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Abstract: This study proposes a general bivariate stochastic differential equation model of population
growth which includes random forces governing the dynamics of the bivariate distribution of size
variables. The dynamics of the bivariate probability density function of the size variables in a
population are described by the mixed-effect parameters Vasicek, Gompertz, Bertalanffy, and the
gamma-type bivariate stochastic differential equations (SDEs). The newly derived bivariate probability
density function and its marginal univariate, as well as the conditional univariate function, can be
applied for the modeling of population attributes such as the mean value, quantiles, and much more.
The models presented here are the basis for further developments toward the tree diameter–height
and height–diameter relationships for general purpose in forest management. The present study
experimentally confirms the effectiveness of using bivariate SDEs to reconstruct diameter–height and
height–diameter relationships by using measurements obtained from mountain pine tree (Pinus mugo
Turra) species dataset in Lithuania.

Keywords: stochastic differential equation; probability density function; mean tree diameter; mean
tree height; quantiles

1. Introduction

The structural class hierarchy in a forest stand has interested researchers for more than a century.
This study shows that the framework of the stochastic differential equations (SDEs) can easily be
generalized to incorporate symmetric or non-symmetric size component distributions to explain
empirical datasets in a theoretically consistent way.

Tree height (h) and tree diameter at breast height (d) (in the sequel—diameter) are traditionally
used variables for tree volume calculation, aboveground carbon-stock estimation, and modeling of tree
growth and yield. Unfortunately, it is difficult to measure tree height in the field, and errors tend to be
observed. Tree height and diameter are traditionally formalized by using their regression relationship [1],
the artificial neural network (ANN) [2,3], or stochastic differential equations [4,5]. Height–diameter
regression equations have been developed for the local (stand) level and the generalized (ecoregional)
level, by introducing additional stand variables, as well as random parameters [6,7]. The application
of stand-level models to a wider region would probably lead to bias in predictions, as the deterministic
height–diameter equations are related to the growth conditions and stand characteristics. The bias of
tree-height predictions may affect the accuracy of the estimation of the stand volume and aboveground
carbon stocks. To achieve reliable predictions of tree height, European forest statisticians have
applied different techniques, such as generalized height–diameter models that include additional stand
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variables [8]. A generalized height equation evaluates the contribution of stand attributes, such as
the stand density per hectare, the basal area per hectare, the quadratic mean diameter, and others
in height–diameter models [9,10]. The inclusion of stand variables improves the predictive capacity
of the selected height–diameter equation, but this technique requires additional sampling effort and
reduces its practical application. The second technique that is used to introduce stand attributes
to the height–diameter equation uses stand-specific effects defined for each stand by a normally
distributed random variable, named a random effect [7], which allows models to adapt to diverse
growth environments.

In evenly aged stands, the use of the previously listed approaches is appropriate for explaining
and modeling tree development. On the other hand, the height–diameter relationship is not static;
instead, it varies with stand age within the same stand. Despite the progress in linear and nonlinear
regression modeling techniques, these earlier-proposed height–diameter models do not address
fundamental factors of tree height and diameter development, such as tree age and covariance
between size variables. In seeking a more comprehensive understanding of the dynamics of the
tree-size variables, diffusion processes defined by SDEs have been proposed to express the shape of
the tree height or crown width distribution versus the diameter [4,11]. SDE individual-tree growth
models are a fundamental framework to link tree-size variables with stand age and to warrant mean
stand volume predictions at a particular stand age. Most of the published SDE height–diameter
models are applied to medium- and large-sized trees. However, the difficult challenge of forest
growth and yield modeling is in tree species that differ from the idealized shape, size (diameter and
height), age, and density. Previous SDE models have focused on bivariate (height and diameter) [12],
trivariate (quadratic diameter, mean height, and density per hectare) [13], four-variate (height, diameter,
crown base height, and crown width) [14–16], and five-variate (height, diameter, crown base height,
crown width, and density per hectare) cases [17] for Scots pine trees in Lithuania. The main reason for
developing SDE models is to gain the capacity to model highly nonlinear biological dynamics and
their abnormalities [18].

The goal of this study was to develop SDE-type individual height–diameter models that are
specific to the mountain pine tree (Pinus mugo Turra) species in Lithuania and to offer new insights
into stand dynamics. The specific objectives were (1) to compare the newly developed SDE-type
height–diameter equations with traditionally used regression equations; (2) to evaluate individual-tree
and stand size variables such as the mean, median, mode, quantiles, and much more; (3) to evaluate
and present the long-term behavior of predictive size variables; and (4) to account for between-stand
variability by introducing random effects (random variables). All results were determined by using
the symbolic algebra system Maple.

2. Materials and Methods

2.1. Height–Diameter Regression Models

One of the most important links between tree-size variables is the relationship between tree
height and diameter. Estimating tree height from tree diameter at breast height is a common practice
for forest inventory, model simulation, and forest management. Height–diameter equations enable
a better understanding of the rates of changes in tree-size variables and the development of stand
volume, forest biomass, and carbon stocks [19,20]. Previous studies have summarized a great number
of available height–diameter linear and nonlinear relationships and compared their performance
for different tree species [1,21]. It should be noted that the main limitation of the height–diameter
equations is that they can produce very different results if applied to stands that differ from fitted stands.
Therefore, mixed-effects modeling techniques were developed to account for stand variability [8,22].
The use of mixed-effects modeling techniques has made it possible to calibrate random effects to local
stands by using a subsample of heights and diameters [22].
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This study compared three nonlinear regression models named the power, Richards–Chapman,
and q-exponential models [23–25]. The stand-specific random effects, ϕi (i = 1, . . . ,M), were included
in each examined model for only one of parameters that possessed higher variability. The general
equations of the mixed-effects power, Richards–Chapman, and q-exponential models are as follows:

Model 1. Power function
h = (β1 + ϕi)dβ2 . (1)

Model 2. Richards function

h = 1.3 + (β1 + ϕi)(1− exp(−β2d))β3 . (2)

Model 3. Q-exponential function

h = 1.3 + (β1 + ϕi)[(1− β2(1− β3)d)]
1

1−β3
+ . (3)

where β1–β3 are the unknown fixed-effect parameters to be estimated, [a]+ =

{
a, i f a ≥ 0,
0, i f a < 0

and ϕi

(i = 1, . . . ,M) are normally distributed random variables with a mean of 0 and constant variance σ2
ϕ,

and M is the number of fitted stands.

2.2. SDE Models

More forest statisticians promote the use of bivariate distribution (diameter and height) for the
derivation of the static height–diameter equation [26,27]. The mathematical description of the diameter
or height distribution provides more detailed information about the stand [28]. It is worth noting
that, by using measurements conducted by remote-sensing technologies, the height–diameter problem
might be reversed, generating the need for a diameter–height relationship. A bivariate distribution is a
framework used for symmetric interchange of diameter and height [29]. A bivariate SDE diameter and
height stochastic process would be more appropriate for describing the development of the diameter
and height structure in a stand over time (age). Therefore, we can define a dynamic form of the
probability density function representing the diameter and height distribution, which changes in shape
over time. The height–diameter or diameter–height equation can be derived by using conditional
probability density functions. This study focused on four types of nonhomogeneous bivariate SDE

models, Xi(t) =
(
Di(t), Hi(t)

)T
, of the tree diameter, Di(t), and height, Hi(t), dynamics, as follows [30]:

Model 4. Vasicek-type stochastic process

dXi(t) = Ai
(
Xi(t)

)
dt + B

1
2 ·dWi(t), P

(
Xi(t0) = x0

)
= 1, i = 1, . . . , M, (4)

Ai(x) =
(
βd

(
αd + ϕi

d − d
)
, βh

(
αh + ϕi

h − h
))T

, B =

(
σdd σdh
σdh σhh

)
.

Model 5. Gompertz-type stochastic process

dXi(t) = Ai
(
Xi(t)

)
dt + D

(
Xi(t)

)
B

1
2 ·dWi(t), P

(
Xi(t0) = x0

)
= 1, i = 1, . . . , M, (5)

Ai(x) =
(((
αd + ϕi

d

)
− βdln(d)

)
d,

((
αh + ϕi

h

)
− βhln(h)

)
h
)T

, D(x) =
(

d 0
0 h

)
,

G(x) =
(
D(x)B

1
2

)(
D(x)B

1
2

)T
=

(
d 0
0 h

)(
σdd σdh
σdh σhh

)(
d 0
0 h

)
.

Model 6. Von Bertalanffy–type stochastic process

dXi(t) = Ai
(
Xi(t)

)
dt + D

(
Xi(t)

)
B

1
2 ·dWi(t), P

(
Xi(t0) = x0

)
= 1, i = 1, . . . , M, (6)
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Ai(x) =


(
αd + ϕi

d

)
βd

eβd(t−t0) − 1
d,

(
αh + ϕi

h

)
βh

eβh(t−t0) − 1
h


T

, D(x) =
(

d 0
0 h

)
,

G(x) =
(
D(x)B

1
2

)(
D(x)B

1
2

)T
=

(
d 0
0 h

)(
σdd σdh
σdh σhh

)(
d 0
0 h

)
.

Model 7. Gamma-type stochastic process

dXi(t) = Ai
(
Xi(t)

)
dt + D

(
Xi(t)

)
B

1
2 ·dWi(t), P

(
Xi(t0) = x0

)
= 1, i = 1, . . . , M, (7)

Ai(x) =

αd + ϕi
d

t
− βd

d,

αh + ϕi
h

t
− βh

h

T

, D(x) =
(

d 0
0 h

)
,

G(x) =
(
D(x)B

1
2

)(
D(x)B

1
2

)T
=

(
d 0
0 h

)(
σdd σdh
σdh σhh

)(
d 0
0 h

)
.

Here, Wi(t) =
(
Wi

1(t), Wi
2(t)

)T
represents independent bivariate Brownian motions; t ∈ [t0; T]

is a finite horizon, T < ∞; ϕi
d and ϕi

h, i = 1, . . . , M are independent and normally distributed

random variables with zero mean and constant variances (ϕi
d ∼ N

(
0; σ2

d

)
and ϕi

h ∼ N
(
0; σ2

h

)
);

and
{
αd,αh, βd, βh, σdd, σdh, σhh, σd, σh

}
are fixed-effect parameters to be estimated. In the sequel, the initial

condition takes the following form: if t = t0, then X(t0) = x0 = (d0, h0).
The solution of the Vasicek-type SDE (4) has a bivariate normal distribution, N2

(
µi(t); Σ(t)

)
,

and the Gompertz-type, von Bertalanffy–type, and gamma-type SDEs (5)–(7) have a bivariate

lognormal distribution, LN2
(
µi(t); Σ(t)

)
, i = 1, . . . M, with the mean vectors µi(t) =

( ∣∣∣µi
d(t)∣∣∣µi
h(t)

)
and the variance–covariance matrices Σ(t) =

(
vd(t) vdh(t)
vdh(t) vh(t)

)
listed in Table 1.

Table 1. Mean vectors and variance–covariance matrixes of bivariate probability density functions.

SDE 1 Mean Vector µ(t) Variance–Covariance Matrix Σ(t)

Vasicek


∣∣∣∣∣d0e−βd(t−t0) +

αd+ϕi
d

βd

(
1− e−βd(t−t0)

)∣∣∣∣∣h0e−βh(t−t0) +
αh+ϕi

h
βh

(
1− e−βh(t−t0)

)
  1−e−2βd(t−t0)

2βd
σdd

1−e−(βd+βh)(t−t0)

βd+βh
σdh

1−e−(βd+βh)(t−t0)

βd+βh
σdh

1−e−2βh(t−t0)

2βh
σhh


Gompertz


∣∣∣∣∣ln(d0)e−βd(t−t0) +

αd+ϕi
d

βd

(
1− e−βd(t−t0)

)∣∣∣∣∣ln(h0)e−βh(t−t0) +
αh+ϕi

h
βh

(
1− e−βh(t−t0)

)


Bertalanffy


∣∣∣∣∣ln(d0) +

(
αd + ϕi

d

)
ln

(
1−exp(−βdt)
1−exp(−βdt0)

)
−
σdd
2 (t− t0)∣∣∣∣∣ln(h0) +

(
αh + ϕi

h

)
ln

(
1−exp(−βht)
1−exp(−βht0)

)
−
σhh
2 (t− t0)

 (
σdd(t− t0) σdh(t− t0)
σdh(t− t0) σhh(t− t0)

)
Gamma


∣∣∣∣ln(d0) +

(
αd + ϕi

d

)
ln

(
t
t0

)
−

(
βd +

σdd
2

)
(t− t0)∣∣∣∣ln(h0) +

(
αh + ϕi

h

)
ln

(
t
t0

)
−

(
βh +

σhh
2

)
(t− t0)


1: SDE = stochastic differential equation.

The marginal distributions of Di(t)
∣∣∣Di(t0) = d0 and Hi(t)

∣∣∣Hi(t0) = h0 are also normal

N1
(
µi

g(t); vg(t)
)

for the Vasicek type diffusion and lognormal LN1
(
µi

g(t); vg(t)
)

for the other diffusions
(g ∈ {d, h}) [30]. The marginal mean, median, mode, p-quantile (0 < p < 1), and variance trajectories
mi

g(t), mei
g(t), moi

g(t), mqi
g(t, p), and wg(t) of the tree diameter and height, g ∈ {d, h}, are listed in Table 2.
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Table 2. Marginal mean, median, mode, p-quantile (0 < p < 1), and variance trajectories.

SDE Trajectory Type Equation

Vasicek

Mean, median and mode µi
g(t)

Quantile (0 < p < 1) Φ−1
p

(
µi

g(t); vgg(t)
)

1

Variance vgg(t)

Gompertz
Bertalanffy

Gamma

Mean exp
(
µi

g(t) +
1
2 vgg(t)

)
Median exp

(
µi

g(t)
)

Mode exp
(
µi

g(t) − vgg(t)
)

Quantile (0 < p < 1) exp
(
µi

g(t) +
√

vgg(t)Φ−1
p (0; 1)

)
Variance exp

(
2µi

g(t) + vgg(t)
)
·

(
exp

(
vgg(t)

)
− 1

)
1: Φ−1

p (·; ·) is the inverse of the standard normal distribution function.

The conditional distributions Di(t)
∣∣∣Di(t0) = d0 at a given

(
Hi(t) = h

)
and Hi(t)

∣∣∣Hi(t0) = h0 at a

given
(
Di(t) = d

)
are univariate normal N1

(
ηi

g(t, g); λg(t)
)

for the Vasicek-type diffusion and univariate

lognormal LN1
(
ηi

g(t, g); λg(t)
)
, g ∈ {d, h} for the other diffusions, with the mean and variance given in

Table 3. Here, if g = d, then g = h, and if g = h, then g = d.

Table 3. Mean and variance of conditional probability density functions.

SDE Mean ηi
g(t,

¯
g) Variance λg(t)

Vasicek µi
g(t) +

vgg(t)
vgg(t)

(
h− µi

g
(t)

)
vgg(t) −

(vgg(t))
2

vgg(t)Gompertz
Bertalanffy

Gamma
µi

g(t) +
vgg(t)
vgg(t)

(
ln(g) − µi

g
(t)

)

The conditional mean, median, mode, p-quantile (0 < p < 1), and variance trajectories mi
g(t, g),

mei
g(t, g), moi

g(t, g), mqi
g(t, p, g), and wi

g(t, g) of the tree diameter and height, g ∈ {d, h}, are listed in
Table 4.

Table 4. Marginal mean, median, mode, p-quantile (0 < p < 1), and variance trajectories.

SDE Trajectory Type Equation

Vasicek

Mean, median, and mode ηi
g(t, g)

Quantile (0 < p < 1) Φ−1
p

(
ηi

g(t, g); λg(t)
)

Variance λg(t)

Gompertz
Bertalanffy

Gamma

Mean exp
(
ηi

g(t, g) + 1
2λg(t)

)
Median exp

(
ηi

g(t, g)
)

Mode exp
(
ηi

g(t, g) − λg(t)
)

Quantile (0 < p < 1) exp
(
ηi

g(t, g) +
√
λg(t)Φ−1

p (0; 1)
)

Variance exp
(
2ηi

g(t, g) + λg(t)(t)
)
·

(
exp

(
λg(t)

)
− 1

)
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2.3. Maximum Likelihood Procedure

2.3.1. Regression Equation Models

For a sample
{(

di
1, hi

1

)
,
(
di

2, hi
2

)
, . . . ,

(
di

ni
, hi

ni

)}
of n (n =

∑m
i=i ni) observations on the dependent

and independent variables, the maximum log-likelihood function takes the following form [31]:

LL1
(
θ1

)
=

∑M

i=1

∑ni

j=1
ln

(
1
√

2πσ
exp

(
−

1
2σ

(
gi

j − f
(
gi

j

∣∣∣β1, β2, β3 , 0
))2

))
, θ1 =

{
β1, β2, β3, σ

}
. (8)

Here, the fixed-effect parameter nonlinear general regression model is defined as
g = f

(
g
∣∣∣β1 + ϕ, β2, β3

)
+ ε = f

(
g
∣∣∣β1, β2, β3,ϕ

)
+ ε, with the assumption that the error (ε) is a normally

distributed random variable with zero mean and constant variance, σ2, and random effects,
ϕi = E

(
ϕi

)
= 0, i = 1, . . . , M.

For the mixed-effect parameter nonlinear general regression model g = f
(
g
∣∣∣β1 + ϕ, β2, β3

)
+ ε =

f
(
g
∣∣∣β1, β2, β3,ϕ

)
+ ε, with the assumption that the normal random error is ε ∼ N1

(
0; σ2

)
and the normal

random effect is ϕ ∼ N1
(
0; σ2

ϕ

)
, the two step approximated maximum log-likelihood function takes the

following form [32]:

LL2

θ2

∣∣∣∣∣∣ ∧ϕi

 ≈∑M

i=1

g

 ∧ϕi
∣∣∣θ2

+ 1
2

ln(2π) −
1
2

ln

det


−∂2g

(
ϕi

∣∣∣θ2
)

∂(ϕi)
2


|ϕi=

∧

ϕi


, (9)

where i = 1, . . . , M,
∧

ϕi = argmax
ϕi

g
(
ϕi

∣∣∣∣∣∣ ∧θ2
)
, θ2 =

{
β1, β2, β3, σ, σϕ

}
,

g
(
ϕi

∣∣∣∣∣∣ ∧θ2
)
=

∑ni

j=1
ln

 1
√

2πσ
exp

− 1
2σ

hi
j − f

di
j

∧∣∣∣θ1 ,ϕi

2
+ ln

(
φ
(
ϕi

∣∣∣∣ ∧σϕ ))
. (10)

2.3.2. SDE Models

The maximum likelihood parameter estimator of the SDE seeks to make the conditional (transition)
probability density function the most likely fit for the observed diameter and height estimation dataset{(

di
1, hi

1

)
,
(
di

2, hi
2

)
, . . . ,

(
di

ni
, hi

ni

)}
at discrete times

{
ti
1, ti

2, . . . , ti
ni

}
, starting at the initial time, t0, diameter,

and height X(t0) = x0 = (0.1, 1.3)T, from which a given set of the SDEs (4)–(7) evolves. The parameter

estimators for the fixed-effect model
∧

θ3 =

{
∧
αd,
∧
αh,
∧

βd,
∧

βh,
∧
σdd,

∧
σdh,

∧
σhh

}
and for the mixed-effect

model
∧

θ4 =

{
∧
αd,
∧
αh,
∧

βd,
∧

βh,
∧
σdd,

∧
σdh,

∧
σhh,

∧
σd,
∧
σh

}
can be calculated by the maximum-likelihood and

approximated-maximum-likelihood techniques. For the fixed-effect parameter scenario, the maximum
log-likelihood function takes the following form:

LL3
(
θ3

)
=

∑M

i=1

∑ni

j=1
ln

(
p
(
di

j, hi
j

∣∣∣θ3, 0
))

, (11)

where p
(
d, h

∣∣∣θ3, 0
)

is a normal (the Vasicek type) or lognormal (the others) probability density function,

as defined in Table 1, with random effects ϕi = E
(
ϕi

)
= 0.

For the mixed-effect parameter scenario models, the two-step approximated maximum
log-likelihood procedure takes the following form:

LL4

θ4

∣∣∣∣∣∣ ∧ϕi

 ≈∑M

i=1

g

 ∧ϕi
∣∣∣θ4

+ ln(2π) −
1
2

ln

det


−∂2g

(
ϕi

∣∣∣θ4
)

∂(ϕi)
2


|ϕi=

∧

ϕi


, (12)
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where ϕi =
(
ϕi

d,ϕi
h

)
,

∧

ϕi = argmax
ϕi

g

ϕi

∣∣∣∣∣∣ ∧θ4

, i = 1, . . . , M, (13)

g

ϕi

∣∣∣∣∣∣ ∧θ4

 = ∑ni

j=1
ln

(
p
(
di

j, hi
j, ti

j

∣∣∣∣∣∣ ∧θ3,ϕi
d,ϕi

h

))
+ ln

(
φ(ϕi

d

∣∣∣∣∧σd

)
+ ln

(
φ
(
ϕi

h

∣∣∣∣∧σh

))
. (14)

2.4. Standard Errors of Parameter Estimates

To assess the accuracy of the parameter estimates obtained through the maximum-likelihood and
approximated-maximum-likelihood procedures, we considered the standard errors associated with the
estimates. Estimates of these standard errors can be obtained as the inverse of the observed Fisher [33]
information matrix (see, for instance, Reference [30]). The approximate asymptotic standard errors of
the fixed-effects parameters are defined by the diagonal elements of the observed Fisher information

matrix
[̃
I
(
∧

θs
)]−1

, s = 1,2,3,4

SE
(
∧

θs
)
=

√[
Ĩii

(
∧

θs

)]−1

, (15)

where the matrix is Ĩ
(
∧

θs
)
=

[
−
∂2LLs(θs)
∂θs

i∂θ
s
j

]T

|
θs=

∧

θs
.

2.5. Random Effects Calibration

To calibrate the random effects, ϕd,ϕh, of the bivariate SDE models defined by Equations (4)–(7)
for a new subsample, we used a full dataset of observations taken from the validation sample
unit. Using new subsample observations

{
(d1, h1), (d2, h2), . . . , (dm, hm)

}
at discrete times {t1, t2, . . . , tm},

the random effects of the SDE models ϕ = (ϕd,ϕh) for diameter and height can be calibrated by
the following:

∧
ϕ = argmax

(ϕd,ϕh)

∑m

j=1
ln

(
p
(
d j, h j, t j

∣∣∣∣∣∣ ∧θ3,ϕd,ϕh

))
+ ln

(
φ
(
ϕd

∣∣∣∣ ∧σd

))
+ ln

(
φ
(
ϕh

∣∣∣∣ ∧σh

))
. (16)

The random effect ϕg of the regression models can be calibrated by the following:

∧
ϕg = argmax

ϕg

∑m

j=1
ln

 1
√

2πσ
exp

− 1
2σ

g j − f

g j

∧∣∣∣θ1 ,ϕ

2
+ ln

(
φ
(
ϕg

∣∣∣∣ ∧σϕ ))
, g ∈ {d, h}. (17)

2.6. Data

The study site was located in western Lithuania (Kuršių Nerija). A mountain pine tree (Pinus mugo
Turra) species was planted to stop sand dunes of Curonian Spit from drifting in the nineteenth to
twentieth centuries. The data used for modeling consisted of measurements collected from 31 mountain
pine plots located in Western Lithuania (Kuršių Nerija). The ages of the sampled plots varied from
53 to 123 years. The size of the round sample plot was 150 m2. In all plots, the diameter at breast
height of all trees larger than 1 mm was measured (7005 trees). The total diameter at breast height
and tree height was measured for 702 trees. At plot establishment, the following data were recorded
for every sample tree: diameter over bark at 1.30 m, tree height, and age. Diameter was measured to
an accuracy of 1 mm. Height was measured by using clinometer, with precision to the nearest 0.1 m.
Tree age was identified with stand age, which provides a general timeframe for when stands were first
established. The dataset was randomly divided into estimation and validation datasets. A random
sample of 23 plots was selected for model estimation, and the remaining dataset of 8 plots was used for
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model validation. The summary statistics for the diameter at breast height (d), the total height (h),
and age (t) for all of the trees used in the model estimation and validation datasets are presented in
Table 5.

Table 5. Summary statistics.

Data Number of Plots Min Max Mean SD Number of Plots Min Max Mean SD

Estimation Validation

d (cm) 23 1.20 13.40 3.96 1.61 8 1.80 8.00 4.15 1.25
h (m) 23 1.50 7.90 3.55 1.11 8 2.07 6.56 3.84 0.91

t (year) 23 53.00 123.00 92.21 20.82 8 53.00 103.00 80.60 17.50

3. Results and Discussion

3.1. Estimates of Parameters

All used fixed and mixed-effect parameter regression models described above, and the newly
developed bivariate fixed and mixed-effect parameter SDE models, are nonlinear. In order to establish
the mixed-effect parameter height–diameter and diameter-height models, the sample plot-level effects
were considered by including the random effects for a particular parameter. This study estimated the
parameters of all used regression and bivariate SDE models by maximizing the maximum likelihood
functions defined by Equations (8)–(12). Standard errors of parameter estimates were calculated by
using the observed Fisher information matrix, defined by Equation (15). All results were determined
by using Maple mathematical software. The results of the parameter estimation and the standard
errors for all used models are listed in Tables 6 and 7. Parameter estimates of all fitted models were
significant (p < 0.05).

Table 6. Estimates of parameters and their standard errors (in parenthesis) for all fitted bivariate
SDE models.

Model
Parameters of SDE Models

αd βd σdd αh βh σhh σdh σd σh

4 fixed
effect

4.0760
(0.0037)

0.0501
(0.0003)

0.2661
(0.0016)

3.5518
(0.0021)

0.1861
(0.0056)

0.4596
(0.0139)

0.3400
(0.0081) - -

4 mixed
effect

4.2783
(0.0023)

0.0841
(0.0009)

0.2165
(0.0024)

3.7127
(0.0011)

0.2348
(0.0640)

0.1453
(0.0396)

0.01285
(0.0258)

1.5029
(0.0097)

1.1790
(0.0076)

5 fixed
effect

0.1136
(0.0004)

0.0772
(0.0003)

0.0224
(0.0001)

0.3599
(0.0442)

0.2754
(0.0338)

0.0457
(0.0056)

0.0303
(0.0029) - -

5 mixed
effect

0.1414
(0.0003)

0.0946
(0.0002)

0.0156
(0.0001)

0.3639
(0.0004)

0.2749
(0.0003)

0.0147
(4.6 × 10−5)

0.0112
(4.4 × 10−5)

0.0274
(0.0002)

0.0750
(0.0005)

6 fixed
effect

5.2039
(0.0173)

0.0668
(0.0002)

0.0021
(5.8 × 10−6)

75.0842
(37.1990)

0.4296
(0.0492)

0.0013
(3.4 × 10−6)

0.0013
(4.0 × 10−6) - -

6 mixed
effect

7.2647
(0.0166)

0.0907
(0.0002)

0.0012
(3.3 × 10-6)

67.3215
(0.0788)

0.4159
(0.0001)

0.0004
(1.1 × 10−6)

0.0004
(1.6 × 10−6)

0.5511
(0.0035)

17.1946
(0.1104)

7 fixed
effect

3.1269
(0.0024)

0.0395
(6.3 × 10−5)

0.0023
(6.1 × 10−6)

1.0109
(0.0018)

0.0153
(4.8 × 10−5)

0.0013
(3.4 × 10−6)

0.0014
(4.1 × 10−6) - -

7 mixed
effect

3.1690
(0.0017)

0.0389
(4.6 × 10−5)

0.0012
(3.3 × 10−6)

1.0551
(0.0010)

0.0155
(2.6 × 10−5)

0.0004
(1.1 × 10−6)

0.0004
1.6 × 10−6

0.1480
(0.0010)

0.1368
(0.0009)
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Table 7. Estimates of parameters and their standard errors (in parenthesis) for all fitted
regression models.

Model
Parameters of Regression Models

β1 β2 β3 Σ σφ

Diameter Height

1 fixed
effect

1.0772
(0.0022)

1.0248
(0.0014) - 0.9898

(0.0027) - 1.4949
(0.0021)

0.6405
(0.0009) - 0.4830

(0.0013) -

1 mixed
effect

0.9214
(0.0017)

1.1529
(0.0013) - 0.7511

(0.0021)
0.1130
(0.0007)

2.2444
(0.0012)

0.3685
(0.0004) - 0.1724

(0.0005)
0.4405
(0.0028)

2 fixed
effect

198.4369
(21.2221)

0.0157
(0.0013)

1.4884
(0.0050)

0.9846
(0.0026) - 23.7733

(1.2223)
0.0277

(0.0018)
1.0383
(0.0055)

0.4759
(0.0013) -

2 mixed
effect

73.9614
(0.2618)

0.0499
(0.0002)

1.8394
(0.0029)

0.7466
(0.0020)

12.3094
(0.0802)

25.1334
(0.0386)

0.0037
(2.3 × 10−5)

0.5584
(0.0010)

0.1745
(0.0005)

7.3270
(0.0471)

3 fixed
effect

0.0018
(1.9 × 10−5)

−61.6512
(0.4348)

0.3074
(0.0018)

0.9843
(0.0078) - 0.0186

(0.0048)
−34.9128
(9.6510)

−0.0357
(0.0022)

0.4764
(0.0013) -

3 mixed
effect

0.1861
(0.0006)

−1.3312
(0.0036)

0.5858
(0.0008)

0.7405
(0.0020)

0.0314
(0.0002)

0.2888
(0.0004)

−6.1644
(0.0472)

−0.7894
(0.0034)

0.1750
(0.0005)

0.0834
(0.0005)

3.2. Bivariate Diameter and Height Distributions

Newly developed bivariate probability density functions obtained from the bivariate Vasicek-,
Gompertz-, von Bertalanffy–, and gamma-type SDEs defined by Equations (4)–(7) can be visualized in
graphs for different stand and parameter scenarios. Additionally, to demonstrate that data from the
validation dataset follow the bivariate probability density functions derived from SDEs (4)–(7), we used
a simple graphical technique represented by contour plots. The random effects, ϕd, ϕh, of the diameter
and height for a randomly selected stand from the validation dataset were calibrated by Equation (16).
The estimated bivariate mixed-effect parameter probability density functions and contour plots for a
particular randomly selected stand from the validation dataset and the observed values are given in
Figure 1. We can see that our developed lognormal probability density functions for the Gompertz,
von Bertalanffy, and gamma diffusions inherit circular structures but also have unequal tails and show
signs of skewness.
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Figure 1. Bivariate probability density functions and their contour plots for a particular randomly 
selected stand from the validation dataset: (a1,b1,c1,d1) mixed-effect bivariate densities, (a2,b2,c2, d2) 
Contour plots (levels: 5−2, 5−3, 5−4), (a1,a2) Vasicek type, (b1,b2) Gompertz type, (c1,c2) Bertalanffy type, 
and (d1,d2) Gamma type. Values observed from the validation dataset are represented by circles. 

For mountain pine trees, the height and diameter probability density function presented steeper 
and more symmetrical surfaces for the Vasicek-type diffusions (see Figure 1); however, with 
increasing age, the surfaces became flatter. 

3.3. Comparison of Diameter, Height, Height–Diameter, and Diameter–Height Models 

Tree size dimensions vary continuously through natural processes and specific silvicultural 
activities. Accurate tree-height relationships are necessary for most forest inventories, as knowledge 
of tree heights is needed to calculate tree volumes, biomass, carbon content, and economic value [34]. 
The newly developed fixed- and mixed-effect marginal and conditional univariate normal and 
lognormal probability density functions, which are listed in Tables 1 and 2, respectively, enable the 
results of the diameter and height behavior to be formalized from an evolutionary (time) perspective, 

Figure 1. Bivariate probability density functions and their contour plots for a particular randomly
selected stand from the validation dataset: (a1,b1,c1,d1) mixed-effect bivariate densities, (a2,b2,c2,d2)
Contour plots (levels: 5−2, 5−3, 5−4), (a1,a2) Vasicek type, (b1,b2) Gompertz type, (c1,c2) Bertalanffy
type, and (d1,d2) Gamma type. Values observed from the validation dataset are represented by circles.
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For mountain pine trees, the height and diameter probability density function presented steeper
and more symmetrical surfaces for the Vasicek-type diffusions (see Figure 1); however, with increasing
age, the surfaces became flatter.

3.3. Comparison of Diameter, Height, Height–Diameter, and Diameter–Height Models

Tree size dimensions vary continuously through natural processes and specific silvicultural
activities. Accurate tree-height relationships are necessary for most forest inventories, as knowledge of
tree heights is needed to calculate tree volumes, biomass, carbon content, and economic value [34].
The newly developed fixed- and mixed-effect marginal and conditional univariate normal and
lognormal probability density functions, which are listed in Tables 1 and 2, respectively, enable the
results of the diameter and height behavior to be formalized from an evolutionary (time) perspective,
with an emphasis on models of the mean diameter and mean height in a forest stand. By using marginal
and conditional univariate normal and lognormal probability density functions, trajectories of the mean
tree diameter and height in a forest stand were derived (see Tables 2 and 4). Fixed-effect parameter
height–diameter SDE models are suitable for local application, and more generalized mixed-effect
parameter SDE models, which do not use additional stand variables, can be applied at the regional level.

The principal objective of the newly framed SDE height–diameter and diameter–height models,
as presented in Table 4, is to show their precedence over regression models. The statistical measures
commonly used for the comparison of all used height–diameter and diameter–height models are
shown in Tables 8 and 9. The SDE height–diameter and diameter–height models were found to be
better than the regression models. The mixed-effect parameter SDE models showed better statistical
measures than those of fixed-effect parameter models, as, by definition, they do not take into account
the variability between stands and therefore do not provide good predictions for a dataset sampled
from a new stand. Statistical measures for all fitted height–diameter and diameter–height SDE models
gave very similar values. For the validation dataset, the SDE height–diameter and diameter–height
models appeared to work better than the regression models. With reference to all used statistical
measures and to all used height–diameter and diameter–height models, the bivariate Gompertz-type
SDE, in general terms, provided the highest accuracy.

Table 8. Statistical measures for all fitted mixed-effect parameter diameter, D, and height, H, models.

Model
(Predictors)

Estimation Dataset 1 Validation Dataset

B
(%B)

AB
(%AB)

RMSE
(%RMSE) R2 B

(%B)
AB

(%AB)
RMSE

(%RMSE) R2

Diameter

Vasicek
(t)

0.0068
(−8.47)

0.8278
(23.70)

1.1114
(28.10) 0.5213 −2.5 × 10−10

(−6.91)
0.8675
(22.65)

1.0674
(25.74) 0.2768

Vasicek
(t,h)

0.0025
(−4.60)

0.6462
(17.72)

0.8548
(21.62) 0.7168 −1.9 × 10−10

(−4.56)
0.7243
(18.62)

0.9406
(22.69) 0.4384

Gompertz
(t)

0.0076
(−8.49)

0.8302
(23.61)

1.1207
(28.36) 0.5132 0.1339

(−3.43)
0.8615
(21.70)

1.0687
(25.77) 0.2750

Gompertz
(t,h)

0.0030
(−4.91)

0.6418
(17.55)

0.8567
(21.66) 0.7156 0.0951

(−2.30)
0.7177
(17.96)

0.9266
(22.35) 0.4549

Bertalanffy
(t)

−0.0226
(−9.38)

0.8348
(23.90)

1.1256
(28.46) 0.5090 0.1442

(−3.45)
0.8621
(21.76)

1.0698
(27.86) 0.2741

Bertalanffy
(t,h)

−0.0127
(−5.33)

0.6448
(17.68)

0.8587
(21.71) 0.7142 0.0950

(−2.28)
0.7184
(17.98)

0.9272
(22.36) 0.4543

Gamma
(t)

−0.0216
(−9.28)

0.8334
(23.85)

1.1222
(28.37) 0.5121 0.1338

(−3.44)
0.8623
(21.75)

1.0689
(25.78) 0.2751
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Table 8. Cont.

Model
(Predictors)

Estimation Dataset 1 Validation Dataset

B
(%B)

AB
(%AB)

RMSE
(%RMSE) R2 B

(%B)
AB

(%AB)
RMSE

(%RMSE) R2

Diameter

Gamma
(t,h)

−0.0135
(−5.30)

0.6442
(17.67)

0.8574
(21.68) 0.7151 0.0950

(−2.28)
0.7185
(17.99)

0.9273
(22.37) 0.4543

Power
(h)

0.0064
(−4.50)

0.6398
(17.51)

0.8507
(21.51) 0.7195 0.0026

(−4.59)
0.7199
(18.57)

0.9269
(22.35) 0.4546

Richards
(h)

0.0006
(−5.07)

0.6397
(17.74)

0.8485
(21.45)

0.7209 0.0056
(−4.63)

0.7167
(18.50)

0.9269
(22.36) 0.4546

Q-exp
(h)

−0.0004
(−5.50)

0.6387
(17.97)

0.8482
(21.45) 0.7211 0.0147

(−4.53)
0.7183
(18.55)

0.9326
(22.49) 0.4479

Height

Vasicek
(t)

0.0026
(−2.69)

0.4049
(12.45)

0.5448
(15.35) 0.7609 −4.0 × 10−11

(−1.92)
0.3912
(10.80)

0.5160
(13.44) 0.6822

Vasicek
(t,h)

0.0034
(−1.55)

0.3219
(9.75)

0.4191
(11.81) 0.8585 0.0106

(−1.01)
0.3363
(9.05)

0.4566
(11.89) 0.7512

Gompertz
(t)

0.0049
(−2.69)

0.4063
(12.44)

0.5476
(15.42) 0.7585 0.0352

(−0.99)
0.3941
(10.76)

0.5162
(13.44) 0.6821

Gompertz
(t,h)

−0.0004
(−1.54)

0.3171
(9.55)

0.4084
(11.50) 0.8657 −0.0189

(−1.68)
0.3435
(9.22)

0.4657
(12.13) 0.7412

Bertalanffy
(t)

−0.0048
(−2.98)

0.4069
(12.48)

0.5484
(15.45) 0.7578 0.0352

(−1.01)
0.3943
(10.77)

0.5164
(13.48) 0.6819

Bertalanffy
(t,h)

−0.0060
(−1.69)

0.3174
(9.57)

0.4087
(11.51) 0.8654 −0.0196

(−1.71)
0.3443
(9.25)

0.4668
(12.16) 0.7400

Gamma
(t)

−0.0031
(−2.92)

0.4065
(12.47)

0.5477
(15.43) 0.7583 0.0352

(−1.03)
0.3941
(10.77)

0.5162
(13.44) 0.6821

Gamma
(t,h)

−0.0050
(−1.66)

0.3175
(9.57)

0.4087
(11.51) 0.8654 −0.0195

(−1.71)
0.3444
(9.25)

0.4669
(12.17) 0.7398

Power
(h)

0.0010
(−1.51)

0.3161
(9.56)

0.4066
(11.45)

0.8668 0.0118
(−0.93)

0.3422
(9.15)

0.4652
(12.11) 0.7418

Richards
(h)

−0.0002
(−1.77)

0.3197
(9.73)

0.4091
(11.52) 0.8652 0.0169

(−0.86)
0.3450
(9.20)

0.4709
(12.26) 0.7354

Q-exp
(h)

−0.0032
(−1.82)

0.3202
(9.76)

0.4112
(11.58) 0.8638 0.0156

(−0.90)
0.3442
(9.18)

0.4699
(12.24) 0.7365

1: The mean prediction bias (B = 1
n
∑n

i=1

(
yi −

∧

yi

)
), the percentage mean prediction bias (%B = 1

n
∑n

i=1
yi−
∧
yi

yi
),

the absolute mean (AB) prediction bias (AB = 1
n
∑n

i=1

∣∣∣∣yi −
∧

yi

∣∣∣∣), the percentage mean absolute prediction bias

(%B = 1
n
∑n

i=1

∣∣∣∣∣∣ yi−
∧
yi

yi

∣∣∣∣∣∣), the root mean square error (RMSE) (RMSE =

√
1

n−1
∑n

i=1

(
yi −

∧

yi

)2
), the percentage root

mean square error (%RMSE =

√
1

n−1
∑n

i=1

(
yi−
∧
yi

yi

)2

), and the coefficient of determination (R2 = 1 −
∑n

i=1

(
yi−
∧
yi

)2

∑n
i=1(yi−y)2 ).

Here, n =
∑M

i=1 ni is the total number of observations used to fit the model; M is the number of stands; ni is the

number of measured trees in the ith stand; and yi,
∧

yi, and y are the measured, estimated, and average values of the
dependent variable.
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Table 9. Statistical measures for all fitted fixed-effect parameter diameter, D, and height, H, models.

Model
(Predictors)

Estimation Dataset Validation Dataset

B
(%B)

AB
(%AB)

RMSE
(%RMSE) R2 B

(%B)
AB

(%AB)
RMSE

(%RMSE) R2

Diameter

Vasicek
(t)

−0.0025
(−15.31)

1.1752
(33.58)

1.6318
(41.26) 0 0.2470

(−2.78)
1.0200
(25.08)

1.2912
(31.14) 0

Vasicek
(t,h)

−0.0006
(−5.60)

0.7237
(19.53)

0.9833
(24.86) 0.6253 −0.0888

(−6.90)
0.7815
(20.54)

0.9960
(24.02) 0.3702

Gompertz
(t)

0.2425
(−2.94)

1.0273
(25.29)

1.2999
(31.35) 0 0.2425

(−2.94)
1.0273
(25.29)

1.2999
(31.35) 0

Gompertz
(t,h)

0.0018
(−5.78)

0.7172
(19.43)

0.9757
(24.67) 0.6310 −0.0732

(−6.67)
0.7714
(20.27)

0.9771
(23.56) 0.3940

Bertalanffy
(t)

−0,1293
(−19.04)

1,2091
(35.47)

1.6420
(41.52) 0 0.1323

(−5.87)
1.0373
(26.22)

1.3092
(31.58) 0

Bertalanffy
(t,h)

−0.0069
(−6.24)

0.7185
(19.55)

0.9785
(24.74) 0.6290 −0.0662

(−6.61)
0.7710
(20.24)

0.9751
(23.52) 0.3964

Gamma
(t)

−0,0982
(−18.76)

1.2670
(37.10)

1.7045
(43.10) 0 −0.0485

(−10.95)
1.1219
(29.41)

1.3827
(33.25) 0

Gamma
(t,h)

−0.0207
(−6.49)

0.7323
(19.97)

0.9885
(24.99) 0.6213 −0.1528

(−8.83)
0.7935
(21.17)

1.0064
(24.27) 0.3571

Power
(h)

0.0043
(−5.57)

0.7357
(19.78)

0.9977
(25.23) 0.6142 −0.1330

(−7.97)
0.7862
(20.78)

1.0147
(24.47) 0.3465

Richards
(h)

−0.0017
(−6.21)

0.7423
(20.11)

0.9932
(25.11) 0.6177 −0.0961

(−7.15)
0.7847
(20.58)

1.0127
(24.42) 0.3490

Q-exp
(h)

−0.0024
(−6.26)

0.7409
(20.15)

0.9930
(25.11) 0.6178 −0.0926

(−7.08)
0.7843
(20.56)

1.0125
(24.42) 0.3493

Height

Vasicek
(t)

−0.0016
(−8.73)

0.8132
(23.77)

1.1142
(31.39) 0 0.2881

(2.68)
0.6839
(16.67)

0.9155
(23.84) 0

Vasicek
(t,h)

−0.0010
(−3.33)

0.4980
(14.42)

0.6708
(18.89) 0.6376 0.1526

(1.69)
0.5297
(13.27)

0.6963
(18.13) 0.4214

Gompertz
(t)

0.0062
(−8.49)

0.8114
(23.67)

1.1142
(31.38) 0 0.2957

(2.89)
0.6848
(16.66)

0.9154
(23.84) 0

Gompertz
(t,h)

0.0045
(−3.28)

0.5006
(14.50)

0.6711
(18.90) 0.6372 0.1340

(1.15)
0.5311
(13.35)

0.6923
(18.03) 0.4281

Bertalanffy
(t)

−0.0921
(−11.50)

0.8369
(25.05)

1.1142
(31.38) 0 0.1975

(0.19)
0.6787
(16.95)

0.9154
(23.84) 0

Bertalanffy
(t,h)

−0.0385
(−4.34)

0.5029
(14.75)

0.6686
(18.83) 0.6399 0.0886

(0.04)
0.5369
(13.64)

0.6963
(18.13) 0.4214

Gamma
(t)

−0.0389
(−9.95)

0.8328
(24.84)

1.1207
(31.57) 0 0.1214

(−1.95)
0.6948
(17.74)

0.9296
(24.21) 0

Gamma
(t,h)

−0.0144
(−3.57)

0.4940
(14.46)

0.6547
(18.44) 0.6547 0.0960

(0.37)
0.5331
(13.58)

0.6901
(17.97) 0.4316

Power
(h)

0.0037
(−3.07)

0.5162
(14.87)

0.6970
(19.63) 0.6087 0.1598

(1.81)
0.5534
(13.82)

0.7325
(19.08) 0.3596

Richards
(h)

0.0014
(−3.31)

0.5095
(14.66)

0.6905
(19.45) 0.6159 0.1783

(2.26)
0.5439
(13.51)

0.7224
(18.81) 0.3772

Q-exp
(h)

−0.0006
(−3.44)

0.5096
(14.67)

0.6908
(19.46) 06156 0.1826

(2.33)
0.5395
(13.38)

0.7196
(18.74) 0.3820
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Figure 2 shows plots of the residuals against the predicted values resulting from the validation
dataset. The p-values (entered up in the plots) of the Shapiro–Wilk test for the residuals demonstrate
that the residuals follow a normal distribution. The visual examination of the residual plots presented
in Figure 2 does not show the presence of systematic errors (bias). Based on the statistical measures
presented in Tables 8 and 9, the residual analysis of the mixed-effect parameter height–diameter
and diameter–height SDE models, the impossibility of the negative values, and the asymmetry of
the tree size component distribution, it was concluded that the Gompertz-type diffusion is superior
to other diffusions. On the other side, the four mean curves from the SDE models did not show a
notable difference.
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For the mixed-effect parameter Gompertz-type SDE using the marginal diameter and height
distributions presented in Table 1, the mean, mode, median, 5% quantile, 95% quantile, and lower and
upper quartile trajectories (see Table 2) for two randomly selected plots from the validation dataset are
presented in Figure 3 (random effects were calibrated by Equation (16)). Figure 3 demonstrates that the
stochastic bivariate Gompertz-type differential equations with a sigmoidal form solution are more
reliable for future diameter and height predictions and allow better interpretability of model parameters
than nonlinear regression models. An essential research finding pertaining to the tree-diameter and
-height distributions is the fact that they are positively skewed (see Figure 3). Figure 3 illustrates that
the tree diameter distribution is more asymmetric than the tree-height distribution. Theoretical studies
on the growth of the tree-size components proved that the tree-size-component frequency distribution
is characterized by many small trees and few larger trees [35].
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Figure 3. Dynamics of the mean, mode, median, 5% quantile, 95% quantile, and lower- and
upper-quartile trajectories for two stands within the validation dataset: top—the first stand; bottom—the
second stand; mean—solid line in black; median—solid line in red; mode—solid line in blue; 5% and
95% quantiles—dotted lines; lower and upper quartiles—dashed lines; values are shown as circles.

For the bivariate Gompertz-type diffusion process, it is possible to derive the stationary univariate
marginal and conditional distributions if parameters βd and βh are positive [36]. As time, t, goes to
infinity for the Gompertz-type diffusion, the diameter and height marginal distributions (see Table 1)
and conditional distributions (see Table 3) converge to a lognormal stationary distribution with the
means and variances listed in Table 10 (g ∈ {d, h}). The asymptotic mean, median, mode, p-quantile
(0 < p < 1), and variance trajectories of the tree diameter and height marginal and conditional processes
are listed in Table 11. The stationary conditional lognormal type distribution derived from the Gompertz
SDE (see Table 10) enables us to estimate the full distribution of the dependent variable (diameter or
height) when the value of the independent variable (height or diameter) is known. This technique
is a flexible rule that can be used to describe the development of the diameter or height distribution
against the height or diameter. One advantage of the stationary conditional distribution is that the
conditional quantile functions, and different measures of central tendency and variability can be
obtained, providing a more comprehensive analysis of the relationship between diameter and height.
Until now, the quantile regression has been widely conducted in tree-variable modeling [10,16,37].

Table 10. Means and variances of stationary Gompertz-type marginal and conditional distributions.

Type Mean Variance

Marginal µg =
αg+ϕi

g
βg

vgg =
σgg
2βg

Conditional ηi
g(g) = µi

g +
vgg
vgg

(
ln(g) − µi

g

)
λg = vgg −

(vgg)
2

vgg
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Table 11. Gompertz-type stationary marginal and conditional mean, median, mode, p-quantile
(0 < p < 1), and variance trajectories.

Type Trajectory Type Equation

Marginal

Mean exp
(
µi

g +
1
2 vgg

)
Median exp

(
µi

g

)
Mode exp

(
µi

g − vgg
)

Quantile (0 < p < 1) exp
(
µi

g +
√vggΦ−1

p (0; 1)
)

1

Variance exp
(
2µi

g + vgg
)
·

(
exp

(
vgg

)
− 1

)

Conditional

Mean exp
(
ηi

g(g) + 1
2λg

)
Median exp

(
ηi

g(g)
)

Mode exp
(
ηi

g(g) − λg
)

Quantile (0 < p <1) exp
(
ηi

g(g) +
√
λgΦ−1

p (0; 1)
)

Variance exp
(
2ηi

g(g) + λg
)
·

(
exp

(
λg

)
− 1

)
1: Φ−1

p (·; ·) is the inverse of the normal distribution function.

By using the stationary conditional diameter and height lognormal distributions presented in
Table 10, we present the mean, mode, median, 5% quantile, 95% quantile, and lower and upper quartile
trajectories (see Table 11) for two stands randomly selected from the validation dataset in Figure 4
(random effects were calibrated by Equation (16).
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Figure 4. Dynamics of the stationary conditional mean, mode, median, 5% quantile, 95% quantile,
and lower- and upper-quartile trajectories for two stands within the validation dataset:
left panel—diameter–height models; right panel—height–diameter models; (a1,a2)—the first stand
mixed-effect scenario; (b1,b2)—the second stand mixed-effect scenario; (c1,c2)—the fixed-effect scenario
for all stands from the validation dataset; mean—solid line in black; median—solid line in red;
mode—solid line in blue; 5% and 95% quantiles—dotted lines; lower and upper quartiles—dashed
lines; values are shown by circles.
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3.4. Mean Tree Basal Area Models

The mean tree basal area, BA, is one of the central attributes of a forest stand. It is simply the
average of the cross-sectional area at breast height of all trees in a forest stand. In order to better
understand how the mean tree basal area is changing over time, we used the Gompertz diffusion
process framework developed in previous subsections. The mean tree basal area can be used to estimate
the mean tree volume and to generate management procedures. The mean tree basal area dynamics
describe tree development with age and are defined by the following:

BA(t) =
π

400

∫ +∞

0
x2p

(
x, t

∣∣∣∣∣∧αd,
∧

βd,
∧
σdd,

∧
σd,
∧
ϕd

)
dx, (18)

where p
(
·, t

∣∣∣∣∣∧αd,
∧

βd,
∧
σdd,

∧
σd,
∧
ϕd

)
is the marginal probability distribution density of the tree diameter at a

given age, t. The probability density functions (pdf) can be divided into four scenarios:

p(x, t) =



∣∣∣∣pd f o f LN1
(
µi

d(t); vdd(t)
)
, transition density∣∣∣∣pd f o f LN1

(
ηi

d(t, h); λd(t)
)
, transition density∣∣∣∣pd f o f LN1

(
µi

d; vdd
)
, stationary density∣∣∣∣pd f o f LN1

(
ηi

d(h); λd
)
, stationary density

, (19)

where the moments µi
d(t), vdd(t), ηi

d(t, h), λd(t), µi
d, vdd, and ηi

d(h), λd are listed in Tables 1, 3, 10
and 11, respectively.

An important contribution to the development of tree basal area prediction methodology is
compatibility between its growth and increment equations, which can be derived from the growth rate
equation by differentiation. Traditionally, the majority of authors have used a system of permanent
experimental plots to provide partial time-series data covering different stand densities and thinning
strategies [38]. Using the mean tree basal area growth, Equation (18), the current and mean annual
increments of the tree basal area (CAIB and MAIB, respectively) can be defined in the following forms:

CAIB(t) =
d
dt

B(t), (20)

MAIB(t) =
1
t

B(t). (21)

According to the mean diameter relationships listed in Table 2, the current and mean annual
increments of the diameter (CAID and MAID, respectively) have the following forms:

CAID(t) =
d
dt

∫ +∞

0
x·p

(
x, t

∣∣∣∣∣∧αd,
∧

βd,
∧
σdd,

∧
σd,
∧
ϕd

)
·dx, (22)

MAID(t) =
1
t

∫ +∞

0
x·p

(
x, t

∣∣∣∣∣∧αd,
∧

βd,
∧
σdd,

∧
σd,
∧
ϕd

)
·dx. (23)

Figure 5 illustrates the mean basal area dynamics, over time, with the observed values for two
randomly selected stands from the validation dataset, using the mixed-effect scenario (the random effects
were calibrated by Equation (16) and for all stands from the validation dataset, using the fixed-effect
scenario). Figure 6 provides graphs of the basal area and diameter increments (acceleration) over time.
We should note that all increments illustrated in Figure 6 are positive; therefore, they correspond to
mathematical principles of the derivative, because trees increase in basal area and diameter for as long
as they live. Figure 6 demonstrates that maximum basal area growth occurs later than the maximum
diameter growth. Our conclusion is not related to the selection of a specific function to model the basal
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area or diameter increments. This is the fundamental quality of the used modeling technique that deals
with probability density functions of the tree diameter and height over time. The maximum values
of CAI and MAI, defined by Equations (20)–(23), occur at different times, according to the quality of
the stand.
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Table 12 shows the goodness-of-fit statistics for tree basal area predictions. From Table 12, it is 
clear that the mixed-effect scenario model is more accurate for predicting the tree basal area than the 
fixed-effect scenario model. Statistical indexes for the estimation and validation datasets produced 
similar values. The best statistical index values were obtained with the mixed-effect parameter model, 
which includes the tree height as an additional predictor. The mixed-effect parameter stationary 
models produced statistical index values very close to the non-stationary process. 

 

Figure 5. Dynamics of the mean tree basal area at different ages. (M) Mixed-effects scenario for two
stands; (F) fixed-effects scenario for all stands; solid line—mean tree basal area curve determined by
using the marginal probability density function; dotted line—mean tree basal area determined by using
the conditional probability density function where the height is equal to the mean height of the stand;
black in (M)—the first stand; red in (M and F)—the second stand.
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Table 12 shows the goodness-of-fit statistics for tree basal area predictions. From Table 12, it is
clear that the mixed-effect scenario model is more accurate for predicting the tree basal area than the
fixed-effect scenario model. Statistical indexes for the estimation and validation datasets produced
similar values. The best statistical index values were obtained with the mixed-effect parameter model,
which includes the tree height as an additional predictor. The mixed-effect parameter stationary models
produced statistical index values very close to the non-stationary process.

Table 12. Statistical measures for all fitted basal, BA, area (m2) models.

Pdf
Estimation Dataset Validation Dataset

B
(%B)

AB
(%AB)

RMSE
(%RMSE) R2 B

(%B)
AB

(%AB)
RMSE

(%RMSE) R2

Mixed-effect scenario

LN1
(
µi

d(t); vdd(t)
) 0.0078

(0.23)
0.0187
(8.69)

0.0300
(15.94) 0.9602 0.0066

(4.08)
0.0080
(5.08)

0.0079
(4.84) 0.9886

LN1
(
ηi

d(t, h); λd(t)
) 0.0040

(0.27)
0.104
(5.23)

0.0151
(8.02) 0.9899 0.0062

(3.72)
0.0072
(4.45)

0.0075
(4.56) 0.9899

LN1
(
µi

d ; vdd
) 0.0038

(−1.67)
0.0171
(8.51)

0.0286
(15.19) 0.9639 0.0066

(4.08)
0.0080
(5.09)

0.0079
(4.84) 0.9886

LN1
(
ηi

d(h); λd
) −0.0001

(−1.69)
0.0090
(4.99)

0.0135
(7.19) 0.9919 0.0062

(3.72)
0.0072
(4.45)

0.0075
(4.56) 0.9899

Fixed-effect scenario

LN1
(
ηi

d(h); λd
) 0.0119

(−0.37)
0.0394
(18.67)

0.0684
(36.35) 0.7930 −0.0066

(−3.00)
0.0224
(14.27)

0.0260
(15.80) 0.8787
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3.5. Mean Tree Volume Models

Prediction of growth and yield in trees are important for decision-making in sustainable forest
management. In order to estimate the mean tree volume, the diameter at breast height and total height
variables are traditionally used as predictors. The newly developed bivariate lognormal probability
density function of the diameter and height distributions (see Table 1) and an additional stem volume
regression function allow us to assess the mean tree volume and its dynamics in the forward and
backward directions, as follows:

V(t) =
∫ +∞

0

∫ +∞

0
V(x, y)·p

x, y, t

∣∣∣∣∣∣ ∧θ4,
∧
ϕd,

∧
ϕh

·dx·dy, (24)

where, in this study, V(d, h) is the individual tree volume regression function of the q-exponential
form [25]:

V = β1 + β2hβ3 [−β4(1− exp((1− β5)d))]
1

1−β5
+ . (25)

The estimates of the parameters β1, β2, and β3 were calculated by the weighted least-squares

technique. The estimators were
∧

β1 ≈ 0.0007,
∧

β2 ≈ 0.7181,
∧

β3 ≈ −0.0013,
∧

β4 ≈ 0.2658, and
∧

β5 ≈ −314.9569.
The observed mean stem volumes for all stands were computed by regression, using Equation (25).

The SDE framework allows the construction of dynamic volume growth models, which offer a better
description of the development of a stand over time than static models and can be considered superior
for prediction purposes. Additionally, the dynamic growth model provides forest decision-makers
with more detailed information about the volumes of merchantable products. The variations in the
mean tree volume with age and among stands are shown in Figure 7. Insight from diffusion processes
allowed us to formalize a unique way to study the long-term dynamics of the mean tree volume at the
stand level. Figure 8 provides a graph of the mean tree volume increments over time. Figures 6 and 8
demonstrate that the maximum individual tree volume growth occurs at a later age than the maximum
basal area and diameter growth. Table 13 shows the goodness-of-fit statistics for mean tree volume
predictions. From Table 13, it is clear that the mixed-effect scenario bivariate SDE model can accurately
predict the mean tree volume. Statistical indexes for both estimation and validation datasets produced
similar values.Mathematics 2020, 8, x FOR PEER REVIEW 19 of 21 
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Table 13. Statistical indexes for the mean tree volume, V, (m3) model, using the mixed-effect scenario.

Estimation Dataset Validation Dataset

B
(%B)

AB
(%AB)

RMSE
(%RMSE) R2 B

(%B)
AB

(%AB)
RMSE

(%RMSE) R2

0.0003
(−0.35)

0.0009
(10.27)

0.0017
(24.64) 0.9500 −3.5 ×10−5

(1.41)
0.0003
(5.07)

0.0005
(9.34) 0.9765

4. Conclusions

SDEs were developed at the beginning of the twentieth century, to quantify all aspects of stochastic
processes. This study evaluated the use of SDEs to model the tree diameter and height at any given
age in mountain pine tree (Pinus mugo Turra) species of Lithuania. We developed a few new models
for diameter and height evolution by using well-defined diffusion processes, such as the symmetric
Vasicek diffusion process and asymmetric Bertalanffy-, Gompertz- and gamma-diffusion processes.
In both scenarios, fixed- and mixed-effect parameters were applied to model the evolution of the
diameter and height. We performed fixed- and mixed-effect parameters estimation via maximum
likelihood procedure and using a real-world dataset of mountain pine trees in Lithuania. These models
were compared with traditionally used regression models by using performance statistics and residual
analysis. Overall, the best goodness-of-fit statistics were produced by the Gompertz-type diffusion
model. On the other side, the superiority of the Gompertz-type diffusion can been confirmed by the
existence of the steady state variance, the impossibility of the negative values, and the asymmetry
of the tree-size component distribution. All results were determined by using the Maple computer
algebra system.

Author Contributions: Conceptualization, M.N. and P.R.; methodology, P.R.; software, P.R.; validation, M.N., E.P.,
and P.R.; data curation, M.N. and E.P.; writing—original draft preparation, M.N., E.P., and P.R.; writing—review
and editing, M.N., E.P., and P.R. All authors have read and agreed to the published version of the manuscript.
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