
mathematics

Article

Mobile Robot Wall-Following Control Using Fuzzy
Logic Controller with Improved Differential Search
and Reinforcement Learning

Cheng-Hung Chen 1 , Shiou-Yun Jeng 2 and Cheng-Jian Lin 2,3,*
1 Department of Electrical Engineering, National Formosa University, Yunlin 632, Taiwan;

chchen.ee@nfu.edu.tw
2 Department of Computer Science and Information Engineering, National Chin-Yi University of Technology,

Taichung 411, Taiwan; shiouyun@ncut.edu.tw
3 College of Intelligence, National Taichung University of Science and Technology, Taichung 404, Taiwan
* Correspondence: cjlin@ncut.edu.tw

Received: 10 June 2020; Accepted: 29 July 2020; Published: 31 July 2020
����������
�������

Abstract: In this study, a fuzzy logic controller with the reinforcement improved differential search
algorithm (FLC_R-IDS) is proposed for solving a mobile robot wall-following control problem.
This study uses the reward and punishment mechanisms of reinforcement learning to train the
mobile robot wall-following control. The proposed improved differential search algorithm uses
parameter adaptation to adjust the control parameters. To improve the exploration of the algorithm,
a change in the number of superorganisms is required as it involves a stopover site. This study
uses reinforcement learning to guide the behavior of the robot. When the mobile robot satisfies
three reward conditions, it gets reward +1. The accumulated reward value is used to evaluate the
controller and to replace the next controller training. Experimental results show that, compared with
the traditional differential search algorithm and the chaos differential search algorithm, the average
error value of the proposed FLC_R-IDS in the three experimental environments is reduced by 12.44%,
22.54% and 25.98%, respectively. Final, the experimental results also show that the real mobile robot
using the proposed method can effectively implement the wall-following control.

Keywords: fuzzy logic control; wall-following control; mobile robot; reinforcement learning;
differential search algorithm

1. Introduction

Wall-following [1,2], navigation [3], path tracking [4], and parallel-parking controls are prevalent
in the field of robotics and artificial intelligence research. The design of robot navigation and
parallel-parking behavior pushes the robot to move in an unknown environment. Wall-following
behavior control is significant for mobile robot behavior. Zadah [5] proposed fuzzy logic in 1965;
however, the logic was characterized by a high degree of uncertainty, complexity, and nonlinearity.
Nevertheless, it was able to solve authentic world uncertainty by simulating the human experience
in the form of rules. Many researchers applied fuzzy logic controllers (FLC) [6] to mobile robot
navigation [7] and wall-following tasks [8]. Moreover, an optimization method has been proposed
to improve the performance of FLC, such as supervised learning [9], reinforcement learning [10,11],
and population-based learning [12].

Traditional supervised learning requires training data, whereas reinforcement learning does
not require training data as the rewards or punishment mechanism is only needed for the training.
Civicioglu [13] proposed a new heuristic differential search (DS) algorithm in 2012, which was originally
used for geodetic transformation as the DS algorithm and other traditional algorithms were similar

Mathematics 2020, 8, 1254; doi:10.3390/math8081254 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-6574-3102
https://orcid.org/0000-0003-1767-8427
https://orcid.org/0000-0002-8709-2715
http://dx.doi.org/10.3390/math8081254
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/8/1254?type=check_update&version=2

Mathematics 2020, 8, 1254 2 of 21

and could offer the best local solution. To balance exploration and exploitation, many scholars have
proposed methods to improve and optimize the DS algorithm [14–17]. The control parameter setting of
the heuristic algorithm is important for evolution. This study proposes an adaptive parameter [18,19]
for the IDS algorithm. Reinforcement learning is also widely used in robot training. Frommberger
et al. [20] used reinforcement learning to achieve knowledge transfer and simulate the navigation
technique in a real-world robotic platform [21–23]. Several scholars use reinforcement to learn the
robot navigation problem. From a review of the literature, reinforcement learning can effectively solve
the robot navigation problem. In addition, other control methods are used to solve robot-related issues.

The most common types of designed controller in mobile robot are divided into
non-optimization [24–27] and optimization [28–30] approaches. Turennout et al. [24] proposed the
robot-follow-the wall and discussed its control problem characteristics. Wang et al. [25] presented
spiking neural networks to enhance the mobile robot to follow the wall. The PID-fuzzy controller
was proposed for handling a remote surgical robot by Haidegger et al. [26]. Farooq et al. [27] used a
fuzzy logic controller (FLC) to enable mobile robots to follow the wall effectively. Castillo et al. [28] use
the application of ant colony optimization and particle swarm optimization on the optimization of
membership functions of FLC for an autonomous mobile robot of a FLC. The new multi-objective of ant
colony optimization algorithm is developed to optimize the FLS structure and parameters. This method
controls the direction and movement speed of the mobile robot when performing wall-tracking tasks [29].
Grey wolf optimizer-based approaches were proposed for the optimal path planning and optimal tuning
of tracking fuzzy controllers for nonholonomic wheeled mobile robots by Precup et al. [30].

In this study, an improved differential search (IDS) algorithm is proposed to optimize parameters
of a FLC and to achieve mobile robot wall-following control task. Using reinforcement learning to train
the robot controller, three conditions are defined. At the same time, three conditions are presented
for a reward value. The IDS algorithm uses self-adaptive parameters to adjust control parameters,
changing a chance of a superorganism in a stopover site. The results are compared with the other
algorithms regarding their efficiency in designing the FLC of the wall-following task. Simulations and
experiments prove that the proposed FLC_R-IDS method effectively implements the mobile robot
wall-following control.

The rest of the study is organized as follows: Section 2 describes the FLC for mobile robots;
Section 3 presents the proposed reinforcement-based improved differential search algorithm for mobile
robot wall-following control; Section 4 presents the training environment, training results, and test
environment simulations; finally, Section 5 provides conclusions and future works.

2. Mobile Robot Control Using a Fuzzy Logic Controller

This section discusses the mobile robots and the architecture of FLC. The mobile robot is trained
to follow the wall and must be guided by reinforcement learning reward conditions. Figure 1 shows
the architecture of the FLC with the reinforcement-based improved differential search algorithm
(FLC_R-IDS) for the mobile robot.Mathematics 2020, 8, x FOR PEER REVIEW 3 of 21

IDS
Reinforcement

Learning
(Reward)

FLC

Training Environment

Mobile Robot
uc(t)

ur(t)

Figure 1. Architecture of the proposed FLC_R-IDS for mobile robot.

2.1. Description of Mobile Robots

The experiments carried out by a mobile robot (PIONEER 3-DX). In many navigation design and
robot movement problems, the Pioneer 3-DX robot is a pony lightweight, two-wheel, two-motor
differential drive ideal for indoor environmental laboratory or smaller classroom use. The robot itself
is equipped with eight front ultrasonic sensors, batteries, motor encoders, microcontrollers with
ARCOS firmware and a Pioneer Mobile Robot Software Development Kit. The robot ultrasonic sensor
measures a range between 0.15 m and approximately 4.75 m. The ultrasonic sensor positions in
Pioneer 3-DX were fixed in the following configuration: two on the side and six facing outward at 20°
intervals of 180° forward coverage, as shown in Figure 2.

Figure 2. Pioneer 3-DX robot.

2.2. Architecture of Fuzzy Logic Controller

In the architecture of a FLC, the right four ultrasonic sensors (S1, S2, S3, and S4) are FLC inputs.
The left-wheel and right-wheel speeds of the robot are FLC outputs. The FLC realizes a fuzzy model
in the following form: ܴݔ ܨܫൣ :݆ ݈݁ݑଵ ݅ܣ ݏଵ௝ ܽ݊݀ ݔଶ ݅ܣ ݏଶ௝ ܽ݊݀ ݔଷ ݅ܣ ݏଷ௝ ܽ݊݀ ݔସ ݅ܣ ݏସ௝൧ ܶݕ ܰܧܪ௟ ݅ݑ ݏ௝ ܽ݊݀ ݕ௥ ݅ݒ ݏ௝

where x1 is an ultrasonic sensor value of S1; x2 is an ultrasonic sensor value of S2; x3 is an ultrasonic
sensor value of S3; x4 is an ultrasonic sensor value of S4; Aij is the linguistic term of the precondition
part; yl is the left-wheel speed of the robot; yr is the right-wheel speed of the robot; uj and vj are the
weights of consequent parts.

A fuzzification operation serves as the Gaussian membership function:













 −−
= 2

2][
exp

ij

iji
A

mx
ij σ

μ (1)

where mij represents the mean of the Gaussian membership function of the fuzzy set, whereas σij
represents the variance of the Gaussian membership function of the fuzzy set.

Figure 1. Architecture of the proposed FLC_R-IDS for mobile robot.

Mathematics 2020, 8, 1254 3 of 21

2.1. Description of Mobile Robots

The experiments carried out by a mobile robot (PIONEER 3-DX). In many navigation design
and robot movement problems, the Pioneer 3-DX robot is a pony lightweight, two-wheel, two-motor
differential drive ideal for indoor environmental laboratory or smaller classroom use. The robot itself is
equipped with eight front ultrasonic sensors, batteries, motor encoders, microcontrollers with ARCOS
firmware and a Pioneer Mobile Robot Software Development Kit. The robot ultrasonic sensor measures
a range between 0.15 m and approximately 4.75 m. The ultrasonic sensor positions in Pioneer 3-DX
were fixed in the following configuration: two on the side and six facing outward at 20◦ intervals of
180◦ forward coverage, as shown in Figure 2.

Mathematics 2020, 8, x FOR PEER REVIEW 3 of 21

IDS

Reinforcement

Learning

(Reward)

FLC

Training Environment

Mobile Robot
uc(t)

ur(t)

Figure 1. Architecture of the proposed FLC_R-IDS for mobile robot.

2.1. Description of Mobile Robots

The experiments carried out by a mobile robot (PIONEER 3-DX). In many navigation design and

robot movement problems, the Pioneer 3-DX robot is a pony lightweight, two-wheel, two-motor

differential drive ideal for indoor environmental laboratory or smaller classroom use. The robot itself

is equipped with eight front ultrasonic sensors, batteries, motor encoders, microcontrollers with

ARCOS firmware and a Pioneer Mobile Robot Software Development Kit. The robot ultrasonic sensor

measures a range between 0.15 m and approximately 4.75 m. The ultrasonic sensor positions in

Pioneer 3-DX were fixed in the following configuration: two on the side and six facing outward at 20°

intervals of 180° forward coverage, as shown in Figure 2.

Figure 2. Pioneer 3-DX robot.

2.2. Architecture of Fuzzy Logic Controller

In the architecture of a FLC, the right four ultrasonic sensors (S1, S2, S3, and S4) are FLC inputs.

The left-wheel and right-wheel speeds of the robot are FLC outputs. The FLC realizes a fuzzy model

in the following form:

𝑅𝑢𝑙𝑒 𝑗: [𝐼𝐹 𝑥1 𝑖𝑠 𝐴1𝑗 𝑎𝑛𝑑 𝑥2 𝑖𝑠 𝐴2𝑗 𝑎𝑛𝑑 𝑥3 𝑖𝑠 𝐴3𝑗 𝑎𝑛𝑑 𝑥4 𝑖𝑠 𝐴4𝑗]

𝑇𝐻𝐸𝑁 𝑦𝑙 𝑖𝑠 𝑢𝑗 𝑎𝑛𝑑 𝑦𝑟 𝑖𝑠 𝑣𝑗

where x1 is an ultrasonic sensor value of S1; x2 is an ultrasonic sensor value of S2; x3 is an ultrasonic

sensor value of S3; x4 is an ultrasonic sensor value of S4; Aij is the linguistic term of the precondition

part; yl is the left-wheel speed of the robot; yr is the right-wheel speed of the robot; uj and vj are the

weights of consequent parts.

A fuzzification operation serves as the Gaussian membership function:













 


2

2][
exp

ij

iji

A

mx

ij 
 (1)

where mij represents the mean of the Gaussian membership function of the fuzzy set, whereas σij

represents the variance of the Gaussian membership function of the fuzzy set.

Figure 2. Pioneer 3-DX robot.

2.2. Architecture of Fuzzy Logic Controller

In the architecture of a FLC, the right four ultrasonic sensors (S1, S2, S3, and S4) are FLC inputs.
The left-wheel and right-wheel speeds of the robot are FLC outputs. The FLC realizes a fuzzy model in
the following form:

Rule j :
[
IF x1 is A1 j and x2 is A2 j and x3 is A3 j and x4 is A4 j

]
THEN yl is u j and yr is v j

where x1 is an ultrasonic sensor value of S1; x2 is an ultrasonic sensor value of S2; x3 is an ultrasonic
sensor value of S3; x4 is an ultrasonic sensor value of S4; Aij is the linguistic term of the precondition
part; yl is the left-wheel speed of the robot; yr is the right-wheel speed of the robot; uj and vj are the
weights of consequent parts.

A fuzzification operation serves as the Gaussian membership function:

µAi j = exp

−
[
xi−mi j

]2

σ2
i j

 (1)

where mij represents the mean of the Gaussian membership function of the fuzzy set, whereas σij
represents the variance of the Gaussian membership function of the fuzzy set.

In the fuzzy implication operation using product operation, the fuzzy implication evaluates the
consequent part of each rule as follows:

µA j =

∏
i

µAi j

 (2)

In the defuzzification operation, the center of the area is used in this study, and it is described as:

yl =

∑
j
µA ju j∑

j
µA j

, yr =

∑
j
µA jv j∑

j
µA j

(3)

where yl is the left-wheel speed of the robot, and yr is the right-wheel speed of the robot.

Mathematics 2020, 8, 1254 4 of 21

3. The Proposed Reinforcement-Based Improved Differential Search Algorithm

The DS algorithm is a new heuristic algorithm [13]. The main concept of the DS algorithm is
the simulation of the migration behavior of the creature. Numerical optimization algorithms have
some common problems because they are characterized by poor exploration ability, and it is easy to
fall into the local solution. To improve the performance of the algorithm, this study proposed the IDS
algorithm. The IDS algorithm is inspired by parameter adaptability, in which the controller adjusts the
parameters to the most suitable value during the evolution. In addition, adjusting the probability of
parameter exchange enables the algorithm to be more diverse and to perform better than the original
DS algorithm. On the mobile robot wall-following control, the IDS algorithm associated with the FLC
is discussed in Section 2.1. This study proposes a fuzzy logic controller with the reinforcement-based
improved differential search algorithm (FLC_R-IDS) for solving the mobile robot wall-following control
problem. The proposed IDS is an evolutionary algorithm to optimize parameters of the FLC. Therefore,
all parameters of the FLC are encoded into each individual of IDS. Moreover, each individual (i.e., FLC)
is evaluated by reinforcement learning—that is, the performance of each individual is defined as the
reward value of the mobile robot wall-following control in the training environment.

The DS algorithm that simulates the migration behavior of the creature is discussed. The DS
algorithm simulates the biological process of the food energy migration. The superorganism often
migrates to areas of abundant resources during seasonal changes. The Brownian-like random-walk
movement is used to determine the migration of the superorganism; its pseudocode is shown in
Algorithm 1.

Algorithm 1. A comparison of different identifiers in terms of dynamic system identification

Mathematics 2020, 8, x FOR PEER REVIEW 4 of 21

In the fuzzy implication operation using product operation, the fuzzy implication evaluates the
consequent part of each rule as follows:











= ∏

i
AA ijj

μμ (2)

In the defuzzification operation, the center of the area is used in this study, and it is described
as:




=

j
A

j
jA

l
j

j
u

y
μ

μ
,




=

j
A

j
jA

r
j

j
v

y
μ

μ
 (3)

where yl is the left-wheel speed of the robot, and yr is the right-wheel speed of the robot.

3. The Proposed Reinforcement-Based Improved Differential Search Algorithm

The DS algorithm is a new heuristic algorithm [13]. The main concept of the DS algorithm is the
simulation of the migration behavior of the creature. Numerical optimization algorithms have some
common problems because they are characterized by poor exploration ability, and it is easy to fall
into the local solution. To improve the performance of the algorithm, this study proposed the IDS
algorithm. The IDS algorithm is inspired by parameter adaptability, in which the controller adjusts
the parameters to the most suitable value during the evolution. In addition, adjusting the probability
of parameter exchange enables the algorithm to be more diverse and to perform better than the
original DS algorithm. On the mobile robot wall-following control, the IDS algorithm associated with
the FLC is discussed in Section 2.1. This study proposes a fuzzy logic controller with the
reinforcement-based improved differential search algorithm (FLC_R-IDS) for solving the mobile
robot wall-following control problem. The proposed IDS is an evolutionary algorithm to optimize
parameters of the FLC. Therefore, all parameters of the FLC are encoded into each individual of IDS.
Moreover, each individual (i.e., FLC) is evaluated by reinforcement learning—that is, the
performance of each individual is defined as the reward value of the mobile robot wall-following
control in the training environment.

The DS algorithm that simulates the migration behavior of the creature is discussed. The DS
algorithm simulates the biological process of the food energy migration. The superorganism often
migrates to areas of abundant resources during seasonal changes. The Brownian-like random-walk
movement is used to determine the migration of the superorganism; its pseudocode is shown in
Algorithm 1.

Algorithm 1. A comparison of different identifiers in terms of dynamic system identification.
Input: Superorganism
Output: Stopover site

1 Initialization of the population of Superorganism, where Superorganism = [Artificial Organism];
2 Evaluation of the Superorganism;
3 while cycle do
4 Randomly selected donor;
5 Calculate the p1, p2 and Scale;
6 Generate the Stopover site, where Stopover site = Superorganism + Scale×(donor − Superorganism);
7 //The Superorganism participating in the search process is determined through random scheme
8 Evaluation of the Stopover site;
9 if Stopover site is better than Superorganism then

10 Superorganism is replaced by Stopover site;
11 end
12 end
13 return Stopover site;

In the DS algorithm, the initial position of the superorganism is expressed as follows:

Xi, j = rand·
(
up j − low j

)
+ low j (4)

where rand is the uniform random number distribution between 0 and 1.
Randomly selected individual of superorganism is donor = Xrand_selecte(i), and superorganism uses

the donor to find the stopover sites. However, the size of the stopover site depends on the scale value.
The scale is expressed as follows:

Scale = rand[2·rand1]·(rand2 − rand3) (5)

where rand1, rand2, and rand3 are gamma random number distribution, and rand is a uniform random
number distribution between 0 and 1.

Mathematics 2020, 8, 1254 5 of 21

In the DS algorithm, the stopover site position is expressed as follows:

Stopovesite = Superorganism + Scale× (donor− Superorganism) (6)

In the DS algorithm, the members of the superorganism are randomly assigned to stopover site
search process. In assessing the stopover site, if the stopover site is better than the superorganism,
the superorganism will migrate to the stopover site. With the constant migration of position,
the superorganism will migrate to the best global solution.

3.1. Improved Differential Search Algorithm for Optimizing FLC Parameters

Although the original DS algorithm can solve the problem, they lack the diversity of the algorithm
and the exploration ability [14]. To improve the diversity of algorithms and exploration capabilities
and to avoid falling into the best local solution in the evolutionary process, the IDS algorithm adjusts
the number of times a random scheme participates in the stopover site. For some heuristic algorithms,
no fixed control parameters are better suited to solve different problems [18,19]. The original DS
algorithm has two control parameters (p1 and p2) that affect the proportion of the superorganism in
the stopover site. A flowchart of the IDS is shown in Figure 3 and explained as follows:

Mathematics 2020, 8, x FOR PEER REVIEW 5 of 21

௜ܺ,௝ = ݀݊ܽݎ ∙ ൫݌ݑ௝ − ௝൯ݓ݋݈ + ௝ (4)ݓ݋݈

where rand is the uniform random number distribution between 0 and 1.
Randomly selected individual of superorganism is donor = Xrand_selecte(i), and superorganism uses

the donor to find the stopover sites. However, the size of the stopover site depends on the scale value.
The scale is expressed as follows: ݈ܵܿܽ݁ = ሾ2݀݊ܽݎ ∙ ଵሿ݀݊ܽݎ ∙ ሺ݀݊ܽݎଶ − ଷሻ (5)݀݊ܽݎ

where rand1, rand2, and rand3 are gamma random number distribution, and rand is a uniform random
number distribution between 0 and 1.

In the DS algorithm, the stopover site position is expressed as follows: ܵ݁ݐ݅ݏ݁ݒ݋݌݋ݐ = ݉ݏ݅݊ܽ݃ݎ݋ݎ݁݌ݑܵ + ݈ܵܿܽ݁ × ሺ݀ݎ݋݊݋ − ሻ (6)݉ݏ݅݊ܽ݃ݎ݋ݎ݁݌ݑܵ

In the DS algorithm, the members of the superorganism are randomly assigned to stopover site
search process. In assessing the stopover site, if the stopover site is better than the superorganism,
the superorganism will migrate to the stopover site. With the constant migration of position, the
superorganism will migrate to the best global solution.

3.1. Improved Differential Search Algorithm for Optimizing FLC Parameters

Although the original DS algorithm can solve the problem, they lack the diversity of the
algorithm and the exploration ability [14]. To improve the diversity of algorithms and exploration
capabilities and to avoid falling into the best local solution in the evolutionary process, the IDS
algorithm adjusts the number of times a random scheme participates in the stopover site. For some
heuristic algorithms, no fixed control parameters are better suited to solve different problems [18,19].
The original DS algorithm has two control parameters (p1 and p2) that affect the proportion of the
superorganism in the stopover site. A flowchart of the IDS is shown in Figure 3 and explained as
follows:

Initialize population of the Superorganism

Evaluate the individual of the
Superorganism

Set p1 and p2 initial value,
where p1 and p2 initial value are 0.5
(Parameters for adaptive adjustment)

Randomly selected donor and
generate Scale value

Generate position of the Stopover site

Use the random process to allocate the
superorganism participate the Stopover site

Evaluate the individual of the
Superorganism

Update Superorganisms Adjust p1 and p2 parameters

Termination

Start

End

Figure 3. Flowchart of the IDS algorithm. Figure 3. Flowchart of the IDS algorithm.

Step 1. Initialize the Superorganism

To initialize the Superorganism individually, the superorganism is defined as Xij(i = 1,2,3 . . . N,
j = 1,2,3 . . . D), where N is the population size, and D is the dimension of the problem.
The superorganism is composed of FLC fuzzy rules. Figure 4 shows the FLC coding principle
in the IDS algorithm, where mij is the mean of the Gaussian membership function and σij is the variance
of the Gaussian membership function. uj and vj are the corresponding weight parameters of the
consequent part. Four inputs and two outputs in the FLC are identified.

Mathematics 2020, 8, 1254 6 of 21

Mathematics 2020, 8, x FOR PEER REVIEW 6 of 21

Step 1. Initialize the Superorganism

To initialize the Superorganism individually, the superorganism is defined as Xij(i = 1,2,3…N, j
= 1,2,3…D), where N is the population size, and D is the dimension of the problem. The
superorganism is composed of FLC fuzzy rules. Figure 4 shows the FLC coding principle in the IDS
algorithm, where mij is the mean of the Gaussian membership function and σij is the variance of the
Gaussian membership function. uj and vj are the corresponding weight parameters of the consequent
part. Four inputs and two outputs in the FLC are identified.

m1j m2j m3j

Rule1 Rule2 ….. Rulej ….. RuleR

uj vjm4j σ4jσ3jσ2jσ1j

Figure 4. The FLC coding in the IDS.

The input parameter is the value of the ultrasonic sensor with the right wall (S1, S2, S3, and S4),
and the output parameter is the rotation speed of the left wheel (LW) and right wheel (RW). The
abovementioned control parameters must be defined by the user in advance. The FLC parameters
are initialized as follows:

2.0)2.08.0()1,0(+−×= iij randm (7)

2.0)2.08.0()1,0(+−×= iij randσ (8)

]10,0[randu j = (9)

]10,0[randv j = (10)

where each ultrasonic sensor value has a range of 0.2 to 0.8 m. The left-wheel and right-wheel speeds
have a range of 0 m/s to 10 m/s in the simulations.

Step 2. Evaluate the individual of the Superorganism

Each individual of the superorganism is a controller of the mobile robot. Thus, reinforcement
learning is used to train a mobile robot to the wall-follow task. Moreover, reinforcement learning
offers rewards or penalties when training the mobile robot controller. After several trainings, the
mobile robot controller will gradually learn the correct action to get rewards. The reward value is
used to evaluate the controller in the training process. Section 3.2 introduces reinforcement learning
conditions designed for the mobile robot wall-following control task.

Step 3. Adjust the control parameters

In many studies, the setting of control parameters affects the performance of the algorithm
[18,19]. The IDS algorithm has two control parameters: p1 and p2. In this study, the self-adaptive
parameter adjusts the different learning processes. Figure 5 shows that the parameter adaptation is
different from the fixed parameter encoding.

Figure 4. The FLC coding in the IDS.

The input parameter is the value of the ultrasonic sensor with the right wall (S1, S2, S3,
and S4), and the output parameter is the rotation speed of the left wheel (LW) and right wheel
(RW). The abovementioned control parameters must be defined by the user in advance. The FLC
parameters are initialized as follows:

mi j = randi(0, 1) × (0.8− 0.2) + 0.2 (7)

σi j = randi(0, 1) × (0.8− 0.2) + 0.2 (8)

u j = rand[0, 10] (9)

v j = rand[0, 10] (10)

where each ultrasonic sensor value has a range of 0.2 to 0.8 m. The left-wheel and right-wheel speeds
have a range of 0 m/s to 10 m/s in the simulations.

Step 2. Evaluate the individual of the Superorganism

Each individual of the superorganism is a controller of the mobile robot. Thus, reinforcement
learning is used to train a mobile robot to the wall-follow task. Moreover, reinforcement learning offers
rewards or penalties when training the mobile robot controller. After several trainings, the mobile
robot controller will gradually learn the correct action to get rewards. The reward value is used to
evaluate the controller in the training process. Section 3.2 introduces reinforcement learning conditions
designed for the mobile robot wall-following control task.

Step 3. Adjust the control parameters

In many studies, the setting of control parameters affects the performance of the algorithm [18,19].
The IDS algorithm has two control parameters: p1 and p2. In this study, the self-adaptive parameter
adjusts the different learning processes. Figure 5 shows that the parameter adaptation is different from
the fixed parameter encoding.Mathematics 2020, 8, x FOR PEER REVIEW 7 of 21

Superorganism x1,g

Superorganism x2,g
.
.
.
.
.
.

Superorganism xi,g
.
.
.
.
.
.
.

Superorganism xN,g

p1g p2g

Superorganism x1,g

Superorganism x2,g
.
.
.
.
.
.

Superorganism xi,g
.
.
.
.
.
.

Superorganism xN,g

p11,g p21,g

p12,g p22,g
.
.
.
.
.
.

p1i,g p2i,g

p1N,g p2N,g

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5. Parameter self-adaptation encoding.

The p1 and p2 initial values are 0.5. At each generation g, the control parameters p1 and p2 of
each individual of the superorganism are generated by a normal distribution of mean μp1 and μp2,
and the standard deviation is 0.1 truncated to [0, 1]:

)1.0,μp1(1 , randnp gi = (11)

)1.0,μp2(2 , randnp gi = (12)

The mean μp1 and μp2 are initialized to 0.5 and updated to each generation as follows:

)(1)1(1 1pSmeanxμpxμp ⋅+⋅−= (13)

)(2)1(2 2pSmeanxμpxμp ⋅+⋅−= (14)

where x is a positive constant 0 and 1, and the mean is the arithmetic mean. The Sp1 and Sp2 are the
successful control parameters p1 and p2 at generation g.

Step 4. Select the Donor and Generate Scale

Randomly selected individuals of the superorganism to the donor are shown as follows: ݀ݎ݋݊݋ = ܺ௥௔௡ௗ_௦௘௟௘௖௧௘ (15)

The size of the stopover site depends on the scale factor where the scale is expressed as follows:

)(]2[321 randrandrandrandgScale −⋅⋅= (16)

where randg is gamma random number distribution, and rand is a uniform random number
distribution between 0 and 1.

Step 5. Generate Position of the Stopover Site

In the IDS algorithm, the position of the stopover site is expressed as follows: ܵ݁ݐ݅ݏ ݎ݁ݒ݋݌݋ݐ = ݉ݏ݅݊ܽ݃ݎ݋ݎ݁݌ݑܵ + ݈ܵܿܽ݁ × ሺ݀ݎ݁݋݊݋ − ሻ (17)݉ݏ݅݊ܽ݃ݎ݋ݎ݁݌ݑܵ

The stopover site must be limited in scope. The limit is expressed as follows: ݂݅ ܵ݁ݐ݅ݏ ݎ݁ݒ݋݌݋ݐ < ݁ݐ݅ݏ ݎ݁ݒ݋݌݋ݐܵ ݎ݋ 0.2 > ݁ݐ݅ݏ ݎ݁ݒ݋݌݋ݐܵ 0.8 = ݀݊ܽݎ ∙ ሺ0.8 − 0.2ሻ + 0.2
(18)

where rand is the uniform random number distribution between 0 and 1.

Step 6. Adjust the Number of Superorganisms in the Search

In this step, the superorganism participating in the search process is determined through
random scheme. Its random process pseudocode is shown in Algorithm 2. Then, the procedure of the
random number will produce N × D random number matrix, called the R matrix. The size of the R

Figure 5. Parameter self-adaptation encoding.

Mathematics 2020, 8, 1254 7 of 21

The p1 and p2 initial values are 0.5. At each generation g, the control parameters p1 and p2 of
each individual of the superorganism are generated by a normal distribution of mean µp1 and µp2,
and the standard deviation is 0.1 truncated to [0, 1]:

p1i,g = randn(µp1, 0.1) (11)

p2i,g = randn(µp2, 0.1) (12)

The mean µp1 and µp2 are initialized to 0.5 and updated to each generation as follows:

µp1 = (1− x)·µp1 + x·mean(Sp1) (13)

µp2 = (1− x)·µp2 + x·mean(Sp2) (14)

where x is a positive constant 0 and 1, and the mean is the arithmetic mean. The Sp1 and Sp2 are the
successful control parameters p1 and p2 at generation g.

Step 4. Select the Donor and Generate Scale

Randomly selected individuals of the superorganism to the donor are shown as follows:

donor = Xrand_selecte (15)

The size of the stopover site depends on the scale factor where the scale is expressed as follows:

Scale = randg[2·rand1]·(rand2− rand3) (16)

where randg is gamma random number distribution, and rand is a uniform random number distribution
between 0 and 1.

Step 5. Generate Position of the Stopover Site

In the IDS algorithm, the position of the stopover site is expressed as follows:

Stopover site = Superorganism + Scale× (donoer− Superorganism) (17)

The stopover site must be limited in scope. The limit is expressed as follows:

i f Stopover site
〈
0.2 or Stopover site

〉
0.8

Stopover site = rand·(0.8− 0.2) + 0.2
(18)

where rand is the uniform random number distribution between 0 and 1.

Step 6. Adjust the Number of Superorganisms in the Search

In this step, the superorganism participating in the search process is determined through random
scheme. Its random process pseudocode is shown in Algorithm 2. Then, the procedure of the random
number will produce N × D random number matrix, called the R matrix. The size of the R matrix
corresponds to the population size. If the value within the R matrix is greater than 0, the individual of
the Superorganism is involved in the Stopover site.

Step 7. Evaluate the Stopover Site

Similarly, the reinforcement learning reward that assesses the stopover site uses the same reward
condition to evaluate the stopover site.

Step 8. Update Superorganism

Mathematics 2020, 8, 1254 8 of 21

If the solution of the Stopover site is superior to that of the superorganism, the superorganism is
replaced by the stopover site:

Superorganism =

{
Stopover site

Superorganism
i f (Stopover site ≥ Superorganism)

otherwise
(19)

Algorithm 2. The random program is used to adjust the number of superorganisms in the search

Mathematics 2020, 8, x FOR PEER REVIEW 8 of 21

matrix corresponds to the population size. If the value within the R matrix is greater than 0, the
individual of the Superorganism is involved in the Stopover site.

Algorithm 2. The random program is used to adjust the number of superorganisms in the search.
// N is the size of the Superorganism population, where i = (1,2,3…N)
// D is the size of the problem dimension
1 for i = 1: N do
2 if rand 1 < rand2 then
3 if rand 3 < p1 then
4 R = rand(1,D) ;
5 R(i,:) = R(i,:) < rand 4;
6 else
7 R = ones(1,D) ;
8 R(i,randi(D)) = R(i, randi(D)) < rand 5;
9 end
10 else
11 R = ones(1,D) ;
12 d = randi(D,1,「p2 · rand · D」) ;
13 for k = 1:size(d) do
14 R(1,d(k)) = 0;
15 end
16 end
17 end
18 return R;

Step 7. Evaluate the Stopover Site

Similarly, the reinforcement learning reward that assesses the stopover site uses the same
reward condition to evaluate the stopover site.

Step 8. Update Superorganism

If the solution of the Stopover site is superior to that of the superorganism, the superorganism
is replaced by the stopover site: ܵ݉ݏ݅݊ܽ݃ݎ݋ݎ݁݌ݑ = ቊ ݉ݏ݅݊ܽ݃ݎ݋ݎ݁݌ݑܵ݁ݐ݅ݏ ݎ݁ݒ݋݌݋ݐܵ ݂݅ሺܵ݁ݐ݅ݏ ݎ݁ݒ݋݌݋ݐ ≥ ݉ݏ݅݊ܽ݃ݎ݋ݎ݁݌ݑܵ ሻݐ݋ℎ݁݁ݏ݅ݓݎ (19)

3.2. Reward of Reinforcement Learning

Reinforcement learning is a learning method in machine learning. Contrary to supervised
learning, reinforcement learning has no training data. The concept of reinforcement learning comes
from reward and punishment. This involves training the learner with rewards. When the learners
behave correctly, they are rewarded. After some periods, the learner learns to behave correctly in
different situations. Since the correct behavior can get a reward, it is essential to discuss the reward
conditions for training mobile robots for the wall-following behavior.

In reinforcement learning, in training robots along the wall, the reward value evaluates the FLC
performance. This study designed three conditions to train the robot to learn to follow the right wall.
When the mobile robot satisfies the three conditions at the same time, the mobile robot controller can
get the reward value +1. Otherwise, when the robot violates any of the conditions during the move,
the controller stops accumulating the reward value, and the next controller is tested. However, when
the controller gets a reward value which has accumulated to 6000, the mobile robot will stop learning
and will be upgraded to the next run of training.

To enable the robot to learn to follow the wall, it is essential to define the distance between the
robot and the wall in advance. However, the first condition is to keep distance. The robot must be
kept between 0.3 and 0.8 m from the wall using the sensor (S4) to measure the distance between the
robot and wall.

The first condition is defined as:

3.2. Reward of Reinforcement Learning

Reinforcement learning is a learning method in machine learning. Contrary to supervised learning,
reinforcement learning has no training data. The concept of reinforcement learning comes from reward
and punishment. This involves training the learner with rewards. When the learners behave correctly,
they are rewarded. After some periods, the learner learns to behave correctly in different situations.
Since the correct behavior can get a reward, it is essential to discuss the reward conditions for training
mobile robots for the wall-following behavior.

In reinforcement learning, in training robots along the wall, the reward value evaluates the FLC
performance. This study designed three conditions to train the robot to learn to follow the right wall.
When the mobile robot satisfies the three conditions at the same time, the mobile robot controller
can get the reward value +1. Otherwise, when the robot violates any of the conditions during the
move, the controller stops accumulating the reward value, and the next controller is tested. However,
when the controller gets a reward value which has accumulated to 6000, the mobile robot will stop
learning and will be upgraded to the next run of training.

To enable the robot to learn to follow the wall, it is essential to define the distance between the
robot and the wall in advance. However, the first condition is to keep distance. The robot must be kept
between 0.3 and 0.8 m from the wall using the sensor (S4) to measure the distance between the robot
and wall.

The first condition is defined as:
0.3m ≤ S4 ≤ 0.8m (20)

where S4 denotes the ultrasonic sensor values.

Mathematics 2020, 8, 1254 9 of 21

We also use the front and right front sensors (S1 and S3) to determine whether any obstacles are
present in the front. While sensing the right front of the mobile robot with or without walls, the second
condition is defined as: √

(S1)2 + (S3)2
− 2·S1·S3· cos(40◦) ≥ 0.4 (21)

where S1 and S3 are ultrasonic sensor values, and cos (40◦) is the angle between the sensor S1 and S3.
Finally, the third condition is the speed of the mobile robot. To stop the robot from moving

forward in the training process, we used the third condition to increase the wheel speed of the robot to
more than 1 m/s. In this way, the mobile robot must move forward in the training. The third condition
is defined as: (RM + LM

2

)
≥ 1.0m/s (22)

where RM is the mobile robot right-wheel speed, and LM is the mobile robot left-wheel speed.

3.3. Stability Analysis of the FLC_R-IDS

The global stability of the control system is a basic requirement for solving mobile robot
wall-following control problems. Since the general evolutionary algorithm is characteristic of random
search, some search points may make the learning process unstable. In this subsection, the supervisory
control ur(t) is designed (Figure 1) to guarantee the global stability of the closed-loop system in the
sense that the error state variables must be uniformly bounded:

∣∣∣e(t)∣∣∣ ≤M < ∞ for all t ≥ 0, where M is
a design parameter that is specified by the designer. Therefore, using the supervisory control ur(t) in
Figure 1 always yields V(t)→ 0 (i.e., s(t)→ 0), which in turn implies

∣∣∣e(t)∣∣∣ ≤M.

4. Experimental Results

To demonstrate the proposed FLC_R-IDS for solving the mobile robot wall-following control
problem, this section describes the results of wall-following control simulations performed using the
PIONEER 3-DX and compares these experimental results with those of other algorithms. The FLC has
four inputs, defined as the right four ultrasonic sensors of the mobile robot and two outputs defined as
the left-wheel and right-wheel speeds of the mobile robot in Section 2. The IDS is designed to optimize
the FLC parameters. Therefore, the FLC parameters are encoded into individuals of the IDS algorithm.
Furthermore, each individual of IDS is evaluated by the reward of reinforcement learning in Section 3.
In this study, three reward conditions are defined as follows: to maintain a user-defined robot-wall
distance, to avoid robot-wall collision, and to ensure that the robot can successfully move along the
wall to go round the stadium.

During the learning process, mobile robots are allowed to learn along the wall in a simple
environment. This training environment comprises of straight lines, right angles, and obtuse walls.
A simple environment to train a mobile robot demonstrates that the incentive conditions effectively
learn the wall-following behavior. It can also be completed along the wall in a more complex test
environment. The Webot robotic simulation software is used to train the mobile robot to learn along
the wall. At the same time, we compared this with the DS algorithm [13] to optimize the FLC_R-DS.
We used the chaotic DS algorithm [14] to optimize the FLC_R-CDS. Figure 6 shows the training
environment. The proposed method has five parameters: a population size (PS), a number of rules,
p1 and p2 and a learning success reward value. In general, the larger PS, the more robust the search will
be, with increased computational cost. The number of rules depends on the complexity of the problem.
In the IDS algorithm, there are two control parameters: p1 and p2. The self-adaptive parameters
(p1 and p2) were adjusted on the different learning processes. A single performance measurement
in terms of failure and success can be used to determine the control policy that produces a maximal
learning success reward value by trial-and-error tests. However, the selection of these parameters will
critically affect the simulation results. The population size, which uses the range [20, 50], the number of
rules, which uses the range [5, 10], the p1 and p2, which use the range [0, 1], and the learning success

Mathematics 2020, 8, 1254 10 of 21

reward value, which uses the range [5000, 8000], were carefully examined in extensive experiments.
Table 1 presents the initial parameters set before the learning process. Mobile robots will learn along
the wall in a training environment. If the robot satisfies the reward conditions, the controller gets the
reward. Conversely, the inability of the robot to satisfy the reward conditions is considered a failure.
When a failure occurs, the accumulated value of the reward is used to evaluate the FLC.

Mathematics 2020, 8, x FOR PEER REVIEW 10 of 21

measurement in terms of failure and success can be used to determine the control policy that
produces a maximal learning success reward value by trial-and-error tests. However, the selection of
these parameters will critically affect the simulation results. The population size, which uses the
range [20, 50], the number of rules, which uses the range [5, 10], the p1 and p2, which use the range
[0, 1], and the learning success reward value, which uses the range [5000, 8000], were carefully
examined in extensive experiments. Table 1 presents the initial parameters set before the learning
process. Mobile robots will learn along the wall in a training environment. If the robot satisfies the
reward conditions, the controller gets the reward. Conversely, the inability of the robot to satisfy the
reward conditions is considered a failure. When a failure occurs, the accumulated value of the reward
is used to evaluate the FLC.

Wall

Robot

Figure 6. The training environment.

Table 1. Initialization parameters before the training.

Parameter Value
Population size (PS) 30
Number of rules 5
p1 and p2 (DS and CDS) 0.3 × rand
p1 and p2 (IDS self-adaptive) 0.5
Learning success reward value 6000

4.1. Training Results of Mobile Robot Wall-Following Control

The mobile robot controller will continue to train until a successful condition is reached. The
success condition is the accumulated reward value that reaches 6000. When the mobile robot reaches
the success condition, it performs the wall-following task. In the learning process, the FLC_R-IDS,
FLC_R-DS and FLC_R-CDS methods have 30 independent training runs. Table 2 shows the FLC_R-
IDS, FLC_R-DS and FLC_R-CDS methods and compares the evaluation numbers in the learning
process.

Figure 7 shows the learning curve of 30 independent training runs of the FLC_R-IDS, FLC_R-DS
and FLC_R-CDS methods. In Figure 7a, the average number of evaluations of the FLC_R-IDS method
learning success is 484. Using the FLC_R-IDS method to complete the training along the wall, the
minimum number of evaluations is 26. The maximum number of evaluations is 1851. In Figure 7b,
the average number of evaluations of the FLC_R-DS learning success is 936. Using the FLC_R-DS
method to complete the training along the wall, the minimum number of evaluations is 121. The
maximum number of evaluations is 2554. Figure 7c shows that the average number of evaluations for
the FLC_R-CDS method learning success is 1047. Using the FLC_R-CDS method to complete the
training along the wall, the minimum number of evaluations is 70. The maximum number of

Figure 6. The training environment.

Table 1. Initialization parameters before the training.

Parameter Value

Population size (PS) 30
Number of rules 5
p1 and p2 (DS and CDS) 0.3 × rand
p1 and p2 (IDS self-adaptive) 0.5
Learning success reward value 6000

4.1. Training Results of Mobile Robot Wall-Following Control

The mobile robot controller will continue to train until a successful condition is reached. The success
condition is the accumulated reward value that reaches 6000. When the mobile robot reaches the success
condition, it performs the wall-following task. In the learning process, the FLC_R-IDS, FLC_R-DS and
FLC_R-CDS methods have 30 independent training runs. Table 2 shows the FLC_R-IDS, FLC_R-DS
and FLC_R-CDS methods and compares the evaluation numbers in the learning process.

Table 2. Comparison of the evaluation numbers of various existing models in the learning process.

FLC_R-IDS FLC_R-DS FLC_R-CDS

Minimum number of evaluations 26 121 70
Maximum number of evaluations 1851 2554 2716
Average number of evaluations 484.86 936.6 1047.1

Standard deviation 471.47 671.85 707.68

Figure 7 shows the learning curve of 30 independent training runs of the FLC_R-IDS, FLC_R-DS
and FLC_R-CDS methods. In Figure 7a, the average number of evaluations of the FLC_R-IDS
method learning success is 484. Using the FLC_R-IDS method to complete the training along the
wall, the minimum number of evaluations is 26. The maximum number of evaluations is 1851.
In Figure 7b, the average number of evaluations of the FLC_R-DS learning success is 936. Using the
FLC_R-DS method to complete the training along the wall, the minimum number of evaluations is 121.

Mathematics 2020, 8, 1254 11 of 21

The maximum number of evaluations is 2554. Figure 7c shows that the average number of evaluations
for the FLC_R-CDS method learning success is 1047. Using the FLC_R-CDS method to complete
the training along the wall, the minimum number of evaluations is 70. The maximum number of
evaluations is 2716. From the above, the FLC_R-IDS method learns faster than the other algorithms in
the learning process.

Mathematics 2020, 8, x FOR PEER REVIEW 11 of 21

evaluations is 2716. From the above, the FLC_R-IDS method learns faster than the other algorithms
in the learning process.

Table 2. Comparison of the evaluation numbers of various existing models in the learning process.

 FLC_R-IDS FLC_R-DS FLC_R-CDS
Minimum number of evaluations 26 121 70
Maximum number of evaluations 1851 2554 2716
Average number of evaluations 484.86 936.6 1047.1

Standard deviation 471.47 671.85 707.68

(a) (b)

(c)

Figure 7. Mobile robot wall-following controller learning curve. (a) FLC_R-IDS method, (b) FLC_R-
DS method and (c) FLC_R-CDS method.

In this section, we introduce the IDS algorithm without the self-adaptive method. This part
removes the self-adaptive method of the IDS algorithm. To compare the difference between the IDS
algorithm and IDS algorithm without the self-adaptive method, we used the IDS algorithm without
the self-adaptive method to train 30 times independently. Compared with the FLC_R-DS method and
FLC_R-IDS method, Table 3 shows the FLC_R-IDS method without the self-adaptive method and
compares the results. The average value of the evaluation without the self-adaptive method was
626.5. Without the self-adaptive method, the control parameters (p1 and p2) cannot be adjusted
during the learning process. By adjusting the number of the superorganisms in the search, the method
can be learned faster than the FLC_R-DS method.

Table 3. Comparison between the evaluation numbers of various existing models in the learning
process.

 FLC_R-IDS Without the Self-
Adaptive Method FLC_R-IDS FLC_R-DS

Minimum number of evaluations 30 26 121
Maximum number of evaluations 3030 1851 2554
Average number of evaluations 626.5 484.86 936.6

Standard deviation 656.6 471.47 671.85

Figure 7. Mobile robot wall-following controller learning curve. (a) FLC_R-IDS method, (b) FLC_R-DS
method and (c) FLC_R-CDS method.

In this section, we introduce the IDS algorithm without the self-adaptive method. This part
removes the self-adaptive method of the IDS algorithm. To compare the difference between the IDS
algorithm and IDS algorithm without the self-adaptive method, we used the IDS algorithm without
the self-adaptive method to train 30 times independently. Compared with the FLC_R-DS method and
FLC_R-IDS method, Table 3 shows the FLC_R-IDS method without the self-adaptive method and
compares the results. The average value of the evaluation without the self-adaptive method was 626.5.
Without the self-adaptive method, the control parameters (p1 and p2) cannot be adjusted during the
learning process. By adjusting the number of the superorganisms in the search, the method can be
learned faster than the FLC_R-DS method.

Table 3. Comparison between the evaluation numbers of various existing models in the learning process.

FLC_R-IDS Without the
Self-Adaptive Method FLC_R-IDS FLC_R-DS

Minimum number of evaluations 30 26 121
Maximum number of evaluations 3030 1851 2554
Average number of evaluations 626.5 484.86 936.6

Standard deviation 656.6 471.47 671.85

Mathematics 2020, 8, 1254 12 of 21

4.2. Testing Results of Mobile Robot Wall-Following Control

To show the proposed FLC_R-IDS method, we describe the results of the wall-following control
simulations performed using the Webots robotic simulation software and we compare the results of the
performance with those of other algorithms. In the learning process, the FLC undergoes reinforcement
learning to get the best controller. Then, the trained FLC will be tested in the three experimental
environments used for the simulations. First, the controller performs the test in the original training
environment. The terrain of the training environment is relatively simple. Most of the terrain is a
straight line, right angle, and an obtuse angle. The second experimental environment terrain is a
combination of a right angle and a straight line. The third experimental environment is more complex
than the previous two environments. The terrain is a straight line, right angle, and acute angle.
However, the acute angle never appeared in the training environment. The arc-shaped terrain is also
used for the experiment. Several best controllers in the experimental environment for testing and
analysis are discussed, which are used to compare the performance of the FLC_R-IDS method with those
of other methods. This example aims to design and analyze the FLC for a wall-following task. With 30
independent trainings runs, we get 30 mobile robot wall-following controllers. Thirty wall-following
controllers are tested one by one in the experimental environment.

(1) Comparison of results of various methods in testing environment 1

The experiment is performed to demonstrate the best-performing FLC_R-IDS controller in the
training environment. Figure 8a shows that the trained controller can complete the task of following
the wall. Figure 8b shows the distance values according to the ultrasonic sensors S1, S3, and S4 and
the left-wheel and right-wheel speeds of the robot. When the robot moved along the wall to point
A, the robot encountered a right angle. To avoid collision with the wall, the robot quickly turned
left. At this time, the ultrasonic sensor values of S1, S3, and S4 were 0.78, 0.53, and 0.32, respectively.
The left-wheel and right-wheel speeds were 1.76 and 2.94 m/s, respectively. When the robot moved
to point B along the wall, the robot slowly turned left in a straight line. At this time, the ultrasonic
sensor values of S1, S3, and S4 were 0.76, 0.61, and 0.42 m, respectively. The left-wheel and right-wheel
speeds were 1.83 and 3.25 m/s, respectively. When the robot in the C point environment was in a
straight line, the robot continued to move straight ahead. At this time, the ultrasonic sensor values
of S1, S3, and S4 were 1.0, 0.42, and 0.3 m, respectively. The left-wheel and right-wheel speeds were
1.81 and 1.81 m/s, respectively. At point D, when the robot encountered the outer corner, the robot
must turn right; otherwise, the robot will move away from the wall. In this case, the ultrasonic sensor
values of S1, S3, and S4 were 1.0, 1.0, and 1.0 m, respectively. The left-wheel and right-wheel speeds
were 2.76 and 2.3 m/s, respectively. At point E, when the robot turned over the outer corner, the robot
must continue along the wall. In this case, the ultrasonic sensor values of S1, S3, and S4 were 1.0, 0.75,
and 0.46 m, respectively. The left-wheel and right-wheel speeds were 2.64 and 2.1 m/s, respectively.
Figure 9 shows the comparison of the path tracking best performances of the proposed FLC_R-IDS,
FLC_R-DS and FLC_R-CDS methods in test environment 1.

The mobile robots learn along the wall. The excellent performance along the wall is characterized
by a robot’s capability to maintain a distance from the wall. Thus, we analyzed the distance between
the robot and wall using the mean absolute error (MAE), which evaluates the performance of the FLC
in the wall-following task. When the mobile robot’s S4 sensor value is 0.3, the robot dwall error is zero.
The smaller the value of MAE, the better the performance of the controller:

MAE =

Steptotal∑
i=1

∣∣∣S4(i) − dwall
∣∣∣

Steptotal
(23)

where S4(i) is the value of the S4 sensor for each step of the robot; the dwall is 0.3 of the distance between
the robot and wall; the Setptotal is the robot that completes the total number of steps to walking along
the wall.

Mathematics 2020, 8, 1254 13 of 21

Mathematics 2020, 8, x FOR PEER REVIEW 13 of 21

IDS method with those of other methods. After 30 independent trainings runs, each algorithm got 30
controllers. In IDS, the FLC best controller performance is better than that of the DS and CDS.
Regarding the average of 30 controllers, the FLC_R-IDS method performs better than the FLC_R-DS
method and FLC_R-CDS algorithms.

A

B

C

D E

(a)

A B C D E

(b)

Figure 8. (a) Mobile robot path tracking, (b) ultrasonic sensor values and the left-wheel and right-
wheel speeds of the robot in test environment 1 for the FLC_R-IDS method.
Figure 8. (a) Mobile robot path tracking, (b) ultrasonic sensor values and the left-wheel and right-wheel
speeds of the robot in test environment 1 for the FLC_R-IDS method.

Mathematics 2020, 8, x FOR PEER REVIEW 14 of 21

Figure 9. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-DS
and the FLC_R-CDS methods in test environment 1.

Table 4. Comparison of 30 controllers and their MAE values of various existing models in test
environment 1.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS
Minimum MAE 0.0491 0.0852 0.1064
Average MAE 0.1358 0.1521 0.1527

Standard deviation 0.0275 0.0262 0.0227
The wall-following controller can train along the right wall using the fuzzy controller with

evolutionary reinforcement learning. The mobile robot ultrasonic sensors are symmetrical. So, the
inputs of the FLC replaced the mobile robot left ultrasonic sensors. (Sensor S1 is replaced by S5; sensor
S2 is replaced by S6; sensor S3 is replaced by S7; sensor S4 is replaced by S8.) The mobile robot left- and
right-wheel exchange show that mobile robots can complete the task that follows the left wall. Figure
10 shows that the FLC input is replaced by the left side of the ultrasonic sensor. The FLC_R_IDS
method is the path of the left wall in the test environment 1.

Figure 10. The path tracking of the proposed FLC_R-IDS method, following the left wall in test
environment 1.

(2) Comparison of results of various methods in testing environment 2

The results of the mobile robot controller testing in test environment 2 are discussed. This
experimental environment terrain is a combination of a right angle and straight line. Figure 11a shows
that the trained controller can complete the task in combination with the right angle and straight line
environment. Figure 11b shows the distance values according to the ultrasonic sensors S1, S3, and S4
and the left-wheel and right-wheel speeds of the robot at the robot moving distances. When the robot
moved along the wall to point A and encountered the outer corner, it must turn right; otherwise, the

Figure 9. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-DS
and the FLC_R-CDS methods in test environment 1.

Mathematics 2020, 8, 1254 14 of 21

Table 4 represents the FLC_R-IDS, FLC_R-DS and FLC_R-CDS methods for 30 controllers and
their MAE values in the test environment. This study also compared the performance of the FLC_R-IDS
method with those of other methods. After 30 independent trainings runs, each algorithm got 30
controllers. In IDS, the FLC best controller performance is better than that of the DS and CDS. Regarding
the average of 30 controllers, the FLC_R-IDS method performs better than the FLC_R-DS method and
FLC_R-CDS algorithms.

Table 4. Comparison of 30 controllers and their MAE values of various existing models in test
environment 1.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS

Minimum MAE 0.0491 0.0852 0.1064
Average MAE 0.1358 0.1521 0.1527

Standard deviation 0.0275 0.0262 0.0227

The wall-following controller can train along the right wall using the fuzzy controller
with evolutionary reinforcement learning. The mobile robot ultrasonic sensors are symmetrical.
So, the inputs of the FLC replaced the mobile robot left ultrasonic sensors. (Sensor S1 is replaced by S5;
sensor S2 is replaced by S6; sensor S3 is replaced by S7; sensor S4 is replaced by S8.) The mobile robot
left- and right-wheel exchange show that mobile robots can complete the task that follows the left wall.
Figure 10 shows that the FLC input is replaced by the left side of the ultrasonic sensor. The FLC_R_IDS
method is the path of the left wall in the test environment 1.

Mathematics 2020, 8, x FOR PEER REVIEW 14 of 21

Figure 9. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-DS
and the FLC_R-CDS methods in test environment 1.

Table 4. Comparison of 30 controllers and their MAE values of various existing models in test
environment 1.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS
Minimum MAE 0.0491 0.0852 0.1064
Average MAE 0.1358 0.1521 0.1527

Standard deviation 0.0275 0.0262 0.0227
The wall-following controller can train along the right wall using the fuzzy controller with

evolutionary reinforcement learning. The mobile robot ultrasonic sensors are symmetrical. So, the
inputs of the FLC replaced the mobile robot left ultrasonic sensors. (Sensor S1 is replaced by S5; sensor
S2 is replaced by S6; sensor S3 is replaced by S7; sensor S4 is replaced by S8.) The mobile robot left- and
right-wheel exchange show that mobile robots can complete the task that follows the left wall. Figure
10 shows that the FLC input is replaced by the left side of the ultrasonic sensor. The FLC_R_IDS
method is the path of the left wall in the test environment 1.

Figure 10. The path tracking of the proposed FLC_R-IDS method, following the left wall in test
environment 1.

(2) Comparison of results of various methods in testing environment 2

The results of the mobile robot controller testing in test environment 2 are discussed. This
experimental environment terrain is a combination of a right angle and straight line. Figure 11a shows
that the trained controller can complete the task in combination with the right angle and straight line
environment. Figure 11b shows the distance values according to the ultrasonic sensors S1, S3, and S4
and the left-wheel and right-wheel speeds of the robot at the robot moving distances. When the robot
moved along the wall to point A and encountered the outer corner, it must turn right; otherwise, the

Figure 10. The path tracking of the proposed FLC_R-IDS method, following the left wall in test
environment 1.

(2) Comparison of results of various methods in testing environment 2

The results of the mobile robot controller testing in test environment 2 are discussed.
This experimental environment terrain is a combination of a right angle and straight line. Figure 11a
shows that the trained controller can complete the task in combination with the right angle and straight
line environment. Figure 11b shows the distance values according to the ultrasonic sensors S1, S3,
and S4 and the left-wheel and right-wheel speeds of the robot at the robot moving distances. When the
robot moved along the wall to point A and encountered the outer corner, it must turn right; otherwise,
the robot will move away from the wall. At this time, the ultrasonic sensor values of S1, S3, and S4

were 1.0, 1.0, and 0.35 m, respectively. The left-wheel and right-wheel speeds were 2.78 and 2.27 m/s,
respectively. When the robot moved along the wall to point B, the front area of the robot was a small
corner; the robot must go left and then go right. At this time, the ultrasonic sensor values of S1, S3,
and S4 were 1.0, 0.36, and 0.38 m, respectively. The left-wheel and right-wheel speeds were 1.61 and
2.32 m/s, respectively. When the robot moved along the wall to point C, the robot encountered a right

Mathematics 2020, 8, 1254 15 of 21

angle. To avoid collision with the wall, the robot quickly turned left. At this time, the ultrasonic sensor
values of S1, S3, and S4 were 0.68, 0.71, and 0.37 m, respectively. The left-wheel and right-wheel speeds
were 2.11 and 3.39 m/s, respectively. When the robot at point D of the environment is travelling in
a straight line, it continues to go straight. In this case, the ultrasonic sensor values of S1, S3, and S4

were 1.0, 0.41, and 0.31 m, respectively. The left-wheel and right-wheel speeds were 1.81 and 1.82 m/s,
respectively. Figure 12 shows the comparison of the path tracking best performances of the proposed
FLC_R-IDS, FLC_R-DS, and FLC_R-CDS methods in test environment 2. Similar to the previous
experiment, Equation (23) is used to assess the performance of each FLC. Table 5 represents the
FLC_R-IDS method and the MAE values of other methods for the 30 controllers in the test environment
2. It also shows the comparison of the performance of the FLC_R-IDS method with those of the other
methods. From Table 5, several controllers failed in test environment 2 because the environment
is more complex than the training environment. When the robot controller collides or stops in the
test environment, this represents a failure. After 30 independent training runs, each algorithm got
30 controllers. The best controller performance in the FLC_R-IDS method is better than that in the
FLC_R-DS and FLC_R-CDS methods. In the average of 30 controllers, the FLC_R-IDS method performs
better than the FLC_R-DS and FLC_R-CDS methods. In the FLC_R-DS and FLC_R-CDS methods,
a collision occurred while running test environment 2.

Mathematics 2020, 8, x FOR PEER REVIEW 15 of 21

robot will move away from the wall. At this time, the ultrasonic sensor values of S1, S3, and S4 were
1.0, 1.0, and 0.35 m, respectively. The left-wheel and right-wheel speeds were 2.78 and 2.27 m/s,
respectively. When the robot moved along the wall to point B, the front area of the robot was a small
corner; the robot must go left and then go right. At this time, the ultrasonic sensor values of S1, S3,
and S4 were 1.0, 0.36, and 0.38 m, respectively. The left-wheel and right-wheel speeds were 1.61 and
2.32 m/s, respectively. When the robot moved along the wall to point C, the robot encountered a right
angle. To avoid collision with the wall, the robot quickly turned left. At this time, the ultrasonic sensor
values of S1, S3, and S4 were 0.68, 0.71, and 0.37 m, respectively. The left-wheel and right-wheel speeds
were 2.11 and 3.39 m/s, respectively. When the robot at point D of the environment is travelling in a
straight line, it continues to go straight. In this case, the ultrasonic sensor values of S1, S3, and S4 were
1.0, 0.41, and 0.31 m, respectively. The left-wheel and right-wheel speeds were 1.81 and 1.82 m/s,
respectively. Figure 12 shows the comparison of the path tracking best performances of the proposed
FLC_R-IDS, FLC_R-DS, and FLC_R-CDS methods in test environment 2. Similar to the previous
experiment, Equation (23) is used to assess the performance of each FLC. Table 5 represents the
FLC_R-IDS method and the MAE values of other methods for the 30 controllers in the test
environment 2. It also shows the comparison of the performance of the FLC_R-IDS method with those
of the other methods. From Table 5, several controllers failed in test environment 2 because the
environment is more complex than the training environment. When the robot controller collides or
stops in the test environment, this represents a failure. After 30 independent training runs, each
algorithm got 30 controllers. The best controller performance in the FLC_R-IDS method is better than
that in the FLC_R-DS and FLC_R-CDS methods. In the average of 30 controllers, the FLC_R-IDS
method performs better than the FLC_R-DS and FLC_R-CDS methods. In the FLC_R-DS and FLC_R-
CDS methods, a collision occurred while running test environment 2.

A

B

C

D

(a)

Mathematics 2020, 8, x FOR PEER REVIEW 16 of 21

A B C D

(b)

Figure 11. (a) Mobile robot path tracking, (b) ultrasonic sensors values, and the left-wheel and right-
wheel speeds of the robot in the test environment 2 for the FLC_R-IDS method.

Figure 12. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-
DS, and FLC_R-CDS methods in test environment 2.

Table 5. Comparison of 30 controllers and their MAE values of various existing models in test
environment 2.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS
Minimum MAE 0.0759 0.1024 0.1313
Average MAE 0.1411 0.1632 0.1729

Standard deviation 0.0249 0.0323 0.0269

(3). Comparison of results of various methods in testing environment 3

This test environment is more complex than the previous environments. The terrain is a straight
line, right angle, and acute angle. The test environment is also a circular terrain. Figure 13a shows
that the FLC can complete the task in combination with the right angle, acute angle, straight line, and
circular terrain environment. Figure 13b shows the distance values according to the ultrasonic sensors
S1, S3, and S4 and the left-wheel and right-wheel speeds of the robot at the robot moving distances.
When the robot moved along the wall to point A because the terrain of point A was a straight line, it

Figure 11. (a) Mobile robot path tracking, (b) ultrasonic sensors values, and the left-wheel and
right-wheel speeds of the robot in the test environment 2 for the FLC_R-IDS method.

Mathematics 2020, 8, 1254 16 of 21

Mathematics 2020, 8, x FOR PEER REVIEW 16 of 21

A B C D

(b)

Figure 11. (a) Mobile robot path tracking, (b) ultrasonic sensors values, and the left-wheel and right-
wheel speeds of the robot in the test environment 2 for the FLC_R-IDS method.

Figure 12. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-
DS, and FLC_R-CDS methods in test environment 2.

Table 5. Comparison of 30 controllers and their MAE values of various existing models in test
environment 2.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS
Minimum MAE 0.0759 0.1024 0.1313
Average MAE 0.1411 0.1632 0.1729

Standard deviation 0.0249 0.0323 0.0269

(3). Comparison of results of various methods in testing environment 3

This test environment is more complex than the previous environments. The terrain is a straight
line, right angle, and acute angle. The test environment is also a circular terrain. Figure 13a shows
that the FLC can complete the task in combination with the right angle, acute angle, straight line, and
circular terrain environment. Figure 13b shows the distance values according to the ultrasonic sensors
S1, S3, and S4 and the left-wheel and right-wheel speeds of the robot at the robot moving distances.
When the robot moved along the wall to point A because the terrain of point A was a straight line, it

Figure 12. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-DS,
and FLC_R-CDS methods in test environment 2.

Table 5. Comparison of 30 controllers and their MAE values of various existing models in test
environment 2.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS

Minimum MAE 0.0759 0.1024 0.1313
Average MAE 0.1411 0.1632 0.1729

Standard deviation 0.0249 0.0323 0.0269

(3) Comparison of results of various methods in testing environment 3

This test environment is more complex than the previous environments. The terrain is a straight
line, right angle, and acute angle. The test environment is also a circular terrain. Figure 13a shows
that the FLC can complete the task in combination with the right angle, acute angle, straight line,
and circular terrain environment. Figure 13b shows the distance values according to the ultrasonic
sensors S1, S3, and S4 and the left-wheel and right-wheel speeds of the robot at the robot moving
distances. When the robot moved along the wall to point A because the terrain of point A was a
straight line, it must turn right over the straight terrain to continue the action along the wall. At this
moment, the values of ultrasonic sensor values of S1, S3, and S4 were 1.0, 1.0, and 0.36 m, respectively.
The left-wheel and right-wheel speeds were 2.8 and 2.25 m/s, respectively. When the robot moved
along the wall to point B, the robot was along the circular terrain. So, the robot must stay forward to
the right front. At this time, the ultrasonic sensor values of S1, S3, and S4 were 1.0, 0.68, and 0.44 m,
respectively. The left-wheel and right-wheel speeds were 2.45 and 2.25 m/s, respectively. When the
robot moved along the wall to point C, the robot would encounter the acute angle. To avoid collision
with the wall, the robot quickly turned left. In this acute angle of the terrain, if the mobile robot turns
left quickly, the robot will stay away from the wall. Conversely, if the mobile robot turns left too late,
the robot collides with the wall. So, the robot must turn left in the appropriate range to continue the
task along the wall. In this case, the ultrasonic sensor values of S1, S3, and S4 were 0.69, 0.58, and 0.33 m,
respectively. The left-wheel and right-wheel speeds were 1.7 and 3.5 m/s, respectively. When the
robot in the D point of the environment is in a straight line, the robot will continue to go straight
ahead. In this case, the ultrasonic sensor values of S1, S3, and S4 were 1.0, 0.42, and 0.3 m, respectively.
The left-wheel and right-wheel speeds were 1.81 and 1.82 m/s, respectively. When the robot moves
along the wall to point E, the robot has just passed an obtuse angle. The robot is not parallel to the wall,
so the robot must turn left to adjust the direction of the body. At this time, the ultrasonic sensor values
of S1, S3, and S4 were 1.0, 0.48, and 0.36 m, respectively. The left-wheel and right-wheel speeds were
1.86 and 2.1 m/s, respectively. Figure 14 shows the comparison of the path tracking best performances
of the proposed FLC_R-IDS method and other methods in test environment 3. Table 6 represents the
FLC_R-IDS method and other methods for the MAE values of 30 controllers in the test environment 3.
It also compares the performance of the FLC_R-IDS method with those of the FLC_R-DS and the
FLC_R-CDS methods.

Mathematics 2020, 8, 1254 17 of 21

Mathematics 2020, 8, x FOR PEER REVIEW 17 of 21

must turn right over the straight terrain to continue the action along the wall. At this moment, the
values of ultrasonic sensor values of S1, S3, and S4 were 1.0, 1.0, and 0.36 m, respectively. The left-
wheel and right-wheel speeds were 2.8 and 2.25 m/s, respectively. When the robot moved along the
wall to point B, the robot was along the circular terrain. So, the robot must stay forward to the right
front. At this time, the ultrasonic sensor values of S1, S3, and S4 were 1.0, 0.68, and 0.44 m, respectively.
The left-wheel and right-wheel speeds were 2.45 and 2.25 m/s, respectively. When the robot moved
along the wall to point C, the robot would encounter the acute angle. To avoid collision with the wall,
the robot quickly turned left. In this acute angle of the terrain, if the mobile robot turns left quickly,
the robot will stay away from the wall. Conversely, if the mobile robot turns left too late, the robot
collides with the wall. So, the robot must turn left in the appropriate range to continue the task along
the wall. In this case, the ultrasonic sensor values of S1, S3, and S4 were 0.69, 0.58, and 0.33 m,
respectively. The left-wheel and right-wheel speeds were 1.7 and 3.5 m/s, respectively. When the
robot in the D point of the environment is in a straight line, the robot will continue to go straight
ahead. In this case, the ultrasonic sensor values of S1, S3, and S4 were 1.0, 0.42, and 0.3 m, respectively.
The left-wheel and right-wheel speeds were 1.81 and 1.82 m/s, respectively. When the robot moves
along the wall to point E, the robot has just passed an obtuse angle. The robot is not parallel to the
wall, so the robot must turn left to adjust the direction of the body. At this time, the ultrasonic sensor
values of S1, S3, and S4 were 1.0, 0.48, and 0.36 m, respectively. The left-wheel and right-wheel speeds
were 1.86 and 2.1 m/s, respectively. Figure 14 shows the comparison of the path tracking best
performances of the proposed FLC_R-IDS method and other methods in test environment 3. Table 6
represents the FLC_R-IDS method and other methods for the MAE values of 30 controllers in the test
environment 3. It also compares the performance of the FLC_R-IDS method with those of the FLC_R-
DS and the FLC_R-CDS methods.

B

C

D

E

A

(a) Mathematics 2020, 8, x FOR PEER REVIEW 18 of 21

A B C D E

(b)

Figure 13. (a) Mobile robot path tracking, (b) ultrasonic sensor values, and the left-wheel and right-
wheel speeds of the robot in test environment 3 for the FLC_R-IDS method.

Figure 14. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-
DS, and FLC_R-CDS methods in test environment 3.

Table 6. Comparison of 30 controllers and their MAE values of various existing models in test
environment 3.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS
Minimum MAE 0.0791 0.1001 0.1271
Average MAE 0.1424 0.1682 0.1794

Standard deviation 0.0283 0.0399 0.0280

4.3. Real Mobile Robot Wall-Following Control

This study performed the experiment to show the execution of an actual mobile robot wall-
following control task using the FLC_R_IDS method and a PIONEER 3-DX robot. To illustrate the
feasibility of the FLC_R_IDS method, a real environment was created to test the mobile robot’s
performance in an actual wall-following task. In the simulations, the inputs of the FLC were the
ultrasonic sensor values. The outputs of the FLC were the robot’s left-wheel and right-wheel speeds.

Figure 13. (a) Mobile robot path tracking, (b) ultrasonic sensor values, and the left-wheel and
right-wheel speeds of the robot in test environment 3 for the FLC_R-IDS method.

Mathematics 2020, 8, x FOR PEER REVIEW 18 of 21

A B C D E

(b)

Figure 13. (a) Mobile robot path tracking, (b) ultrasonic sensor values, and the left-wheel and right-
wheel speeds of the robot in test environment 3 for the FLC_R-IDS method.

Figure 14. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-
DS, and FLC_R-CDS methods in test environment 3.

Table 6. Comparison of 30 controllers and their MAE values of various existing models in test
environment 3.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS
Minimum MAE 0.0791 0.1001 0.1271
Average MAE 0.1424 0.1682 0.1794

Standard deviation 0.0283 0.0399 0.0280

4.3. Real Mobile Robot Wall-Following Control

This study performed the experiment to show the execution of an actual mobile robot wall-
following control task using the FLC_R_IDS method and a PIONEER 3-DX robot. To illustrate the
feasibility of the FLC_R_IDS method, a real environment was created to test the mobile robot’s
performance in an actual wall-following task. In the simulations, the inputs of the FLC were the
ultrasonic sensor values. The outputs of the FLC were the robot’s left-wheel and right-wheel speeds.

Figure 14. Comparison of the path tracking best performances of the proposed FLC_R-IDS, FLC_R-DS,
and FLC_R-CDS methods in test environment 3.

Mathematics 2020, 8, 1254 18 of 21

Table 6. Comparison of 30 controllers and their MAE values of various existing models in test
environment 3.

Algorithms FLC_R-IDS FLC_R-DS FLC_R-CDS

Minimum MAE 0.0791 0.1001 0.1271
Average MAE 0.1424 0.1682 0.1794

Standard deviation 0.0283 0.0399 0.0280

4.3. Real Mobile Robot Wall-Following Control

This study performed the experiment to show the execution of an actual mobile robot
wall-following control task using the FLC_R_IDS method and a PIONEER 3-DX robot. To illustrate
the feasibility of the FLC_R_IDS method, a real environment was created to test the mobile robot’s
performance in an actual wall-following task. In the simulations, the inputs of the FLC were the
ultrasonic sensor values. The outputs of the FLC were the robot’s left-wheel and right-wheel speeds.
The maximum value of each ultrasonic sensor was 0.8 m. Each wheel reached a maximum of translation
speed of 10 m/s. The PIONEER 3-DX robot ultrasonic sensor was 5 m. The PIONEER 3-DX robot
reached a maximum of translation speed of 1.4 m/s. In the experiments, the inputs and outputs of the
FLC were linear conversion. Figure 15 shows the images of the wall-following control results of the
proposed approach. The PIONEER 3-DX robot could move along the wall and maintain a user-defined
distance from the wall.

Mathematics 2020, 8, x FOR PEER REVIEW 19 of 21

The maximum value of each ultrasonic sensor was 0.8 m. Each wheel reached a maximum of
translation speed of 10 m/s. The PIONEER 3-DX robot ultrasonic sensor was 5 m. The PIONEER 3-
DX robot reached a maximum of translation speed of 1.4 m/s. In the experiments, the inputs and
outputs of the FLC were linear conversion. Figure 15 shows the images of the wall-following control
results of the proposed approach. The PIONEER 3-DX robot could move along the wall and maintain
a user-defined distance from the wall.

Figure 15. Wall-following control results of the PIONEER 3-DX in an actual environment using the
FLC_R-IDS method.

5. Conclusions

This study proposed the IDS with the reinforcement learning designed FLC (FLC_R-IDS) to
achieve a mobile robot wall-following control task. In the proposed approach, the IDS algorithm uses
the self-adaptive parameter to adjust the control parameters. The IDS algorithm adjusts the number
that random scheme times for stopover site. The above two methods are used to optimize the FLC
parameters. Using reinforcement learning to train mobile robots along the wall, reward conditions
will affect the overall learning situation in reinforcement learning. If the reward conditions are set to
be too difficult, it will be challenging for the robot to learn. On the contrary, if the reward conditions
are set to be too simple, the robot will learn easily, but the performance may be worse. In this study,
three conditions are proposed. If the three conditions are reached at the same time, the robot
controller will get the reward value. Finally, the accumulated reward value can assist in evaluating
the standard FLC performance. In this method, the mobile robot is not using training data during the
learning process. The experimental results show that the proposed method in three experimental
environments reduced the MAE values by 12.44%, 22.54%, and 25.98%, respectively, compared with
the various existing models. This study proved that the FLC_R-IDS method performs better than the
FLC_R-DS method and the FLC_R-CDS method, in terms of relative fewer number of evaluations of

3

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

Figure 15. Wall-following control results of the PIONEER 3-DX in an actual environment using the
FLC_R-IDS method.

Mathematics 2020, 8, 1254 19 of 21

5. Conclusions

This study proposed the IDS with the reinforcement learning designed FLC (FLC_R-IDS) to
achieve a mobile robot wall-following control task. In the proposed approach, the IDS algorithm uses
the self-adaptive parameter to adjust the control parameters. The IDS algorithm adjusts the number
that random scheme times for stopover site. The above two methods are used to optimize the FLC
parameters. Using reinforcement learning to train mobile robots along the wall, reward conditions
will affect the overall learning situation in reinforcement learning. If the reward conditions are set to
be too difficult, it will be challenging for the robot to learn. On the contrary, if the reward conditions
are set to be too simple, the robot will learn easily, but the performance may be worse. In this study,
three conditions are proposed. If the three conditions are reached at the same time, the robot controller
will get the reward value. Finally, the accumulated reward value can assist in evaluating the standard
FLC performance. In this method, the mobile robot is not using training data during the learning
process. The experimental results show that the proposed method in three experimental environments
reduced the MAE values by 12.44%, 22.54%, and 25.98%, respectively, compared with the various
existing models. This study proved that the FLC_R-IDS method performs better than the FLC_R-DS
method and the FLC_R-CDS method, in terms of relative fewer number of evaluations of achieved
“success”. Moreover, the FLC_R-IDS method can be applied successfully to a wall-following control
task. The advantages of the proposed FLC_R-IDS are summarized as follows: (1) it does not use
training data during the learning process; (2) it uses a self-adaptive method to adjust the control
parameters; (3) it designs three conditions to achieve a mobile robot wall-following control task as
follows: to maintain a user-defined robot-wall distance, to avoid robot-wall collision and to ensure
that the robot can successfully move along the wall to go round the stadium.

In the simulations, the three reward conditions can help robots learn along the wall. The reward
conditions proposed in this study can be effectively learned along the wall. However, this method may
fail in the dead zone in a more complex experimental environment. Thus, setting appropriate reward
conditions is important for learning and designing reward conditions in the future. In recent years,
several heuristic algorithms have been proposed, such as the flower pollination algorithm and Jaya
algorithm. These algorithms have a good ability to search the solution space and control the robot to
learn more quickly along the wall for escaping the dead zone.

Author Contributions: Conceptualization, C.-H.C. and C.-J.L.; methodology, C.-H.C. and C.-J.L.; software, C.-H.C.
and S.-Y.J.; data curation, C.-H.C. and S.-Y.J.; writing—original draft preparation, C.-H.C., S.-Y.J. and C.-J.L.;
writing—review and editing, C.-H.C. and C.-J.L.; funding acquisition, C.-H.C. and C.-J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology of the Republic of China,
grant number MOST 108-2221-E-167-026 and MOST 108-2221-E-150-021-MY2.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jhang, J.Y.; Lee, C.L.; Lin, C.J.; Young, K.Y. Using a self-clustering algorithm and type-2 fuzzy controller for
multi-robot deployment and navigation in dynamic environments. Asian J. Control 2020. [CrossRef]

2. Jhang, J.Y.; Lin, C.J.; Young, K.Y. Cooperative carrying control for multi-evolutionary mobile robots in
unknown environments. Electronics 2019, 8, 298. [CrossRef]

3. Parker, L.E. Current research in multi-robot systems. Artif. Life Robot. 2003, 7, 1–5. [CrossRef]
4. Ordonez, C.; Collins, E.G.; Selekwa, M.F.; Dunlap, D.D. The virtual wall approach to limit cycle avoidance

for unmanned ground vehicles. Robot. Auton. Syst. 2008, 56, 645–657. [CrossRef]
5. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
6. Lin, C.T.; Lee, C.S.G. Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent System; Prentice-Hall:

Englewood Cliffs, NJ, USA, 1996.
7. Hagras, H.A. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots. IEEE Trans.

Fuzzy Syst. 2004, 12, 524–539. [CrossRef]

http://dx.doi.org/10.1002/asjc.2283
http://dx.doi.org/10.3390/electronics8030298
http://dx.doi.org/10.1007/BF02480877
http://dx.doi.org/10.1016/j.robot.2007.11.010
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/TFUZZ.2004.832538

Mathematics 2020, 8, 1254 20 of 21

8. Farooq, U.; Khalid, A.; Amar, M.; Habiba, A.; Shafique, S.; Noor, R. Design and Low Cost Implementation of
a Fuzzy Logic Controller for Wall Following Behavior of a Mobile Robot. In Proceedings of the 2010 2nd
International Conference on Signal Processing Systems, Dalian, China, 5–7 July 2010; pp. 740–746.

9. Wang, Y.; Zhu, X. A Supervised Adaptive Learning-Based Fuzzy Controller for a Non-Linear Vehicle System
Using Neural Network Identification. In Proceedings of the 2016 American Control Conference, Boston, MA,
USA, 6–8 July 2016; pp. 3946–3951.

10. Jiang, J.; Zeng, X.; Guzzetti, D.; You, Y. Path Planning for Asteroid Hopping Rovers with Pre-Trained Deep
Reinforcement Learning Architectures. Acta Astronaut. 2020, 171, 265–279. [CrossRef]

11. Cherroun, L.; Boumehraz, M. Intelligent Systems Based on Reinforcement Learning and Fuzzy Logic
Approaches, “Application to Mobile Robotic”. In Proceedings of the 2012 International Conference on
Information Technology and e-Services, Sousse, Tunisia, 24–26 March 2012.

12. Chung, H.Y.; Hou, C.C.; Liu, S.C. Automatic Navigation of a Wheeled Mobile Robot Using Particle Swarm
Optimization and Fuzzy Control. In Proceedings of the 2013 IEEE International Symposium on Industrial
Electronics, Taipei, Taiwan, 28–31 May 2013.

13. Civicioglu, P. Transforming geocentric cartesian coordinates to geodetic coordinates by using differential
search algorithm. Comput. Geosci. 2012, 46, 229–247. [CrossRef]

14. Liu, B. Composite differential search algorithm. J. Appl. Math. 2014, 2014, 294703. [CrossRef]
15. Kumar, V.; Chhabra, J.K.; Kumar, D. Differential search algorithm for multiobjective problems.

Procedia Comput. Sci. 2015, 48, 22–28. [CrossRef]
16. Chen, G.Z.; Wang, J.Q.; Li, R.Z. Parameter identification of the 2-chlorophenol oxidation model using

improved differential search algorithm. J. Chem. 2015, 2015, 313105. [CrossRef]
17. Wang, Z.; Gao, D.; Liu, J. Multi-objective sidetracking horizontal well trajectory optimization in cluster wells

based on DS algorithm. J. Pet. Sci. Eng. 2016, 147, 771–778. [CrossRef]
18. Brest, J.; Greiner, S.; Boskovic, B.; Mernik, M.; Zumer, V. Self-adapting control parameters in differential

evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 2006,
10, 646–657. [CrossRef]

19. Zhang, J.; Sanderson, A.C. JADE: Adaptive differential evolution with optional external archive. IEEE Trans.
Evol. Comput. 2009, 13, 945–958. [CrossRef]

20. Frommberger, L.; Wolter, D. Structural knowledge transfer by spatial abstraction for reinforcement learning
agents. Adapt. Behav. 2010, 18, 507–525. [CrossRef]

21. Sendari, S.; Mabu, S.; Hirasawa, K. Fuzzy Genetic Network Programming with Reinforcement Learning
for Mobile Robot Navigation. In Proceedings of the 2011 IEEE International Conference on Systems, Man,
and Cybernetics, Anchorage, AK, USA, 9–12 October 2011; pp. 2243–2248.

22. Jaradat, M.A.K.; AI-Rousan, M.; Quadan, L. Reinforcement based mobile robot navigation in dynamic
environment. Robot. Comput.-Integr. Manuf. 2011, 27, 135–149. [CrossRef]

23. Dong, D.; Chen, C.; Chu, J.; Tarn, T.J. Robust quantum-inspired reinforcement learning for robot navigation.
IEEE/ASME Trans. Mechatron. 2010, 17, 86–97. [CrossRef]

24. Turennout, P.V.; Honderd, G.; Schelven, L.J.V. Wall-Following Control of a Mobile Robot. In Proceedings
of the 1992 IEEE International Conference on Robotics and Automation, Nice, France, 12–14 May 1992;
pp. 280–285.

25. Wang, X.; Hou, Z.G.; Tan, M.; Wang, Y.; Hu, L. The Wall-Following Controller for the Mobile Robot
Using Spiking Neurons. In Proceedings of the 2009 International Conference on Artificial Intelligence and
Computational Intelligence, Shanghai, China, 7–8 November 2009; pp. 194–199.

26. Haidegger, T.; Kovács, L.; Preitl, S.; Precup, R.E.; Benyó, B.; Benyó, Z. Controller design solutions for long
distance telesurgical applications. Int. J. Artif. Intell. 2011, 6, 48–71.

27. Farooq, U.; Hasan, K.M.; Asad, M.U.; Saleh, S.O. Fuzzy Logic Based Wall Tracking Controller for Mobile
Robot Navigation. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Applications,
Singapore, 18–20 July 2012; pp. 2102–2105.

28. Castillo, O.; Martínez-Marroquín, R.; Melin, P.; Valdez, F.; Soria, J. Comparative study of bio-inspired
algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile
robot. Inf. Sci. 2012, 192, 19–38. [CrossRef]

http://dx.doi.org/10.1016/j.actaastro.2020.03.007
http://dx.doi.org/10.1016/j.cageo.2011.12.011
http://dx.doi.org/10.1155/2014/294703
http://dx.doi.org/10.1016/j.procs.2015.04.105
http://dx.doi.org/10.1155/2015/313105
http://dx.doi.org/10.1016/j.petrol.2016.09.046
http://dx.doi.org/10.1109/TEVC.2006.872133
http://dx.doi.org/10.1109/TEVC.2009.2014613
http://dx.doi.org/10.1177/1059712310391484
http://dx.doi.org/10.1016/j.rcim.2010.06.019
http://dx.doi.org/10.1109/TMECH.2010.2090896
http://dx.doi.org/10.1016/j.ins.2010.02.022

Mathematics 2020, 8, 1254 21 of 21

29. Juang, C.F.; Jeng, T.L.; Chang, Y.C. An interpretable fuzzy system learned through online rule generation
and multiobjective ACO with a mobile robot control application. IEEE Trans. Cybern. 2015, 46, 2706–2718.
[CrossRef]

30. Precup, R.E.; Voisan, R.E.; Petriu, E.M.; Tomescu, M.L.; David, R.C.; Szedlak-Stinean, A.I.; Roman, R.C.
Grey wolf optimizer-based approaches to path planning and fuzzy logic-based tracking control for mobile
robots. Int. J. Comput. Commun. Control 2020, 15, 1–17. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TCYB.2015.2486779
http://dx.doi.org/10.15837/ijccc.2020.3.3844
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Mobile Robot Control Using a Fuzzy Logic Controller
	Description of Mobile Robots
	Architecture of Fuzzy Logic Controller

	The Proposed Reinforcement-Based Improved Differential Search Algorithm
	Improved Differential Search Algorithm for Optimizing FLC Parameters
	Reward of Reinforcement Learning
	Stability Analysis of the FLC_R-IDS

	Experimental Results
	Training Results of Mobile Robot Wall-Following Control
	Testing Results of Mobile Robot Wall-Following Control
	Real Mobile Robot Wall-Following Control

	Conclusions
	References

