
y

)
= L(γ21)

(
x
y

)
+ 1

2

(
fxxx2 + 2 fxyxy + fyyy2

gxxx2 + 2gxyxy + gyyy2

)

+ 1
6

(
fxxxx3 + 3 fxxyx2y + 3 fxyyxy2 + fyyyy3

gxxxx3 + 3gxxyx2y + 3gxyyxy2 + gyyyy3

)
,

(19)

where

L(γ21) =

(
γ11∆ γ12∆
γ21∆ γ22∆

)
+

(
a11 a12

a21 a22

)
(20)

the expression of aij are given in (11) and

fxx = −2d2 +
2βy∗(3ax∗ + abα− x∗3)

(a + bαx∗ + x∗2)3 , fyy =
2η2rα2x∗

(1 + ηαy∗)3 ,

fxy =
−ηrα

(1 + ηαy∗)2 +
(x∗2 − a)β

(a + bαx∗ + x∗2)2 , gyy = 0,

gxy =
c(a− x∗2)β

(a + bαx∗ + x∗2)2 , gxx = −2cy∗β(3ax∗ + abα− x∗3)
(a + bαx∗ + x∗2)3 ,

gxxx = −6cy∗β(a2 + x∗4 − a(6x∗2 + 4bx∗α + b2α2))

(a + bαx∗ + x∗2)4 , gxyy = 0,

gyyy = 0, gxxy =
2cβ(x∗3 − a(3x∗ + bα)

(a + bαx∗ + x∗2)3 , fyyy =
−6η3rα3x∗

(1 + ηαy∗)4 ,

fxxy =
2β(−x∗3 + 3ax∗ + abα)

(a + bαx∗ + x∗2)3 , fxyy =
2η2rα2

(1 + ηαy∗)3 ,

fxxx =
6y∗β(a2 + x∗4 − a(6x∗2 + 4bx∗α + b2α2)

(a + bαx∗ + x∗2)4 .

(21)
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At the onset of Turing instability, the solution of (2) can be expanded

X = Xs +
3

∑
j=1

X0[Aj exp(ikj · r) + Āj exp(−ikj · r)] (22)

where Xs represents the uniform steady state, X0 the direction of eigenmodes and Aj, Āj the amplitudes
associated with the modes kj, −kj. Introducing the additional small parameter ε, near the critical
value γcr

21 of Turing bifurcation, we expand the bifurcation parameter γ21 along x, y, t

γ21 = γcr
21 + εγ

(1)
21 + ε2γ

(2)
21 + ε3γ

(3)
21 + ...

x = εx1 + ε2x2 + ε3x3 + ...
y = εy1 + ε2y2 + ε3y3 + ...
t = t0 + εt1 + ε2t2 + ...

(23)

Then the Taylor expansion of L(γ21) with respect to ε is

L(γ21(ε)) = LT + εγ
(1)
21 M + ε2γ

(2)
21 M + ... (24)

where

LT =

(
a11 + γ11∆ a12 + γ12∆
a21 + γcr

21∆ a22 + γ22∆

)
, M =

(
0 0
∆ 0

)
. (25)

We take the amplitude Aj (j = 1, 2, 3), to be a variable that changes slowly with respect to time,

then
∂Aj
∂t0

= 0. It follows that
∂Aj

∂t
= ε

∂Aj

∂t1
+ ε2 ∂Aj

∂t2
+ o(ε2). (26)

Then using the standard method of multiple scale analysis we get four differential equations on
the polar angle and polar radius

τ0
∂θ

∂t
= −h

ρ2
1ρ2

2 + ρ2
1ρ2

3 + ρ2
2ρ2

3
ρ1ρ2ρ3

sin θ

τ0
∂ρ1

∂t
= µρ1 + hρ2ρ3 cos θ − b1ρ3

1 − b2(ρ
2
2 + ρ2

3)ρ1

τ0
∂ρ2

∂t
= µρ2 + hρ3ρ1 cos θ − b1ρ3

2 − b2(ρ
2
3 + ρ2

1)ρ2

τ0
∂ρ3

∂t
= µρ3 + hρ1ρ2 cos θ − b1ρ3

3 − b2(ρ
2
1 + ρ2

2)ρ3

(27)

with θ = θ1 + θ2 + θ3 and τ0, µ, h, b1, b2 expressed in Appendix A. Clearly µ > 0 when γ21 > γcr
21.

Details on the derivation of (27) are given in Appendix A.
The dynamical system (27) has the following different kinds of steady states:

• The homogeneous stationary state represented by

ρ1 = ρ2 = ρ3 = 0 (28)

which is stable for µ < µ2 = 0 and unstable for µ > µ2 = 0.
• Stripe pattern represented by

ρ1 =

√
µ

b1
6= 0, ρ2 = ρ3 = 0 and b1 > 0. (29)

The lower limit of the stability of stripe structures is obtained by a linear stability analysis of (27)
around ρj = ρS + δρj (j = 1, 2, 3 respectively) for the steady state value ρS. Substituting, from



Mathematics 2020, 8, 1244 8 of 20

(29), ρS =
√

µ
b1

one obtains λ1 = −2µ and λ2,3 = µ(1− b2
b1
)∓ |h|

√
µ
b1

. Stable stripe structures will

grow only if all the eigenvalues are negative. This implies b1 < b2 and µ > µ3 =
b1h2

(b2 − b1)2 .

• Hexagonal pattern represented by

ρ1 = ρ2 = ρ3 = ρ±H =
|h| ±

√
h2 + 4(b1 + 2b2)µ

2(b1 + 2b2)
. (30)

The lower limit of the existence of stable hexagonal structures is given by requiring h2 + 4(b1 +

2b2)µ > 0 that is µ > µH = − h2

4(b1 + 2b2)
. The upper limit of the stability of hexagonal patterns is

calculated by a linear stability analysis of (27) around ρj = ρH + δρj (j = 1, 2, 3). For the solution

ρH = ρ+H the eigenvalue λ1 is always negative, while λ2 = λ3 < 0 for µ < µH2 =
(2b1 + b2)h2

(b2 − b1)2 .

Therefore, the hexagons for ρH = ρ+H are stable if µ < µH2. For the solution ρH = ρ−H all the three
eigenvalues become positive, ensuring that the hexagonal structures are unstable in this case.

• Mixed state given by

ρ1 =
|h|

b2 − b1
, ρ2 = ρ3 =

√
µ− b1ρ2

1
b1 + b2

(31)

with µ > b1ρ2
1 and b2 > b1 > 0 and is always unstable.

4. Numerical Experiments

We illustrate here, through numerical simulations, the dynamics of the proposed model in some
specific parameter settings.

In the following, we assign a constant value to many of these parameters (as reported in Table 1)
and analyse the model behaviour while varying the predator–taxis sensitivity α and the birth rate of
prey r. Specifically, we are interested in investigating the impact of cross diffusion on model (2)–(5).

Table 1. Parameters of model (1) and their values in the numerical simulations.

Name Description Value

r birth rate of prey
η level of fear 0.5
α predator–taxis sensitivity
d1 natural death rate of prey 0.1
d2 death due to intra-prey competition 0.2
β rate of predation 0.5
a half-saturation constant 0.1
b tolerance limit of predation 0.5
c conversion efficiency of biomass 1
m natural death rate of predator 0.25

4.1. Stable Internal Equilibrium for the ODE System

First, we consider the ODE model (1). In this parameter setting we identify a nonempty region in
the r− α plane where an internal stable equilibrium E∗ = (x∗, y∗) exists. Figure 1 shows an example

of the stability regions for the equilibria E0 = (0, 0), E1 = (
r− d1

d2
, 0) and E∗ in the r− α plane. In the

blue region, corresponding to r ≤ d1, only the trivial equilibrium E0 exists and is stable; the orange
and green regions correspond to stability for the prey-only equilibrium E1 and the interior equilibrium
E∗, respectively; notice that these regions have a small overlap, resulting in a bistability region. Finally,
in the white region only E∗ exists but it is unstable. However, different choices for the two parameters
r, α within the stability region lead to a very different transient behavior of the trajectories: Figure 2
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shows an example of the x and y trajectories towards E∗ = (0.1734, 0.0273) along with their phase
plane portrait when α = 2.5 and r = 0.18, while Figure 3 reports a far more oscillating behavior in the
corresponding trajectories towards the equilibrium E∗ = (0.0591, 0.0113) when α = 0.5 and r = 0.16.
In both cases the initial points are chosen as x0 = 0.1, y0 = 0.05.

Then we add diffusion and consider model (2)–(5). As already observed in Section 2, self-diffusion
alone is unable to destabilize the internal equilibrium E∗. As a preliminary experiment, we simulated
the time evolution of the system in two space dimensions with γ12 = γ21 = 0. Even assuming as initial
conditions a random perturbation of the equilibrium E∗, both populations eventually reach a stationary
state whose value is constant in space and in every point of the domain equates E∗.

Figure 1. Stability regions for the equilibria E0 (blue), E1 (orange), E∗ (green) of model (1) in the r− α

plane; all the parameter values are chosen as in Table 1.

Figure 2. Left panel: trajectories of the prey and predator populations from model (1) towards the
internal equilibrium E∗(0.1734, 0.0273). Right panel: the corresponding phase plane portrait. Parameter
values: r = 0.18, α = 2.5; all the other values as in Table 1.

Figure 3. Trajectories of the prey and predator populations from model (1) towards the internal
equilibrium E∗(0.0591, 0.0113) (left panel) along with the corresponding phase plane portrait (right
panel). Parameter values: r = 0.16, α = 0.5; all the other values as in Table 1.
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4.2. Effect of Cross-Diffusion

We then assign fixed values to γ11, γ22 and γ12 and assume γ21 as a bifurcation parameter.
According to Theorem 1, it is possible to determine γcr

21 as the minimum value for Turing instability
to occur, along with an upper threshold γmax

21 above which the condition γ11γ22 − γ12γ21 > 0 is no
longer satisfied. The following Figure 4 represents the plots of h(k2) as defined in (14)2 for different
values of the bifurcation parameter γ21. In this specific example, we have assumed γ11 = 0.01, γ22 = 0.1,
γ12 = 0.01 so that it is γcr

21 ≈ 0.011 and γmax
21 = 0.1. In the right panel of the same figure, a zoom of the

same plots is shown. As can be seen, for γ21 = 0.01 < γcr
21 the curve does not intersect the horizontal

axis, so that there are not unstable modes. As γ21 increases, the range of unstable modes increases as
well. Similarly, as the bifurcation parameter increases, the real part of the corresponding eigenvalue λk
becomes positive (see Figure 5).

Figure 4. In the left panel, plots of h(k2) as a function of the wavenumber k for different values of the
bifurcation parameter γ21; in the right panel, a detail of the same plots. Here again α = 2.5, r = 0.18,
γ11 = 0.01, γ22 = 0.1, γ12 = 0.01 and other parameter values as in Table 1.

Figure 5. In the left panel, plots of the real part of the eigenvalue λk defined in (13) as a function of the
wavenumber k for different values of the bifurcation parameter γ21; in the right panel, a detail of the
same plots. Here again α = 2.5, r = 0.18, γ11 = 0.01, γ22 = 0.1, γ12 = 0.01 and other parameter values as
in Table 1.

We also investigate the effect of the fear level on the unstable modes. As shown in Figure 6, once
the parameter γ21 is fixed we can notice that higher values of the fear level η lead to wider regions of
unstable modes. For this reason, as it will be shown in the following experiments, the main effects
of a higher fear level are to accelerate the insurgence of patterns and to increase the instability of the
system, when the chosen γ21 is quite far from its critical value.
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Figure 6. Plots of h(k2) as a function of the wavenumber k for different values of the fear level η; in
the left panel it is γ21 = 0.02, in the right panel it is γ21 = 0.08. Moreover, α = 2.5, r = 0.18, γ11 = 0.01,
γ22 = 0.1, γ12 = 0.01 and other parameter values as in Table 1.

4.3. Some Specific Examples

Finally, we show by some examples how different parameter settings can lead to different
patterns, as discussed in Section 3. To do this, we slightly modify some of the parameters to obtain a
configuration that meets the criteria established in the cited Section for stripes, spots or mixed patterns.
All the parameter choices for these Examples are reported in Table 2. It should be noted here that all
the experiments have been performed by choosing the essential parameter γ21 quite close to the Turing
bifurcation value γcr

21, in order to obtain stable and regular patterns. When this request is not met,
the simulations can lead to solutions very irregularly distributed in space and whose values become
very far from the equilibrium point, prone to cascading numerical instability. This situation is well
documented in the literature: see, e.g., [28,29], where simulations of the same theoretical model lead to
very irregular and quite regular patterns, respectively, depending on the chosen values of the Turing
bifurcation parameter.

In the first Example we show both the x and y solution, to appreciate the correspondence of
patterns in the two functions: due to the choice of positive cross-diffusion coefficients, we always
observe that “hot”, or high density zones for one variable correspond to “cold” or low density zones
for the other variable at the same location. Because this behavior is common to all the considered
examples, in some of the other cases we decided to show the time evolution of just one of the solutions,
to illustrate the different patterns without redundancies in the representation.

Table 2. Parameter values adopted in the reported Examples. For the other parameters the fixed values
remain as those reported in Table 1. The equilibrium value (x∗, y∗) is also shown.

Examples 1 and 2 Example 3 Example 4

r 0.18 0.3 0.35
α 2.5 1.0 2.0
a 0.1 0.5 0.4
m 0.25 0.25 0.2
x∗ 0.1734 0.5 0.347
y∗ 0.0273 0.156 0.209

In all the examples we consider the two dimensional system on the square [0, 100]× [0, 100] with
no-flux boundary conditions. We always assume as initial condition a small random perturbation
of the internal equilibrium E∗. All the simulations adopt the usual five-point stencil finite difference
scheme for the diffusion part, that is treated implicitly, while the nonlinear part is explicitly discretized.
The resulting linear system is solved by GMres algorithm. The spatial mesh h is fixed in both directions
as 0.5, while the time step is fixed as 0.005. The results have been verified with finer resolution in both
space and time without significant differences.
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Example 1. In the parameter settings of Table 2, we first consider the effect of small diffusion rates: we fix
γ11 = 0.01, γ22 = 0.1 and γ12 = 0.01. Then it is γcr

21 = 0.01132 and the weakly nonlinear analysis leads to b1,
b2 > 0. We set γ21 = 0.015 so that both conditions for the stability of spots and stripes are satisfied and run the
simulation on the square [0,100] × [0,100] until the solution stabilizes. Figure 7 shows the mixed spots/stripes
pattern predicted by the theoretical analysis on both the x and y solutions. Here, and in all the following figures,
high density zones are represented in yellow and low density ones in blue. The simulation time T is reported
in the figure caption. In the same parameter setting, with a slight modification of a single diffusion coefficient
(γ11 = 0.05) the critical value becomes γcr

21 = 0.02437 and again the conditions for the stability of both stripes
and spots are met. Once chosen γ21 = 0.032, the following Figure 8 shows how the spots pattern in the x solution
evolves eventually into a mixed pattern.

Figure 7. Plots of the solutions of system (2)–(5) in the parameter setting of Example 1 for T = 1500.
Here γ21 = 0.015. Left panel: x solution, right panel: y solution.

Figure 8. Plots of the solution x of system (2)–(5) in the parameter setting of Example 1 for T = 1500
(left panel), T = 3000 (right panel). Here γ21 = 0.032.

Example 2. To investigate the effect of higher diffusion rates, we consider γ11 = 1, γ22 = 10 and γ12 = 0.1.
Then it is γcr

21 = 1.1628 and the weakly nonlinear analysis leads to b1, b2 > 0. We set γ21 = 1.3 to meet the
conditions for the stability of stripes and run the simulations, obtaining patterns that emerge as irregular spots
and then stabilizes in the large stripes shown in Figure 9 for time T = 5000. It should be noted how the higher
values of the diffusion result in larger patterns.

With a slightly different choice for the diffusion coefficients, γ11 = 0.1, γ22 = 10 and γ12 = 0.01, it is
γcr

21 = 0.446 and spots patterns are to be expected from the theory. The following Figure 10, referring to
simulations carried out for γ21 = 0.8 up to T = 3000, shows how the pattern stabilizes in large spots,
with the usual correspondence between high density zones for one species and low density zones
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for the other. Let us also show in this parameter setting how different levels of fear η affect both the
equilibrium value of the predator population and the timing of pattern insurgence: Figure 11 shows
simulation results for the predator population in the same setting of Figure 9 when patterns stabilize
with different fear levels: in the left panel it is η = 0.1 and T = 6000, while in the right panel it is η = 1
and T = 4000. These plots should be compared with the bottom right panel of Figure 9. It could be
clearly seen that higher fear levels result in lower values for y∗ and that a similar pattern structure is
reached, even if in different simulation times. Moreover, further experiments (not shown here) with
even higher values of η, have proven that excessively enlarging the range of unstable modes can lead
to instability of these patterns.

Example 3. In the two following examples we investigate different parameter settings, leading to different
equilibrium points, as detailed in Table 2. By fixing γ11 = 0.25, γ22 = 0.5, γ12 = 0.1, it is γcr

21 = 0.231115 and
the weakly nonlinear analysis predicts that stable stripes can occur. We set γ21 = 0.35 and run the simulation.
Figure 12 shows the evolution of the x solution from a transient spot pattern (for T = 600) to the expected stable
stripes pattern for T = 2000. It should be noted that, due to the chosen diffusions, in this setting the stripes
pattern is narrow and differently oriented in different zones of the spatial domain.

Example 4. In this parameter setting, the internal equilibrium is E∗ ≈ (0.347, 0.209); for the spatial system,
once fixed γ11 = 0.2, γ22 = 1, γ12 = 0.1, it is γcr

21 = 0.2781 and the weakly nonlinear analysis leads to b1, b2 > 0.
We set γ21 = 0.3, very close to the critical threshold so that only the stability conditions for spots are met and
run the simulation until the solution stabilizes at about T = 6000. Figure 13 shows the spot patterns predicted
by the theoretical analysis for both the x and y solutions.

Figure 9. Plots of the solutions x and y of system (2)–(5) in the parameter setting of Example 2 for
T = 2000 (first row) and T = 5000 (second row). Here it is γ11 = 1, γ22 = 10, γ12 = 0.1 and γ21 = 1.5.
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Figure 10. Plots of the solutions x and y of system (2)–(5) in the parameter setting of Example 2 for
T = 1500 (first row) and T = 3000 (second row). Here γ11 = 0.1, γ22 = 10, γ12 = 0.01 and γ21 = 0.8.

Figure 11. Plots of the solution y of system (2)–(5) in the same parameter setting of Example 2 apart
from η = 0.1, T = 6000 (left panel) and η = 1, T = 4000 (right panel). Here γ11 = 1, γ22 = 10, γ12 = 0.1
and γ21 = 1.3. The corresponding equilibrium values for the ODE system (1) are (0.1734, 0.0305) and
(0.1374, 0.0243), respectively.
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Figure 12. Plots of the solution x of system (2)–(5) in the parameter setting of Example 3 for T = 500,
T = 1000. Here γ21 = 0.35.

Figure 13. Plots of the solutions x (left panel) and y (right panel) of system (2)–(5) in the parameter
setting of Example 4 for T = 6000. Here γ21 = 0.3.

However, when we choose a higher value for the bifurcation parameter γ21 = 0.35, the spot
patterns lose their stability and rapidly evolve into stripes, as the following Figure 14 shows.

Figure 14. Plots of the solution x of system (2)–(5) in the parameter setting of Example 4 for T = 1000
and T = 2000. Patterns for the y solution (not shown) are complementary to these ones. Here γ21 = 0.35.
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5. Conclusions

The spatial distribution of ecological species in their habitat, along with the related governing
mechanisms and the consequent scenarios, is a focus of special interest in population dynamics.
While self-diffusion terms are used to model the random movement of prey and predator individuals,
cross-diffusion terms are included in addition to population models to account for the influence of
species interactions on the individuals’ movement. The fundamental mechanisms of these complex
spatio-temporal dynamics can be appropriately investigated by means of spatial mathematical models.
In this paper we have explored the Turing instability induced by cross-diffusion in a predator–prey
system with fear and group defense. In fact, we have found that self-diffusion alone does not induce
Turing instability; on the contrary, cross-diffusion is the essential factor causing the occurrence of
the spatial patterns. Cross-diffusion-driven instability conditions have been obtained through the
linear stability analysis. The cross-diffusion coefficient γ21 has been considered to be the bifurcation
parameter and the Turing threshold γ21 = γcr

21 has been evaluated numerically and analytically.
By performing a weakly nonlinear analysis, we have written the amplitude equations near the Turing
bifurcation value and we have obtained the conditions for different shapes of pattern, such as hexagons
(spots) and stripes to occur. Numerical simulations have confirmed these theoretical findings in
different parameter settings. They have also qualitatively explored the relationship between the
high/low value of the diffusion coefficients and the scale of the obtained patterns. Finally, the specific
modelling choices resulted in a moderate effect of the fear level on the spatial instability of the internal
equilibrium, simply affecting the timing of the insurgence of patterns, in comparison with other models
considered in the literature [12,14], where the variation of the fear level induced dramatic changes in
the pattern structure. This finding, mainly due to the adopted representation of the group defense,
makes the proposed model more suitable to represent different scenarios where, as discussed, fear
in prey principally affects predators’ evolution, by lowering their equilibrium value. The methods
and findings in this study may provide challenges and ideas on the investigation of spatial pattern
formation in other predator–prey systems and in many other fields of applied mathematics. Other
aspects of the problem could be examined, such as the Turing–Hopf bifurcations and the consequent
oscillating pattern, travelling waves, other response functionals and an eventual comparative study of
the effects on the pattern formation scenario.

Author Contributions: Conceptualization, I.T.; formal analysis, I.T.; numerical simulations, M.F.C.; writing
(original draft preparation, review and editing), M.F.C. and I.T.; funding acquisition, M.F.C. and I.T. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by Regione Campania Project REMIAM and Regione Campania
Project ADVISE.

Acknowledgments: This paper has been performed under the auspices of the G.N.F.M. and G.N.C.S. of INdAM.
The authors would like to thank Fasma Diele for her useful suggestions on the numerical implementation of the
experiments.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A. Derivation of the Amplitude Equation

Introducing the multiple time scales t0 = t, t1 = εt, t2 = ε2t, we have

∂

∂t
=

∂

∂t0
+ ε

∂

∂t1
+ ε2 ∂

∂t2
+ o(ε2) (A1)

From (19) and balancing the coefficients of εj, we have at o(ε)

LT

(
x1

y1

)
=

(
0
0

)
(A2)
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at o(ε2)

LT

(
x2

y2

)
=

∂

∂t1

(
x1

y1

)
− γ

(1)
21 M

(
x1

y1

)
− 1

2

(
fxxx2

1 + 2 fxyx1y1 + fyyy2
1

gxxx2
1 + 2gxyx1y1 + gyyy2

1

)
=

(
Fx

Fy

)
(A3)

at o(ε3)

LT

(
x3

y3

)
=

(
∂x2
∂t1

+ ∂x1
∂t2

∂y2
∂t1

+ ∂y1
∂t2

)
− γ

(1)
21 M

(
x2

y2

)
− γ

(2)
21 M

(
x1

y1

)

−
(

fxxx1x2 + fxy(x1y2 + x2y1) + fyyy1y2

gxxx1x2 + gxy(x1y2 + x2y1) + gyyy1y2

)
(A4)

−1
6

(
fxxxx3

1 + 3 fxxyx2
1y1 + 3 fxyyx1y2

1 + fyyyy3
1

gxxxx3
1 + 3gxxyx2

1y1 + 3gxyyx1y2
1 + gyyyy3

1

)
=

(
Gx

Gy

)
Solving (A2) we find (

x1

y1

)
=

(
φ

1

)(
3

∑
j=1

Wj exp(ikj · r) + c.c.

)
, (A5)

where c.c. denotes the complex conjugate of the previous terms, Wj is the amplitude of the mode

exp(ikj · r) (j = 1, 2, 3) and φ =
γ22k2

cr − a22

a21 − γcr
21k2

cr
. By the Fredholm solvability condition, the vector

functions of the right-hand side of (A3) must be orthogonal to the eigenvectors of the zero eigenvalue

of L∗T which is the adjoint operator of LT . The eigenvectors of the operator L∗T are

(
1
ψ

)
exp(−ikj ·

r) + c.c.(j = 1, 2, 3) with ψ =
γ11k2

cr − a11

a21 − γcr
21k2

cr
.

From orthogonality condition

(1, ψ)

(
Fj

x

Fj
y

)
= 0, (j = 1, 2, 3)

where Fj
x and Fj

y are the coefficients of exp(ikj · r) in Fx and Fy we obtain
(φ + ψ)

∂W1

∂t1
= −k2

crγ
(1)
21 φψW1 + ( f2 + ψg2)W̄2W̄3

(φ + ψ)
∂W2

∂t1
= −k2

crγ
(1)
21 φψW2 + ( f2 + ψg2)W̄3W̄1

(φ + ψ)
∂W3

∂t1
= −k2

crγ
(1)
21 φψW3 + ( f2 + ψg2)W̄1W̄2

(A6)

where {
f2 = fxxφ2 + 2 fxyφ + fyy

g2 = gxxφ2 + 2gxyφ + gyy
(A7)

Following similar calculations for (A3) its solution is of type(
x2

y2

)
=

(
X0

Y0

)
+

3

∑
j=1

(
Xj
Yj

)
exp(ikj · r) +

3

∑
j=1

(
Xjj
Yjj

)
exp(2ikj · r)

+
3

∑
j=1

(
X12

Y12

)
exp(i(k1 − k2) · r) +

3

∑
j=1

(
X23

Y23

)
exp(i(k2 − k3) · r)
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+
3

∑
j=1

(
X31

Y31

)
exp(i(k3 − k1) · r) + c.c. (A8)

Substituting in (A3) and collecting the coefficients of exp(0), exp(ikj · r), exp(2ikj · r), exp(i(k1−
k2) · r) (and permuting the suffixes we get also the coefficients corresponding to exp(i(k2 − k3) ·
r), exp(i(k3 − k1) · r)) denoting by

Mk =

(
a11 − γ11k2 a12 − γ12k2

a21 − γcr
21k2 a22 − γ22k2

)
(A9)

we get, for Xj = φYj, j = 1, 2, 3(
X0

Y0

)
= −M−1

0

(
f2

g2

)
(|W1|2 + |W2|2 + |W3|2) =

(
Zx0

Zy0

)
(|W1|2 + |W2|2 + |W3|2)

(
X11

Y11

)
= −M−1

2kcr

(
f2
2
g2
2

)
W2

1 =

(
Zx1

Zy1

)
W2

1 ,

(
X12

Y12

)
= −M−1√

3kcr

(
f2

g2

)
W1W̄2 =

(
Zx2

Zy2

)
W1W̄2

At o(ε3), collecting the coefficients (G1
x, G1

y)
T of exp(ik1 · r) from (A4), we find(

G1
x

G1
y

)
=

(
φ( ∂Y1

∂t1
+ ∂W1

∂t2
)

∂Y1
∂t1

+ ∂W1
∂t2

)
+ k2

cr M

(
φY1

Y1

)
+ k2

cr M

(
φW1

W1

)

−


(( fxxφ + fxy)(Zx0 + Zx1) + ( fxyφ + fyy)(Zy0 + Zy1))|W1|2 + [( fxxφ + fxy)(Zx0 + Zx2)

+( fxyφ + fyy)(Zy0 + Zy2)(|W2|2 + |W3|2)]W1 + f2(W̄2Ȳ3 + W̄3Ȳ2)

((gxxφ + gxy)(Zx0 + Zx1) + (gxyφ + gyy)(Zy0 + Zy1))|W1|2 + [(gxxφ + gxy)(Zx0 + Zx2)

+(gxyφ + gyy)(Zy0 + Zy2)(|W2|2 + |W3|2)]W1 + g2(W̄2Ȳ3 + W̄3Ȳ2)


−
(

(|W1|2 + |W2|2 + |W3|2)( fxxxφ3 + 3 fxxyφ2 + 3 fxyyφ + fyyy

(|W1|2 + |W2|2 + |W3|2)(gxxxφ3 + 3gxxyφ2 + 3gxyyφ + gyyy

)
W1 (A10)

Analogously, through the permutation of the subscript of W and Y, we can find the other

coefficients (G2
x, G2

y)
T , (G3

x, G3
y)

T . From Fredholm solvability condition (1, ψ)

(
Gj

x

Gj
y

)
= 0, j = 1, 2, 3

it follows that 

(φ + ψ)(
∂W1

∂t2
+

∂Y1

∂t1
) = −k2

crφψ(γ
(1)
21 Y1 + γ

(2)
21 W1)

+h1(W̄2Ȳ3 + W̄3Ȳ2)− (G1|W1|2 + G2(|W2|2 + |W3|2))W1

(φ + ψ)(
∂W2

∂t2
+

∂Y2

∂t1
) = −k2

crφψ(γ
(1)
21 Y2 + γ

(2)
21 W2)

+h1(W̄3Ȳ1 + W̄1Ȳ3)− (G1|W2|2 + G2(|W3|2 + |W1|2))W2

(φ + ψ)(
∂W3

∂t2
+

∂Y3

∂t1
) = −k2

crφψ(γ
(1)
21 Y3 + γ

(2)
21 W3)

+h1(W̄1Ȳ2 + W̄2Ȳ1)− (G1|W3|2 + G2(|W1|2 + |W2|2))W3

(A11)
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with
h1 = f2 + ψg2

G1 = −[( fxxφ + fxy + ψ(gxxφ + gxy))(Zx0 + Zx1)

+( fxyφ + fyy + ψ(gxyφ + gyy))(Zy0 + Zy1) + f3 + ψg3]

G2 = −[( fxxφ + fxy + ψ(gxxφ + gxy))(Zx0 + Zx2)

+( fxyφ + fyy + ψ(gxyφ + gyy))(Zy0 + Zy2) + f3 + ψg3]

f3 = fxxxφ3 + 3 fxxyφ2 + 3 fxyyφ + fyyy

g3 = gxxxφ3 + 3gxxyφ2 + 3gxyyφ + gyyy .

(A12)

The amplitude Aj can be expanded as

Aj = εWj + ε2Yj + o(ε2)

and from (26) we obtain the amplitude equation
τ0

∂A1

∂t
= µA1 + hĀ2 Ā3 − (b1|A1|2 + b2(|A2|2 + |A3|2))A1

τ0
∂A2

∂t
= µA2 + hĀ3 Ā1 − (b1|A2|2 + b2(|A3|2 + |A1|2))A2

τ0
∂A3

∂t
= µA3 + hĀ1 Ā2 − (b1|A3|2 + b2(|A1|2 + |A2|2))A3

(A13)

where

τ0 = − (φ + ψ)

k2
crφψγcr

21
, µ =

γ21 − γcr
21

γcr
21

, h = − h1

k2
crφψγcr

21
, b1 = − G1

k2
crφψγcr

21
, b2 = − G2

k2
crφψγcr

21
.

Each amplitude can be written through a mode ρj = |Aj| and a corresponding phase angle θj
as Aj = ρj exp(iθj), j = 1, 2, 3. Substituting in (A13) and separating the real and imaginary parts we
get (27).
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