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Abstract: The Choquet capacity and integral is an eminent scheme to represent the interaction
knowledge among multiple decision criteria and deal with the independent multiple sources
preference information. In this paper, we enhance this scheme’s decision pattern learning ability
by combining it with another powerful machine learning tool, the random forest of decision trees.
We first use the capacity fitting method to train the Choquet capacity and integral-based decision trees
and then compose them into the capacity random forest (CRF) to better learn and explain the given
decision pattern. The CRF algorithms of solving the correlative multiple criteria based ranking and
sorting decision problems are both constructed and discussed. Two illustrative examples are given to
show the feasibilities of the proposed algorithms. It is shown that on the one hand, CRF method can
provide more detailed explanation information and a more reliable collective prediction result than
the main existing capacity fitting methods; on the other hand, CRF extends the applicability of the
traditional random forest method into solving the multiple criteria ranking and sorting problems
with a relatively small pool of decision learning data.

Keywords: fuzzy measure; random forest; ranking and sorting; decision pattern learning; capacity fitting

1. Introduction

The multiple criteria involved in most decision or evaluation problems are usually not
independent, and a variety of interactions, from negative to positive, can exist among them [1–3].
The capacity [4], also called fuzzy measure [5], combined with the nonlinear or fuzzy integral [6],
especially the most commonly accepted type, the Choquet integral [4], can effectively deal with the
complex interaction situations among interdependent criteria and aggregate the multiple-source partial
preferences of decision alternatives into their overall assessments, based on which the decision maker
can accordingly get the final ranking orders or sorting classifications [7,8].

Given adequate decision instances, generally not a very lot of data, and their overall evaluations,
ranking orders, or classifications as the learning set, the scheme of capacity plus Choquet integral can
learn, simulate, and explain the correlative multiple criteria decision pattern, wherein the decision and
explanation knowledge will be stored in the power set of decision criteria as the capacity values
of all decision subsets. This fitting or training process is generally carried out by the linear or
nonlinear optimization models [2,9,10], called capacity identification methods [11], among which
the least-squares principle method [12–14], the least absolute deviation criterion method [15,16],
and the maximum split method [13,17] are the three most widely adopted ones.

However, in the capacity identification method, it is supposed that the decision criteria set is well
predetermined by the decision maker and is kept fixed and unchanged during the whole learning and
fitting process. Actually, the determination of decision criteria is really a vital precondition of high
quality decision making and also a time-consuming task for the decision maker. Furthermore, as we
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can imagine, a given unchanged decision criteria set will definitely confine the model’s possibility
and ability to explore other criteria subsets that enable better performance on learning and explaining
the decision pattern behind the training data. Additionally, by using any static decision criteria set,
the model does not have the ability to avoid the overfitting problem and also lacks adequately
mutual comparison validation with other optional criteria sets. Hence, the traditional capacity
identification method can not always ensure the competent generalization ability to the new decision
instances, and there is also lack of proof and evidence to verify the reliability and rationality of the
prediction result.

The decision tree (DT) [18,19] and random forest (RF) [20,21] framework can help the Choquet
capacity and integral decision scheme to improve its abilities of dynamic explanation and reliable
prediction. RF is basically an ensemble method of a number of DTs for the purpose of learning and
solving classification and regression problems. The outcome of RF is the mean or weighted sum of
all selected DTs for the regressive case or their majority vote for the classification case [21]. Different
DTs provide different learning and explanation perspectives of the given pattern, and the collective
outcome of all DTs with the consideration of their performance will highly increase the credibility and
generalization ability of RF’s predictions.

RF’s classification and regression performance highly depend on the given training data. For the
aspect of classification, if with a lot of training data and a small number of desired output categories,
RF usually can provide competent performance; but if there is a lack of enough data for each category,
like in most situations of the ranking decision problem in which each category only has one instance
or record, it is hard for RF to get an acceptable performance. For the aspect of regression, since the
interactions exist among decision criteria, the multicriteria decision is basically a nonlinear problem,
which is really a challenge for RF to learn and simulate by using some linear regression models.
Furthermore, the RF or DT can neither explicitly explain the interaction phenomenon among decision
criteria nor specifically express the decision maker’s additional judgment and preference for decision
criteria and alternatives.

Hence, it is necessary to combine the capacity plus Choquet integral with the DT and RF to better
learn and explain the correlative multicriteria decision pattern. With the given decision data and
potential decision criteria, q suitable capacity identification method can be used to generate many
capacity based DTs (CDTs) and then a capacity-based RF (CRF) can be established by taking account of
those trees’ performances; see Algorithm 1 for more details.

In summary, there are two direct advantages of CRF. On the one hand, CRF can provide more
dynamic explanations and insights of the multicriteria decision pattern, and on the other hand, CRF
can have better generalization ability and give a more creditable prediction result using a collective
vote of all CDTs. That is, CRF enriches the explanation capability of traditional capacity identification
methods, and meanwhile extends the application range of traditional RF into the sorting and ranking
multicriteria decision making with a relatively small-scale training dataset.

This paper is organized as follows. After the introduction, we briefly present background
knowledge of the capacity, Choquet integral, and capacity identification methods, and of DT and RF in
Section 2. In Section 3, we discuss the basic steps of RF and construct the CRF-based decision algorithm
and strategies for transforming between ranking and sorting decision problems. In Section 4, we use
two illustrative examples to present and analyze the proposed CRF model and algorithm in detail.
Finally, we conclude the paper in Section 5.

2. Preliminaries

2.1. Capacity and Its Identification Methods

Let N = {1, 2, . . . , n}, n ≥ 2, be the decision criteria set, P(N) the power set of N, and |S| the
cardinality of subset S ⊆ N.
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Definition 1. [4,5,11] A capacity on N is a set function µ : P(N)→ [0, 1] such that

(i) µ(∅) = 0, µ(N) = 1 (boundary condition);
(ii) ∀A, B ⊆ N, A ⊆ B implies µ(A) ≤ µ(B) (monotonicity condition).

The capacity value is generally considered as the importance of criteria subset to the decision
problem, and monotonicity means that any new participation of other criteria can not decrease the
importance of original coalition [7,11]. Two famous characteristics that stem from the monotonicity
with respect to inclusion subsets are the nonadditivity with respect to disjoint subsets and the
nonmodularity with respect to any arbitrary two subsets. Nonadditivity and nonmodularity
are commonly accepted as the explicit representations of interaction situations among decision
criteria [22–24].

The following is one type of probabilistic nonadditivity index (bipartition interaction index),
called the Shapley nonadditivity index [23].

Definition 2. The Shapley nonadditivity index of a subset A ⊆ N is defined as

nµ
Sh(A) = ∑

B⊆N\A

1
|N| − |A|+ 1

(
|N| − |A|
|B|

)−1

∆̂Aµ(B),

∆̂Aµ(B) = [µ(B ∪ A) − µ(B)] − 1
2|A|−1−1 ∑

{C,A\C}∈π(A)
([µ(B ∪ C)− µ(B)] + [µ(B ∪ (A\C))− µ(B)]),

π(A) = {(C, A\C)|C ⊂ A, C 6= ∅, C 6= A} is called the set of proper bipartitions of A.

More properties of nonadditivity indices can be found in [2,22,23,25]. In brief, the Shapley
nonadditivity index of a single criterion can be taken as its overall importance index to the decision
problem, and the Shapley nonadditivity index of non-singleton nonempty set can be regarded as its
comprehensive interaction index, which reflects the interaction kind and tensity among all criteria in it.

A nonlinear or fuzzy integral is a universal notion of the aggregation functions with respect to
capacity, among which the Choquet integral is one of the most widely accepted types [4,11].

Definition 3. For a given x ∈ [0,+∞]n, the discrete Choquet integral of x with respect to capacity µ on N is
defined as:

Cµ(x) =
n

∑
i=1

(x(i) − x(i−1))µ({(i), . . . , (n)}),

where x(.) is a non-decreasing permutation induced by xi, i = 1, . . . , n, i.e., x(1) ≤ . . . ≤ x(n), and x(0) = 0 by
convention. The Choquet integral can also be represented in terms of capacity without previously ordering the
partial values of x as [7,26]:

Cµ(x) = ∑
A⊆N

x̂Aµ(A).

where the basis functions are x̂A = max(0, mini∈A xi −maxi∈N\A xi), ∀A ⊆ N.

The Choquet integral is an extension of weighted arithmetic mean (WAM) and ordered weight
average (OWA) and has some good aggregation properties [6].

The capacity plus Choquet integral can learn and simulate the multiple criteria decision pattern,
wherein the decision knowledge is stored as the capacity values of all decision subsets. The knowledge
learning and fitting process is usually carried out by some optimization algorithms and models, called
the capacity identification methods, which generally take history or typical decision instances and
their desired overall evaluations, ranking orders, or sorting classifications as the learning or training
dataset. In the following, we introduce three main capacity identification methods.
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(1) The least square method
In this method, the decision maker needs to provide the expected overall evaluations of all training

alternatives [11]. Suppose the training set as L, and the desired overall evaluation of an alternative
x ∈ L is given as y(x); then the least square method can be constructed as follows:

min z = ∑
x∈L

(Cµ(x)− y(x))2

the boundary and monotonicity conditions of capacity.
(1)

The objective function is to minimize the square distance between the Choquet integrals
with respect to capacity and the given expected overall evaluations of all alternatives in set L.
The constraints include the boundary and monotonicity conditions given in the definition of capacity;
see Definition 1. It can be figured out that all the constraints are linear but the objective is a quadratic
equation—quadratic programming maybe with multiple optimal solutions.

(2) The least absolute deviation method
This method transforms the least square method’s nonlinear model into a linear programming by

introducing the goal deviation variables [15]. The model is given as:

min z = ∑
x∈L

d+x + d−x

the boundary and monotonicity condition of capacity,

Cµ(x)− d+x + d−x = y(x), x ∈ L,

(2)

where L and y(x) are the same as in Equation (1), d+x , d−x ≥ 0 are the positive and negative deviation
variables and d+x , d−x = 0 implies Cµ(x) = y(x). Basically, this model aims to minimize the absolute
distance between the obtained Choquet integrals and the desired overall evaluations of all alternatives.
This model is linear programming and can be easily solved by most mathematics software, like many
linear programming solvers of R packages.

(3) The maximum split method
In this method, the decision maker needs to provide a partial weak order to all training alternatives.

Denoted the given preference partial order on L as O(L), the maximum split method can be expressed
as follows [27]:

max z = ε

the boundary and monotonicity conditions of capacity,

Cµ(x)− Cµ(x′) ≥ ε if x � x′ ∈ O(L).

(3)

The above model aims to maximize the distances among all neighbor alternatives in the given
order O(L). It obviously uses linear programming and has some advantages in construction and
solving. The main drawback is that it contradicts partial order, e.g., a � b, b � c, but c � a will lead to
infeasibility and some inconsistency checking works should be preprocessed; see [8,28,29] for more
details of inconsistency recognizing and adjustment.

The above three methods are suitable for solving the alternative ranking decision. As for the
sorting decision, we can transform the sorting classification results into the representative overall
evaluations of each ordered category or the consistent dominance partial order of all alternatives,
and then adopt the above three methods to get the satisfactory capacities; see Section 3.2 for the
two strategies.



Mathematics 2020, 8, 1372 5 of 15

2.2. The Traditional DT and RF

The DT is a well known machine learning method for solving multiple decision attributes/
criteria-based classification and regression problems [18,19] and RF is basically an ensemble methodology
of DTs to enhance the prediction correctness rate and the robustness against overfitting [20,21].

With a given learning dataset, the first step is to randomly generate a number of decision trees
according to some specific algorithms [30]; then for a new instance, RF assembles all train DTs’
outcomes to get a collective prediction, usually a weighted sum for the regressive case or a majority
vote for classification case [21]. The collective vote scheme can overcome the low prediction rate of
single DT and have a good generalization ability. For a given test dataset, also called out-of-bag (OOB)
samples, the generalization error of RF is estimated by OOB error rate in most RF software.

With adequate learning instances, RF can deal with high dimensional classification and regression
problems very well and have competent performance compared with other machine learning methods,
such as discriminant analysis, support vector machines, and neural networks [20]. However, with little
data, the DT and the RF will unavoidably run into the situation of underfitting and cannot provide
acceptable and reliable performance.

The multiple criteria decision making problems usually have small learning instance datasets,
which are rather inadequate to well train RF and other machine learning methods if part of dataset,
usually at least one third of it, needs to be further separated as testing data. However, this kind of
decision dataset has two basic characteristics: the first is monotonicity; i.e., if an alternative has larger
evaluations on all criteria than another alternative, then its overall evaluation can not be smaller than
another one’s; the second is nonlinearity; i.e., the overall evaluation of an alternative is generally not a
linear representation of its partial evaluations on decision criteria.

As mentioned previously, the capacity identification methods, essentially some optimal models,
are competent at fitting this kind of multicriteria decision making pattern. Furthermore, with an
importance and interaction index, such as the Shapely nonadditivity index, the relative importance of
criteria and interaction situations can be depicted and explained explicitly. Therefore, the capacity plus
Choquet integral scheme can help the traditional DT and RF to well deal with the challenges from the
monotonicity and nonlinearity lying in the small scale of the decision dataset.

3. The CRF Decision Method

In this section, we combine the random forest framework with the capacity plus Choquet integral
scheme to establish the capacity random forest method to better solve and explain the decision ranking
and sorting problems.

3.1. The CRF Algorithm for the Ranking Decision Problem

The ranking decision dataset generally includes the partial evaluations of alternatives on all
criteria and their overall evaluations or their ranking orders. As mentioned before, the least square
method, Model (1), and least absolute deviation method, Model (2), are competent for learning the
overall evaluation type decision data, and maximum split method is suitable for the ranking order-type
decision data. Combining these capacity identification methods with the RF framework, we can have
the CRF algorithm; see Algorithm 1.

In CRF Algorithm 1, the condition |S| ≤ k, k can be empirically set as 6 on account of the
exponential complexity inherent in the construction of capacity; more precisely, there are 2n − 2
coefficients involved in the capacity and Choquet integral for n decision criteria. When n ≤ 6, we can
just set k = n as well.
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Algorithm 1 Capacity random forest (CRF) algorithm for ranking decisions.
Input: Decision criteria set N, learning set L, the tree number t of the forest, the largest number

k of criteria in a tree.
Output: The capacity random forest and the prediction of new instance.

/* Training of the capacity random forest. */
for S in P(N) do

if |S| ≥ 2 and |S| ≤ k then
Use capacity identification method to get the optimal capacity on S, denoted as µS.
Calculate the performance of µS, denoted as f (µS).

end
Based on performances f (µS), identify the appearance frequency of each tree q(µS) and
randomly generate t trees to get the capacity random forest.

end
/* Predicting by the capacity random forest. */

for every new unknow instance do
Calculate the outcomes of all the decision trees of given new instance.
Aggregate these outcome into the collective prediction evaluation.

end
Get the final ranking orders of all new instances according to their collective predictions.

In CRF Algorithm 1, the performance of each CDT about S, or simply of the optimal capacity µS,
should deeply depend on the objective function value of the adopted capacity identification method,
which is denoted as zµ. Since the Models (1) and (2) are able to minimize their objective functions, we
can set their CDT’s performance function as:

f (µS) =

{
1/zµ if zµ 6= 0

1/z0 if zµ = 0
(4)

where z0 = min(η1,
mins∈S,zµ 6=0 zµ

η2
) is the adjusted objective function value of CDT whose model’s

optimal objective function is of zero; η1 is the expected best objective function value of all CDTs; η2 is
the least ratio between the minimum of nonzero objective function values of all CDTs and best objective
function value. Since Model 3 aims to maximize, we can set the performance function of CDT with the
positive objective function value as

f (µS) = zµ (5)

Then the appearance frequency of each CDT in the CRF is defined as:

q(µ) = f (µS)/ ∑
2≤|A|≤k

f (µA). (6)

Remark 1. In Equation (4), z0 is adopted to reasonably confine the appearance frequencies of CDTs with
zero objective function, which is connected to the diversity of CDTs and can help to maintain the good
generalization ability of CRF and avoid the case of overfitting. Empirically, we can set η1 = 10−4 and
η2 = 102. For example, if mins∈S,zµ 6=0 zµ > 10−2, e.g., 0.02, then z0 = min(10−4, 0.02/100) = 10−4;
if mins∈S,zµ 6=0 zµ < 10−2, e.g., 0.002, then z0 = min(10−4, 0.002/100) = 2 × 10−5. The Equation (5)
only involves the CDTs whose objective functions are positive, mainly because zero or negative objective
function values mean Model (3) fails on splitting the decision alternatives and then we just abandon those
incompetent CDTs.

In CRF Algorithm 1, the number of decision trees, t, should be lager than 2k at least and in general
with a scale of hundreds. The prediction of overall evaluation and rank can adopt the simple arithmetic
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average of the outcomes of those trees, because the training process of the capacity random forest has
already considered those trees’ performances through their appearance frequencies.

3.2. The CRF Algorithm for the Sorting Decision Problem

The sorting decision problem aims to classify all decision alternatives into a set of ordered classes.
Since a lack of training instances likely causes the traditional RF an underfitting case, we need to
transform the sorting decision into the overall evaluation or ranking order-types of decision problem.

Mathematically, supposing there are m sorted classes C = {C1, ..., Cm}, where if x ∈ Cj, x′ ∈ Cj+1,
j = 1, ..., m− 1, then x � x′, we can have the following two strategies:

(a) Construct a series of partial orders: Cµ(x) ≥ Cµ(x′)+ δ, δ > 0, ∀x ∈ Cj, ∀x′ ∈ Cj+1, j = 1, ..., m− 1,
and then adopt model (3) to solve this transformed ranking decision problem.

Or alternatively,

(b) Set the representative overall evaluations of m classes as e1, ..., em, where ej ≥ ej+1 + δ, δ > 0,
j = 1, ..., m− 1, and adopt model (1) or (2) to identify the desired capacity;

With the above two transformation strategies, the CRF Algorithm 1 can be applied smoothly to
solve the sorting decision problem.

Strategy (a) is to transform the sorting decision problem into the ranking-order decision.
In strategy (a), it is necessary to define all dominant relationships between the decision alternatives
in all neighbor classes, and the threshold δ is a small positive number, e.g., 0.05 to differentiate the
ordered classes. One can figure out, in strategy (a), the total number of partial order constraints
depends on the number of classes and the number of elements in each class; more specially, the total
number of constraints is ∑m−1

i=1 |Ci| × |Ci+1|. Some reduction methods for these types of constraints can
be found in [13,27]. Another potential issue for strategy (a) is that some inconsistencies may possibly
exist in these hard constraints, and in this case, the inconsistency check and adjustment methods need
be applied before identifying the desired capacity; more technologies about inconsistency check and
adjustment strategies can be found in [25,28,31].

Strategy (b) aims to transform the sorting decision problem into the overall evaluation decision,
where δ acts the same role as in strategy (a). In strategy (b), the critical task is to find the suitable
representative overall evaluation of each class, which needs the decision maker to have some
background knowledge about the real decision problem and also a few rounds of trial and error.
Fortunately, this task has much good freedom, and it is not difficult to obtain an acceptable result
because of the inherent property of multiple criteria decision making and the characteristics of capacity
identification models. On the one hand, the monotonicity or nondecreasing property of the aggregation
function in decision context can ensure that the positive threshold between the desired representative
evaluations of different classes can have relatively large allowable ranges; see the illustrative example
in Section 4.3. On the other hand, in the corresponding capacity identification models, see Models (1)
and (2), these representative values are only involved in objective function or soft goal constraints;
as a result, the rigorous inconsistency checking can be omitted accordingly. Meanwhile, the number of
constraints should be rather less than that of strategy (a); see the analysis in Section 4.3.

4. Two Illustrative Examples

4.1. Students Evaluation Example

In this subsection, we adapt the example in [11]. The decision maker uses five subjects (criteria)
(1) statistics, (2) probability, (3) economics, (4) management, and (5) English, to evaluate seven students,
a ∼ g, whose scores with scale [0, 20] are given in Table 1.
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Table 1. Scores of seven students on five subjects.

1 2 3 4 5

a 18 11 11 11 18
b 18 11 18 11 11
c 11 11 18 11 18
d 18 18 11 11 11
e 11 11 18 18 11
f 11 11 18 11 11
g 11 11 11 11 18

The decision maker sets the desired overall evaluations of seven students as:

15.0, 14.5, 14.0, 13.5, 13, 12.5 and 12. (7)

With these partial and desired overall evaluations of seven students as the training set, we ran
the Algorithm 1 by adopting the least absolute deviation method, i.e., Model (2), as the capacity
identification method. Table 2 shows the results of k = 2, 3, 4, 5 and t = 20, 200, 2000, 20, 000, wherein
first column holds the values of k, the second column has values of t, the third column is the running
time (seconds) of the algorithm on a common laptop with CPU i3-4030U 1.90 GHz and RAM 4.00 GB,
the fourth to tenth columns are the prediction values of seven students by the corresponding capacity
random forests, and the last column titled by "Obj" shows the sums of absolute deviations, i.e., absolute
distances, between the predicted evaluates and the desired evaluations. According to the last column,
one can see the 200-tree forests seem to be good enough for the random forest with any k for this
example. When k = 4 and 5, the “Obj” values are all 0; the main reason for this fact is that by
criteria subsets {1, 3, 4, 5} and {1, 2, 3, 4, 5}, their corresponding models’ objective function values
are 0, so according to Equation (4), these two subsets CDTs’ appearance frequencies in CRF will be
overwhelmingly superior to other CDTs and the final outcome of CRF will be mainly determined by
these two superior CDTs.

Table 2. Results of Algorithm 1 with different parameters.

k t Time (s) a b c d e f g Obj

2 20 1.80 13.7250 13.6000 13.0500 13.5250 12.4000 11.6000 12.0500 4.7000
2 200 5.86 13.4275 13.7300 13.1450 13.3175 12.8650 12.0050 11.7400 4.2700
2 2000 6.51 13.4970 13.6638 13.0170 13.3422 12.8260 11.9200 11.7410 4.4930
2 20,000 463.57 13.4921 13.5623 13.0071 13.3679 12.7774 11.8858 11.7653 4.6420
3 20 6.86 14.0000 14.1250 12.9750 13.5250 12.5500 12.2000 11.6000 3.5750
3 200 7.23 14.2725 14.0750 13.3425 13.5100 12.5725 12.2175 11.8200 2.7100
3 2000 11.81 14.1595 13.9298 13.3665 13.4495 12.6337 12.2050 11.8560 2.9000
3 20,000 475.47 14.1277 13.9580 13.3616 13.4283 12.6706 12.2198 11.8388 2.8953
4 20 14.94 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0
4 200 15.16 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0
4 2000 19.30 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0
4 20,000 491.23 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0
5 20 19.17 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0
5 200 20.38 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0
5 2000 24.68 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0
5 20,000 507.60 15.0000 14.5000 14.0000 13.5000 13.0000 12.5000 12.0000 0

Remark 2. For the purpose of comparison, we ran the traditional RF algorithm in R with package “randomForest”
version 4.6-14. If we adopt Equation (7) as the training target values, the random forest automatically uses
regression method to fit this decision problem. With 500 decision trees and other parameters as the default, the RF
package gives the fitted results of seven students as:

14.06568, 13.99443, 13.58968, 13.64960, 13.03828, 13.03450 and 13.07630.
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One can figure out that the above result was not successful at simulating the decision pattern, especially since
the student g has a slight dominance over students e and f , which is somewhat unacceptable. Compared to
the result in Table 2, one can conclude that the CRF is more competent than the traditional RF for fitting this
decision example.

Now, we consider the partial order case decision. Suppose that the decision maker provides a
partial weak order of the seven students as:

a � b � c � d � e � f � g, (8)

which is consistent with the previously given desired overall evaluations of seven students and the
partial order generated by last eight rows in Table 2. By taking data in Table 1 and simultaneously
adopting the maximum split method, i.e., Model (3), as the capacity identification method, we can carry
out the CRF method; Algorithm 1. It can be verified that only the CDTs of criteria subsets {1, 3, 4, 5}
and {1, 2, 3, 4, 5} can correctly differentiate the seven students with the same threshold 1.166667 (when
adopting other criteria subsets, the optimal objection function values of Model (3) are all 0 or negative)
and output the same predictions of students a ∼ g as:

18.00000, 16.83333, 15.66667, 14.50000, 13.33333, 12.16667 and 11.00000, (9)

which is also the same ranking orders by Algorithm 1 with k = 4 and 5.
Furthermore, we can get more explanations and decision information from the CRF algorithm.

For example, the decision subset {1, 3, 4, 5} is basically good enough to fit the above two kinds of
ranking decision problems, which is very useful if the decision maker wants to carry out a reduction
on the decision criteria. The optimal capacity on {1, 3, 4, 5} and its Shapely nonadditivity index are
listed in Table 3. One can see that criterion 1 has the largest importance, 0.3869; criteria 3 and 5 have
similar importance (0.2560 and 0.2440); and criteria 4 has the least importance, 0.1131, in this decision
process of student evaluation. As for the interaction among criteria, almost all criteria have positive
interactions (see, e.g., the nonadditivity of these four criteria, 0.2755), but criteria {1, 3} have a slightly
negative interaction; see its nonadditivity index of –0.0476.

Table 3. The capacity on {1,3,4,5} and its Shapley nonadditivity index.

A µ(A) nµ
Sh(A)

∅ 0.0000 0.4155
{1} 0.3571 0.3869
{3} 0.2143 0.2560
{4} 0.0000 0.1131
{5} 0.1429 0.2440

{1, 3} 0.5000 –0.0476
{1, 4} 0.3571 0.1310
{3, 4} 0.2857 0.1667
{1, 5} 0.5714 0.1310
{3, 5} 0.4286 0.0952
{4, 5} 0.1429 0.1310

{1, 3, 4} 0.5000 0.0833
{1, 3, 5} 0.5714 0.0357
{1, 4, 5} 0.5714 0.1786
{3, 4, 5} 0.4286 0.1786

{1, 3, 4, 5} 1.0000 0.2755

Actually, according to the partial order (8), we can divide the seven students into seven classes
such that each class has only one student, and in this sense, the ranking decision essentially turns into
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a special sorting decision. See the following quality evaluation problem in the next subsection; it is a
more general case and each class has more than one decision alternative.

Remark 3. For the purpose of comparison, we also ran the traditional RF algorithm with R package
“randomForest” version 4.6-14 by taking each student as a different class; i.e., take the learning result as a
“factor” type datum with seven elements. Unfortunately, the results of the traditional random forest are very
messy; the OOB (out of bag) estimate of the error rate was 100% with 500 decision trees and default parameter
values of classification. This means the traditional RF fails in fitting this decision problem and the main reason
should have been the extreme lack of training data in each class.

4.2. Quality Evaluation Example

This example was adapted from [27]. The decision maker plans to sort 20 alternatives (see Table 4)
into three classes (good, medium and bad) according to eight criteria, and also gives some reference
information (i.e., the training dataset) as follows:

• CenConf, Loe, OM, EII belong to class good;
• Zhang, ECR, PDI belong to class medium;
• Sup, Surp, Kappa belong to class bad.

Table 4. The partial evaluations of 20 alternatives on 8 criteria.

1 2 3 4 5 6 7 8

Sup 0 0 0 0 1 0 1 2
Conf 1 0 0 1 1 0 1 2

R 0 1 1 0 1 0 1 1
CenConf 1 1 1 0 1 0 1 2

PS 0 1 1 0 1 1 1 1
Loe 1 1 1 1 1 0 1 1

Zhang 1 1 1 1 2 0 0 0
ImpInd 1 1 1 0 1 1 1 0

Lift 0 1 1 0 1 0 1 1
Surp 1 1 0 0 1 0 1 1
Seb 1 0 0 1 0 0 1 1
OM 1 1 1 1 0 0 1 2

Conv 1 1 1 1 0 0 1 1
ECR 1 0 0 1 2 0 1 1

Kappa 0 1 1 0 1 0 1 0
IG 0 1 1 0 2 0 1 0

IntImp 1 1 1 1 2 1 1 0
EII 1 1 1 1 2 1 0 0
PDI 1 1 1 0 1 1 1 0
Lap 1 0 0 0 1 0 1 0

Hence, we can adopt the strategy (a) given in Section 3.2 to transform the above references
information into partial order constraints as the alternatives in class good dominate the alternatives in
class medium and those in class medium dominate those in class Bad:

CenConf � Zhang, CenConf � ECR, CenConf � PDI, · · · , PDI � Kappa. (10)

Additionally, while taking the above dominant constraints and adopting the maximum split
model, Model (3), we ran CRF Algorithm 1 and found out that the subsets in Table 5 have non zero
splits, which means with these subsets’ CTDs, the capacity plus Choquet integral patterns, can correctly
differentiate the given alternatives. For example, CDT of {3, 4, 6, 8} can split all these learning stances
very well with the largest threshold 0.5; the importance and interaction indices of the criteria subsets
are listed in Table 6.
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Table 5. The decision subsets with splits larger than zero.

Subsets {3, 4, 6, 8} {3, 5, 6, 8} {1, 3, 4, 6, 8} {2, 3, 4, 6, 8}
Splits 0.5 0.3333 0.5 0.5

Subsets {1, 3, 5, 6, 8} {2, 3, 5, 6, 8} {2, 4, 5, 6, 8} {3, 4, 5, 6, 8}
Splits 0.3333 0.3333 0.1667 0.5

Subsets {3, 4, 6, 7, 8} {3, 5, 6, 7, 8} {1, 2, 3, 4, 6, 8} {1, 2, 3, 5, 6, 8}
Splits 0.5 0.3333 0.5 0.3333

Subsets {1, 2, 4, 5, 6, 8} {1, 3, 4, 5, 6, 8} {2, 3, 4, 5, 6, 8} {1, 3, 4, 6, 7, 8}
Splits 0.1667 0.5 0.5 0.5

Subsets {2, 3, 4, 6, 7, 8} {1, 3, 5, 6, 7, 8} {2, 3, 5, 6, 7, 8} {2, 4, 5, 6, 7, 8}
Splits 0.5 0.3333 0.3333 0.1667

Subsets {3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 8} {1, 2, 3, 4, 6, 7, 8} {1, 2, 3, 5, 6, 7, 8}
Splits 0.5 0.5 0.5 0.3333

Subsets {1, 2, 4, 5, 6, 7, 8} {1, 3, 4, 5, 6, 7, 8} {2, 3, 4, 5, 6, 7, 8} {1, 2, 3, 4, 5, 6, 7, 8}
Splits 0.1667 0.5 0.5 0.5

Table 6. The capacity on {3,4,6,8} and its Shapley nonadditivity index.

A µ(A) nµ
Sh(A)

∅ 0.0000 0.0000
{3} 0.0000 0.5000
{4} 0.0000 0.1667
{6} 0.0000 0.0833
{8} 0.0000 0.2500

{3, 4} 0.5000 –0.0000
{3, 6} 0.5000 0.2500
{4, 6} 0.0000 0.0000
{3, 8} 1.0000 0.2500
{4, 8} 0.5000 0.0000
{6, 8} 0.0000 –0.2500

{3, 4, 6} 1.0000 0.1667
{3, 4, 8} 1.0000 0.1667
{3, 6, 8} 1.0000 0.1667
{4, 6, 8} 0.5000 –0.1667

{3, 4, 6, 8} 1.0000 0.1429

The prediction results of 20 alternatives of CRF with different levels k from 4 to 8 and t = 200
are given in Table 7. According to the results of k = 8, we give the following classification rules:
the alternative is good if its prediction value is larger than 0.9; medium if less than 0.9 and larger
than 0.45; bad if less than 0.45; see the last second column “CRF”, which stands for “capacity random
forest”, in Table 7 for their predicted classes.

Remark 4. For the purpose of comparison, we ran the traditional random forest by R with “randomForest”
version 4.6-14 for the quality evaluation example. With 500 DTs and other parameters as defaults, the RF’s
OOB estimate of classification error rate was 50%. The prediction results of all alternatives are given in last
column “TRF”, which stands for “traditional random forest”, in Table 7, which are similar to the results of
CRF; see the second to last column in Table 7, and italics in last column show two different results between CRF
and TRF; see third and ninth rows. Besides, we should point out that the running times of CRF, Algorithm 1,
with k = 4, 5, 6, 7, 8 in Table 7, were 235.45, 703.91, 1512.15, 2346.31, and 2716.71 s, respectively (still by the
laptop with CPU i3-4030U 1.90 GHz and RAM 4.00 GB). That means the efficiency of CRF is not comparable
with that of traditional RF. The main reason for such a time consuming situation is the exponential complexity
associated with capacity, or equally the construction process of each CDT.
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Table 7. The prediction results with k = 4 ∼ 8 and t = 200.

k 4 5 6 7 8 CRF TRF

Sup 0.1500 0.1000 0.1617 0.1550 0.0950 Bad Bad
Conf 0.4250 0.4500 0.4842 0.5092 0.4958 Medium Medium

R 1.0000 0.9167 0.6517 0.5633 0.5767 Medium Bad
CenConf 1.0000 1.0000 1.0000 1.0000 1.0000 Good Good

PS 1.0000 0.9167 0.6608 0.5692 0.5808 Medium Medium
Loe 1.0000 1.0000 1.0000 1.0000 1.0000 Good Good

Zhang 0.5750 0.5500 0.5808 0.5775 0.5475 Medium Medium
ImpInd 0.5750 0.5500 0.5808 0.5775 0.5475 Medium Medium

Lift 1.0000 0.9167 0.6517 0.5633 0.5767 Medium Bad
Surp 0.1500 0.1000 0.1617 0.1550 0.0950 Bad Bad
Seb 0.2750 0.3250 0.2192 0.2092 0.1942 Bad Bad
OM 1.0000 1.0000 1.0000 1.0000 1.0000 Good Good

Conv 1.0000 1.0000 0.9733 0.9683 0.9833 Good Good
ECR 0.5750 0.5500 0.5808 0.5775 0.5475 Medium Medium

Kappa 0.1500 0.1000 0.1617 0.1550 0.0950 Bad Bad
IG 0.3000 0.2000 0.2850 0.2550 0.1633 Bad Bad

IntImp 1.0000 1.0000 1.0058 1.0025 1.0025 Good Good
EII 1.0000 1.0000 1.0000 1.0000 1.0000 Good Good
PDI 0.5750 0.5500 0.5808 0.5775 0.5475 Medium Medium
Lap 0.1500 0.1000 0.1233 0.1000 0.0683 Bad Bad

4.3. Further Discussions on Targeted Evaluations of Ordered Classes for Sorting Decisions

Previously, we have applied strategy (a) mentioned in Section 3.2 to transform the learning
datasets of two decision examples into ranking order-types of data; see Equations (8) and (10).
Next, we further discuss the application of the strategy (b) and mainly investigate how to set the
desired evaluations of the ordered classes.

A basic fact or axiom in multiple criteria decision analysis is that if alternative x is no less than
alternative y on every criterion, then the overall evaluation (e.g., the Choquet integral value) of x
should be no less than that of y, which is also called the nondecreasing or monotonicity property
of aggregation function. From this point of view, we can empirically select a series of different
numbers with a certain threshold from the common range of alternatives, and then sort them in an
ascending/descending order as the targeted evaluations of the ordered classes.

For example, we can take the target values in Equation (7) and those in Equation (9) as the
values of seven students desiring to run the CRF algorithm with the least square method or least
absolute deviation method. Additionally, it can be verified that these target values have relatively
large freedoms: if we divide the seven students into three groups as {a, b}, {c, d, e} and { f , g} and take
{18, 14, 11} as their targeted evaluations, the capacity of the random forest can fit this ranking problem
with zero deviation, so do well with targeted evaluation of {16, 14, 12} or even {18, 17, 16}.

Furthermore, for the quality evaluation of 20 alternatives, we give three cases with {1, 0.5, 0},
{2, 1, 0} and {0.5, 0.3, 0.1} as their targeted evaluations; the corresponding results by the capacity
random forest algorithm are given in Table 8, wherein first three rows of the "Intervals" columns are the
allowable values that belong to the three classes; e.g., the element of first row and third column, [0.6, 1],
means if the prediction value falls in this interval, the alternative will belong to "good." Additionally,
these intervals are also given empirically. The italic words in Table 8 mean the infliction with result of
the last column in Table 7.

One can figure out that the strategy (b) has a rather equivalent performance to strategy (a), which
greatly comes from the flexibility and nonlinearity of capacity and Choquet integral decision pattern.
Finally, we exemplify that strategy (b) has some advantages over strategy (a) in this application:

• It needs relatively fewer constraints, e.g., 7 constraints of strategy (b) comparing with the 4× 3 +
3× 3 = 21 constraints of strategy (a) for the quality evaluation problem;
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• Strategy (b) basically uses the goal constraints which are soft equations and does not further
concern the inconsistency among these constraints or the infeasibility issue in application;
however, the strategy (a) has to face the strict constraints and carefully deals with the unavoidable
contradiction among them (some inconsistency checks and adjustment strategies can be found in
references [8,25,32]).

Table 8. The prediction results with different target values.

Aimed Values Intervals Aimed Values Intervals Aimed Values Intervals

Good 1 [0.6, 1] 2 [0.9, 1.2] 0.5 [0.35, 0.7]
Medium 0.5 [0.3, 0.6) 1 [0.3, 0.9) 0.3 [0.2, 0.3)

Bad 0 [0, 0.3) 0 [0, 0.3) 0.1 [0, 0.2)

Sup 0.0000 Bad 0.3875 Medium 0.1000 Bad
Conf 0.4775 Medium 0.9475 Good 0.2555 Medium

R 0.3050 Medium 0.3775 Medium 0.2140 Medium
CenConf 1.0000 Good 0.9500 Good 0.6075 Good

PS 0.3050 Medium 0.4850 Medium 0.2140 Medium
Loe 1.0000 Good 0.9925 Good 0.6875 Good

Zhang 0.5000 Medium 0.9925 Good 0.3000 Medium
ImpInd 0.5000 Medium 0.9075 Good 0.3000 Medium

Lift 0.3050 Medium 0.3775 Medium 0.2140 Medium
Surp 0.3850 Medium 0.3450 Medium 0.2360 Medium
Seb 0.3200 Medium 0.5625 Medium 0.1885 Bad
OM 1.0000 Good 1.1625 Good 0.6875 Good

Conv 1.0000 Good 0.9875 Good 0.6875 Good
ECR 0.4775 Medium 0.8525 Medium 0.2890 Medium

Kappa 0.0000 Bad 0.1925 Bad 0.1000 Bad
IG 0.0000 Bad 0.2725 Bad 0.1335 Bad

IntImp 0.6525 Good 1.0575 Good 0.3750 Good
EII 0.6525 Good 1.0500 Good 0.3750 Good
PDI 0.5000 Medium 0.9075 Good 0.3000 Medium
Lap 0.0875 Bad 0.1875 Bad 0.0815 Bad

5. Conclusions

In this paper, we combined the traditional RF framework with the capacity and Choquet integral
decision model to develop the CRF scheme, in which the capacity plus Choquet integral is taken as
CDT while using the capacity values to store the decision knowledge and the capacity identification or
fitting methods as the suitable knowledge learning and model training tools. With the CRF algorithm,
more decision aids and explanation information, such as the fitting abilities of decision criteria subsets,
the proper criteria reduction suggestion, and the importance and interactions situation among specific
criteria subsets, can be obtained accordingly. Meanwhile, CRF has good generalization ability and its
final prediction result becomes relatively persuadable and confidential as a collective vote outcome.
It was proven that, compared to traditional RF, the CRF is competent to deal with the small scale of
a decision learning dataset because of the flexibility and nonlinearity inherent in the capacity and
Choquet integral scheme.

It should be admitted that if with an adequate or large amount of decision learning data, especially
for a sorting decision problem with a small number of classifications, the traditional DT and RF can
have much better performance than CDT and CRF. The exponential complexity inherent in the structure
of capacity will limit its efficiency in dealing with a large scale dataset. Hence, in the future, we plan to
adopt more special families of capacities, e.g., the k-additive capacity [33], the k-maxitive and minitive
capacity [26,34], the k-interactive capacity [35], and the k-order representative capacity [36], to reduce
the construction complexity, and also we will enrich the types of CDTs and CRFs to enhance their
fitting ability and flexibility by adopting more forms of nonlinear or fuzzy integrals, such as the Sugeno
integral [5], the pan integral [37], and the inclusion-exclusion integral [38].
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