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Abstract: Let T : H→ H be a bounded linear operator on a separable Hilbert space H. In this paper,
we construct an isomorphism Fxx∗ : L2(σ(|T − a|), µ|T−a|,ξ)→ L2(σ(|(T − a)∗|), µ|(T−a)∗ |,FH

xx∗ξ
) such

that (Fxx∗)
2 = identity and FH

xx∗ is a unitary operator on H associated with Fxx∗ . With this construction,
we obtain a noncommutative functional calculus for the operator T and Fxx∗ = identity is the
special case for normal operators, such that S = R|(S−a)|,ξ(Mzφ(z) + a)R−1

|S−a|,ξ is the noncommutative

functional calculus of a normal operator S, where a ∈ ρ(T), R|T−a|,ξ : L2(σ(|T − a|), µ|T−a|,ξ) → H
is an isomorphism and Mzφ(z) + a is a multiplication operator on L2(σ(|S− a|), µ|S−a|,ξ). Moreover,
by Fxx∗ we give a sufficient condition to the invariant subspace problem and we present the Lebesgue
class BLeb(H) ⊂ B(H) such that T is Li-Yorke chaotic if and only if T∗−1 is for a Lebesgue operator T.
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1. Introduction

1.1. Invariant Subspace

The invariant subspace problem has been stated by Beurling and von Neumann [1]. It can be
formulated as follows.

Problem 1. Does every bounded linear operator on a given linear space have a non-trivial invariant subspace?

In 1966, Bernstein et al. [2] showed that if T is a bounded linear operator on a complex Hilbert
space H and p is a nonzero polynomial such that p(T) is compact, then T has non-trivial invariant
subspace. Especially, when p(t) = t, which is, T itself is compact, the result was proved independently
by von Neumann and N. Aronszajn, and in [3], this result was extended to compact operators on a
Banach space.

Let T be a bounded linear operator on a Banach space. In 1973, Lomonosov [4] proved that if T
is not a scalar multiple of the identity and commutes with a nonzero compact operator, then T has a
non-trivial hyperinvariant subspace, which is, any bounded linear operator commuting with T has a
non-trivial invariant subspace (other results see [5–7]).

In 1976, Enflo [8] was the first to construct an operator on a Banach space having no non-trivial
invariant subspace and Nordgren et al. [9] proved that every operator has an invariant subspace if and
only if every pair of idempotents has a common invariant subspace.
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In 1983, Atzmon [10] constructed a nuclear Fréchet space F and a bounded linear operator, which
has no non-trivial invariant subspace. Especially, in 1984, C. J. Read made an example, such that there
is a bounded linear operator without non-trivial invariant subspace on `1 [11].

In 2011, Argyros et al. [12] constructed the first example of a Banach space for which every
bounded linear operator on the space has the form λ + K where λ is a real scalar and K is a compact
operator, such that every bounded linear operator on the space has a non-trivial invariant subspace.

In 2013, Marcoux et al. [13] showed that, if a closed algebra of operators on a Hilbert space has
a non-trivial almost-invariant subspace, then it has a non-trivial invariant subspace (more results
see [14–18]).

In 2019, Tcaciuc [19] proved that, for any bounded operator T acting on an infinite-dimensional
Banach space, there exists an operator F of rank at most one such that T + F has an invariant subspace
of infinite dimension and codimension.

For finite-dimensional vector spaces or nonseparable Hilbert spaces, the result is trivial.
However, for infinite-dimensional separable Hilbert spaces, the problem is, after a long period of
time, not yet completely solved.

1.2. Linear Dynamics

With the development of operator theory and dynamics progress, there are many papers
about C*-algebras and dynamics. Additionally, “the fundamental theorem of C*-algebras [20]” is
Gelfand-Naimark theorem [21]. Subsequently, in [22], Fujimoto said that this theorem eventually
opened the gate to the subject of C*-algebras. Hence, there are various attempts to generalize this
theorem [23–27].

For the research on Problem 1 and with the development of chaos, Operator Dynamics or Linear
Dynamics has aroused extensive attention as an important branch of functional analysis, which was
probably born in 1982 with the Toronto Ph. D. thesis of C. Kitai [28]. More details of this subject can be
found in [29–33].

If X is a metric space and T is a continuous self-map on X, then the pair (X, T) is called a
topological dynamic systems, which is induced by the iteration

Tn = T ◦ · · · ◦ T︸ ︷︷ ︸
n

, n ∈ N, where 0 ∈ N.

Moreover, if T is a continuous invertible self-map on X, then (X, T) is called an invertible dynamic
and if the metric space X and the continuous self-map T are both linear, then the topological dynamic
systems (X, T) is called a linear dynamic.

For invertible dynamics, the relationship of Li-Yorke chaos between (X, f ) and (X, f−1) was
raised by Stockman as an open question [34]. Additionally, in [35,36] and [37], the authors give
counterexamples for this question in noncompact spaces and compact spaces, respectively. For an
invertible bounded linear operator T ∈ B(H), the chaotic relationship between (H, T) and (H, T∗−1) is
also interesting.

Next, we give the following definition

Definition 1 (Li-Yorke chaos). Let T ∈ B(H). If there exists x ∈ H, such that satisfies:

(a) lim
n→∞

|Tn(x)‖ > 0 and

(b) lim
n→∞

‖Tn(x)‖ = 0,

then the operator T is said to be Li-Yorke chaotic, and x is called a Li-Yorke chaotic point of T.
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An example of an operator T that is Li-Yorke chaotic but T∗−1 is not can be found in [38]. However,
presently there is no general method to do this research. In fact, the C*-algebra A(T) generated by T
cannot be used for that.

1.3. Motivation and Main Results

For an n-tuple T of not necessarily commuting operators, Colombo et al. [39] put to use the
notion of slice monogenic functions [40] to define a new functional calculus, which is consistent with
the Riesz–Dunford calculus in the case of a single operator and that allows the explicit construction
of the eigenvalue equation for the n-tuple T based on a new notion of spectrum for T (more results,
see [41–44]).

In 2010, for bounded operators defined on quaternionic Banach spaces, Colombo et al. [45]
developed a noncommutative functional calculus that is based on the new notion of slice-regularity
and that is based on the key tools of a new resolvent operator and a new eigenvalue problem, also,
they extended this calculus to the unbounded case [46] (more results, see [47]).

In 2018, Monguzzi et al. [48] characterized the closed invariant subspaces for the (*−) multiplier
operator of the quaternionic space of slice L2 functions, obtained the inner-outer factorization theorem
for the quaternionic Hardy space on the unit ball and provided a characterization of quaternionic outer
functions in terms of cyclicity.

In this paper, we give a noncommutative functional calculus for T ∈ B(H). Additionally, by this
construction, we give some applications, such as its applications on the invariant subspace problem and
chaos. The precise meaning of the multiplication operator Mzψ(z) = Mz Mψ(z) = Mψ(z)Mz = Mψ(z)z
will become clear in Theorem 3.

Let H be a separable Hilbert space over C, B(H) be the set of all bounded linear operator on H.
For any given T ∈ B(H), we obtain a C*-algebra A(|T− a|) associated with the polar decomposition
T − a = U|T − a|, where a ∈ ρ(T) and ξ is a A(|T − a|)-cyclic vector, such that H = A(|T − a|)ξ.
In this paper, we construct an isomorphism Fxx∗ , such that the following diagram is valid.

L2(σ(|T − a|), µ|T−a|,ξ) R|T−a|,ξ−−−−−−−−−−−−−−−→
H

Fxx∗ ↓ ↓ FH
xx∗

L2(σ(|(T − a)∗|), µ|(T−a)∗ |,FH
xx∗ξ

)
−−−−−−−−−−−−−−−→

R|(T−a)∗ |,FH
xx∗ξ

H

where FH
xx∗ is the corresponding unitary operator associated with the isomorphism Fxx∗ and

Fix(FH
xx∗) 6= ∅, (FH

xx∗)
2 = identity and (Fxx∗)

2 = identity. With this construction, we get a
noncommutative functional calculus for the operator T such that

T − a = R|(T−a)∗ |,FH
xx∗ ξ Fxx∗Mzψ(z)R

−1
|T−a|,ξ .

Especially, Fxx∗ = identity, which is the special case for normal operators, will become clear
in Corollary 3, and, in this special case, we get that the noncommutative functional calculus of
a normal operator S is just only S = R|(S−a)|,ξ(Mzφ(z) + a)R−1

|S−a|,ξ , which is compatible with the
classical normal operator functional calculus of [49]. Where ψ(z) ∈ L∞(σ(|T − a|), µ|T−a|,ξ) and
φ(z) ∈ L∞(σ(|S− a|), µ|S−a|,ξ).

Moreover, from Fxx∗, we deduce a sufficient condition to Problem 1 on infinite-dimensional
separable Hilbert spaces and present the Lebesgue class BLeb(H) ⊂ B(H), such that, if T is a Lebesgue
operator, then T is Li-Yorke chaotic if and only if T∗−1 is.

In fact, we get that
BLeb(H) ∩ BNor(H) 6= ∅

and
BLeb(H) ∩ (B(H) \ BNor(H)) 6= ∅,
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where BNor(H) is the set of all normal operator on H.

2. Decomposition and Isomorphic Representation

In this paper, f̄ (·) means the conjugate of the complex function f (·). Let X be a compact subset of
C, C(X) be the set of all continuous function on X, and P(x) be the set of all polynomial on X. For any
given T ∈ B(H), let σ(T) be its spectrum.

Following the polar decomposition theorem [50] (p. 15), we get that

T = U|T| and |T|2 = T∗T.

Let A(|T|) be the complex C∗-algebra generated by |T| and 1. Obviously, if T is invertible, then U
is a unitary operator.

Lemma 1. Let X ⊆ C be a compact subset not containing zero. If P(x) is dense in C(X), then P( 1
x ) is also

dense in C(X).

Proof. By the properties of complex polynomials, we get that P( 1
x ) is a subalgebra of C(X), which is

closed under the standard algebraic operations. In addition, we have:
(1) 1 ∈ P( 1

x );
(2) P( 1

x ) separate the points of X;
(3) If p( 1

x ) ∈ P(
1
x ), then p̄( 1

x ) ∈ P(
1
x ).

We get the conclusion from the Stone–Weierstrass theorem [49] (p. 145).

For X ⊆ R+, there is x 6= y⇐⇒ x2 6= y2. With Lemma 1, we get the following result.

Lemma 2. Let X ⊆ R+ . If P(|x|) is dense in C(X), then P(|x|2) is also dense in C(X).

Using the GNS construction [49] (p. 250), for the C∗-algebra A(|T|), we have the following
decomposition.

Lemma 3. Let T be an invertible bounded linear operator on H. Then there exists a sequence of nonzero
A(|T|)-invariant subspaces H1,H2, · · · ,Hi, · · · , such that:

(1) H = H1 ⊕H2 ⊕ · · · ⊕Hi ⊕ · · · ;
(2) For every Hi, there is a A(|T|)-cyclic vector ξ i such that

Hi = A(|T|)ξ i = A(|T|−1)ξ i

and
|T|Hi = Hi = |T|−1Hi .

Proof. The decomposition of (1) is obvious [51] (p. 54), Therefore,

|T|Hi ⊆ Hi ,

that is,
Hi ⊆ |T|−1Hi .

From Lemma 1, we get that

Hi = A(|T|)ξ i = A(|T|−1)ξ i

and
|T|−1Hi ⊆ Hi .
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Hence,
|T|Hi = Hi = |T|−1Hi .

Let ξ ∈ H be a A(|T|)-cyclic vector, such that A(|T|)ξ is dense in H . Because the spectrum is
closed and σ(|T|) 6= ∅ , on C(σ(|T|)), we can define the nonzero linear functional

ρ|T|,ξ : ρ|T|,ξ( f ) = 〈 f (|T|)ξ, ξ〉 , ∀ f ∈ C(σ(|T|)) .

It is easy to get that ρ|T|,ξ is a positive linear functional. By [51] (p. 54), and the Riesz–Markov
theorem, on C(σ(|T|)), we get that there is a uniquely finite positive Borel measure µ|T|,ξ , such that∫

σ(|T|)
f (z)dµ|T|,ξ(z) = 〈 f (|T|)ξ, ξ〉 , ∀ f ∈ C(σ(|T|)) .

Theorem 1. Let T be an invertible bounded linear operator on H,A(|Tn|) be the complex C∗-algebra generated
by |Tn| and 1 and let ξn be a A(|Tn|)-cyclic vector, such that A(|Tn|)ξn = H , where n ∈ N. Subsequently:

(1) there is a uniquely positive linear functional∫
σ(|Tn |)

f (z)dµ|Tn |,ξn(z) = 〈 f (|T
n|)ξn, ξn〉 , ∀ f ∈ L1(σ(|Tn|), µ|Tn |,ξn) .

(2) there is a uniquely isomorphic representation R|Tn |,ξn : L2(σ(|Tn|), µ|Tn |,ξn)→ H associated with the
uniquely finite positive Borel measure µ|Tn |,ξn , which is complete.

Proof. (1) For A(|Tn|)-cyclic vector ξn, we define the linear functional

ρ|Tn |,ξn( f ) = 〈 f (|Tn|)ξn, ξn〉 , ∀ f ∈ C(σ(|T|)).

We get that, on C(σ(|Tn|)), there is a uniquely finite positive Borel measure µ|Tn |,ξn , such that∫
σ(|Tn |)

f (z)dµ|Tn |,ξn(z) = 〈 f (|T
n|)ξn, ξn〉 , ∀ f ∈ C(σ(|Tn|)).

Moreover, we can complete this Borel measure µ|Tn |,ξn on σ(|Tn|). For this completion, we keep
the notation µ|Tn |,ξn . We know that this Borel measure is unique [52] .

For any f ∈ L2(σ(|Tn|), µ|Tn |,ξn), because of

ρ|Tn |,ξn(| f |
2) = ρ|Tn |,ξn( f̄ f ) = 〈 f (|Tn|)∗ f (|Tn|)ξn, ξn〉 = ‖ f (|Tn|)ξn‖2

H ≥ 0,

we get that ρ|Tn |,ξn is a positive linear functional.
(2) We know that C(σ(|Tn|)) is dense in L2(σ(|Tn|), µ|Tn |,ξn). For any f , g ∈ C(σ(|Tn|)), we get

〈 f (|Tn|)ξn, g(|Tn|)ξn〉H
= 〈g(|Tn|)∗ f (|Tn|)ξn, ξn〉

= ρ|Tn |,ξn(ḡ f ) =
∫

σ(|Tn |)

f (z)ḡ(z)dµ|Tn |,ξn(z)

= 〈 f , g〉L2(σ(|Tn |),µ|Tn |,ξn )
.

Therefore,
R0,ξn : C(σ(|Tn|))→ H, f (z)→ f (|Tn|)ξn

is a surjective isometry from C(σ(|Tn|)) to A(|Tn|)ξn .
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Obviously, C(σ(|Tn|)) and A(|Tn|)ξn are dense subspaces of L2(σ(|Tn|), µ|Tn |,ξn) and H ,
respectively. Additionally, its closed extension

R|Tn |,ξn : L2(σ(|Tn|), µ|Tn |,ξn)→ H , f (z)→ f (|Tn|)ξn

is an isomorphic operator.
Therefore, we get that R|Tn |,ξn is the uniquely isomorphic representation of H associated with the

uniquely finite positive Borel measure µ|Tn |,ξn , which is complete.

Let T be an invertible bounded linear operator on H = Hξ1 ⊕Hξ2 ⊕ · · · ⊕Hξ i ⊕ · · · and ξ i be

a A(|T|−1)-cyclic vector such that Hξ i = A(|T|−1)ξ i = A(|T|)ξ i . If there exists a unitary operator

U0 ∈ B(H), such that U0P(|T|−1) = P(|T−1|)U0, then HU0ξ i = A(|T−1|)U0ξ i = U0Hξ i and we get
two series of isomorphic representations

R|T|−1,ξ i : L2(σ(|T|−1|H
ξi ), µ|T|−1,ξ i )→ Hξ i , f (z)→ f (|T|−1)ξ i

and
R|T−1|,U0ξ i : L2(σ(|T−1||HU0ξi ), µ|T−1|,U0ξ i )→ HU0ξ i , g(y)→ g(|T−1|)U0ξ i .

Let ξ = ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξ i ⊕ · · · . Subsequently, ξ is a A(|T|−1)-cyclic vector, such that H =

A(|T|−1)ξ and we get the following equation

R|T|−1,ξ = R|T|−1,ξ1 ⊕ R|T|−1,ξ2 ⊕ · · · ⊕ R|T|−1,ξ i ⊕ · · · ,

R|T−1|,U0ξ = R|T−1|,U0ξ1 ⊕ R|T−1|,U0ξ2 ⊕ · · · ⊕ R|T−1|,U0ξ i ⊕ · · · ,

L2(σ(|T|−1), µ|T|−1,ξ) = L2(σ(|T|−1|H
ξ1 ), µ|T|−1,ξ1)⊕ · · · ⊕ L2(σ(|T|−1|H

ξi ), µ|T|−1,ξ i )⊕ · · · ,

and

L2(σ(|T−1|), µ|T−1|,U0ξ) = L2(σ(|T−1||HU0ξ1 ), µ|T−1|,U0ξ1)⊕ · · · ⊕ L2(σ(|T−1||HU0ξi ), µ|T−1|,U0ξ i )⊕ · · · .

3. Noncommutative Functional Calculus

We know that the spectral theory and functional calculus of normal operators [49] is very
important in the study of operator theory and C∗-algebras [50]. Inspired by the Hua Loo-kang
theorem on the automorphisms of a sfield [53], in this section, we give a useful construction from
L2(σ(|T−1|), µ|T−1|,η) to L2(σ(|T|−1), µ|T|−1,ξ) and with this construction, we give a noncommutative
functional calculus for any given T ∈ B(H) . However, there is valueless information just only from
R−1
|T|,ξ ◦ R|T−1|,η or R−1

|T|−1,ξ ◦ R|T−1|,η .

Lemma 4. Let T be an invertible bounded linear operator on H. Subsequently, we get

σ(|T−1|) = σ(|T|−1) .

Proof. Because of
λ ∈ σ(T∗T)⇐⇒ 1

λ
∈ σ(T∗−1T−1) ,

we get

λ ∈ σ(|T|)⇐⇒ 1
λ
∈ σ(|T−1|) .

That is, σ(|T−1|) = σ(|T|−1) .
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Let T be an invertible bounded linear operator on H, ξ be a A(|T|)-cyclic vector, such that
H = A(|T|)ξ . On P(z), with z ∈ σ(|T|), we define the mapping

Fz−1 : P(z)→ P(z−1), Fz−1( f (z)) = f (z−1) .

Following Lemma 3 and Theorem 1, P(z) and P( 1
z ) are dense subspaces of L2(σ(|T|), µ|T|,ξ) and

L2(σ(|T|−1), µ|T|−1,ξ) , respectively. Its closed extension

Fz−1 : L2(σ(|T|), µ|T|,ξ)→ L2(σ(|T|−1), µ|T|−1,ξ) , Fz−1( f (z)) = f (z−1)

is linear and for this closed extension we keep the notation Fz−1 .
Subsequently, we obtain that∫

σ(|T|)

f (z−1)dµ|T|,ξ(z) =
〈

f (|T|−1)ξ, ξ
〉
=

∫
σ(|T|−1)

f (z)dµ|T|−1,ξ(z)

and
dµ|T|−1,ξ(z) = |z|2dµ|T|,ξ(z) .

By a simple computation, we get that

‖Fz−1( f (z))‖2
L2(σ(|T|−1),µ|T|−1,ξ )

=
∫

σ(|T|−1)

Fz−1( f (z))F̄z−1( f (z))dµ|T|−1,ξ(z)

=
∫

σ(|T|−1)

f (z−1) f̄ (z−1)dµ|T|−1,ξ(z)

=
∫

σ(|T|)

|z|2 f (z) f̄ (z)dµ|T|,ξ(z)

≤ sup
m∈σ(|T|)

m2
∫

σ(|T|)

f (z) f̄ (z)dµ|T|,ξ(z)

≤ sup
m∈σ(|T|)

m2‖ f (z)‖2
L2(σ(|T|),µ|T|,ξ )

.

Hence, it follows that
‖Fz−1‖ ≤ sup

m∈σ(|T|)
|m| .

By an application of the Banach inversion theorem [49] (p. 91), we get that Fz−1 is an invertible
bounded linear operator from L2(σ(|T|), µ|T|,ξ) to L2(σ(|T|−1), µ|T|−1,ξ) .

Next, we define the operator

FH
z−1 : A(|T|)ξ → A(|T|−1)ξ, FH

z−1( f (|T|)ξ) = f (|T|−1)ξ .

By Lemma 1 and [51] (p. 55), we get that FH
z−1 is an invertible bounded linear operator on the

Hilbert space A(|T|)ξ = H and
‖FH

z−1‖ ≤ sup sup
m∈σ(|T|)

|m| .

Moreover, we obtain the following diagram.
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H |T|
−−−−−−−→

H
FH

z−1 ↓ ↓ FH
z−1

H
−−−−−−−→
|T|−1 H

By [53] and the isomorphic representations R|T|−1,ξ and R|T−1|,U0ξ of H, also, by Lemma 2 and 3,
naturally, we give the following definition.

Definition 2. For invertible T ∈ B(H), let the symbol xx∗ stand for T−1T∗−1. Subsequently, we get that
there is a linear algebraic isomorphism from P(xx∗) to P(x∗x), such that

Fxx∗ : P(xx∗)→ P(x∗x), pn(xx∗)→ pn(x∗x) .

Let ξ be a A(|T|−1)-cyclic vector, such that A(|T|−1)ξ = H and U0 ∈ B(H) be a unitary operator such
that U0P(|T|−1) = P(|T−1|)U0. Subsequently, on σ(|T|−1) we define

Fxx∗ : R−1
|T|−1 pn(xx∗)ξ → R−1

|T−1|pn(x∗x)U0ξ .

Obviously, P(|y|2) is dense in L2(σ(|T|−1), µ|T|−1,ξ) and P(|z|2) is dense in L2(σ(|T−1|), µ|T−1|,U0ξ) .
Then its closed extension is

Fxx∗ : L2(σ(|T|−1), µ|T|−1,ξ)| → L2(σ(|T−1|), µ|T−1|,U0ξ) , R−1
|T|−1 f (xx∗)ξ → R−1

|T−1| f (x∗x)U0ξ .

For this closed extension, we keep the notation Fxx∗ .

With the polar decomposition theorem [50] (p. 15), there is T = U|T|. For invertible T ∈ B(H),
we get that

U∗T∗TU = TT∗ and U∗|T|−2U = |T−2| .

In fact, when T is invertible, we can choose a special unitary operator, which shows that the
operators |T|−1 and |T−1| are unitary equivalent. This is explained in the following theorem.

Theorem 2. Let T be an invertible bounded linear operator on H and U0 ∈ B(H) be a unitary operator, such
that U0P(|T|−1) = P(|T−1|)U0. Afterwards, there is a unitary operator FH

xx∗ , such that

FH
xx∗ |T|−1 = |T−1|FH

xx∗ .

Moreover, FH
xx∗ is the corresponding unitary operator associated with the almost everywhere nonzero

function |φ|T|(z)|, such that

dµ|T−1|,U0ξ = |φ|T|(
1
z
)|dµ|T|−1,ξ ,

where |φ|T|(z)| ∈ L1(σ(|T|), µ|T|,ξ) and ξ is a A(|T|)-cyclic vector, such that A(|T|)ξ = H .

Proof. By Lemma 3, let ξ be a A(|T|)-cyclic vector, such that H = A(|T|)ξ . By Definition 2, we have
the linear operator Fxx∗ : L2(σ(|T|−1), µ|T|−1,ξ)→ L2(σ(|T−1|), µ|T−1|,U0ξ) .

This construction yields that Fxx∗ is an invertible linear operator from L2(σ(|T|−1), µ|T|−1,ξ) to
L2(σ(|T−1|), µ|T−1|,U0ξ) . Hence, Fxx∗ ◦ Fz−1 is an invertible linear operator from L2(σ(|T|), µ|T|,ξ) to
L2(σ(|T−1|), µ|T−1|,U0ξ) .

By [53], we get that Fxx∗ is a linear algebraic isomorphism from P(|y|2) on σ(|T|−1) to P(|z|2) on
σ(|T−1|) . Additionally, by Lemma 2, P(|y|2) is dense in L2(σ(|T|−1), µ|T|−1,ξ) and P(|z|2) is dense in
L2(σ(|T−1|), µ|T−1|,U0ξ) .
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Hence, we obtain
[dµ|T−1|,U0ξ ] = [dµ|T|−1,ξ ] ,

that is, dµ|T−1|,U0ξ and dµ|T|−1,ξ are mutually absolutely continuous. Following [49], (IX Theorem 3.6)
and the construction Fz−1 , we get that there exists φ|T|(z) ∈ L1(σ(|T|), µ|T|,ξ), where |φ|T|(z)| 6= 0, a.e.,
such that

dµ|T−1|,U0ξ = |φ|T|(
1
z
)|dµ|T|−1,ξ = |z|2|φ|T|(z)|dµ|T|,ξ .

From Lemma 4, for any pn ∈ P(σ(|T|−1)) ⊆ A(σ(|T|−1)) , because of

T∗−1 pn(|T|−1) = pn(|T−1|)T∗−1 ,

with [50] (p. 60), we get that there is a unitary operator U0 ∈ B(H), such that

U0P(|T|−1) = P(|T−1|)U0 .

Hence, we conclude
U0A(|T|−1) = A(|T−1|)U0

and
H = U0A(|T|−1)ξ = A(|T−1|)U0ξ .

That is, U0ξ is a A(|T−1|)-cyclic vector. Additionally, with Theorem 1, we get∫
σ(|T|−1)

f (z)dµ|T|−1,ξ(z) =
〈

f (|T|−1)ξ, ξ
〉
=

∫
σ(|T|)

f (
1
z
)dµ|T|,ξ(z)

and ∫
σ(|T−1|)

f (z)dµ|T−1|,U0ξ(z) =
〈

f (|T−1|)U0ξ, U0ξ
〉

.

By a simple computation, we obtain that

‖Fxx∗ ◦ Fz−1( f (z))‖2
L2(σ(|T−1|),µ|T−1 |,U0ξ

)

=
∫

σ(|T−1|)

Fxx∗ ◦ Fz−1( f (z))Fxx∗ ◦ Fz−1( f (z))dµ|T−1|,U0ξ(z)

=
∫

σ(|T−1|)

Fxx∗( f (z−1))Fxx∗( f (z−1))dµ|T−1|,U0ξ(z)

,
∫

σ(|T|−1)

f (y−1) f̄ (y−1)dµ|T|−1,ξ(y)

=
∫

σ(|T|−1)

Fy−1( f (y))Fy−1( f̄ (y))dµ|T|−1,ξ(y)

= ‖Fy−1( f (y))‖2
L2(σ(|T|−1),µ|T|−1,ξ )

and , is introduced by U0.
Hence, Fxx∗ is an isomorphism from L2(σ(|T|−1), µ|T|−1,ξ) to L2(σ(|T−1|), µ|T−1|,U0ξ).
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With Theorem 1 and Definition 2, we have the operator

FH
xx∗ : H→ H, FH

xx∗(R|T|−1,ξ f (|T|−2)) = R|T−1|,U0ξ(Fxx∗ f (|T|−2)).

That is, FH
xx∗ = R|T−1|,U0ξ Fxx∗R−1

|T|−1,ξ , such that the following diagram is valid.

L2(σ(|T|−1), µ|T|−1,ξ) R|T|−1,ξ−−−−−−−−−−−−→
H

Fxx∗ ↓ ↓ FH
xx∗

L2(σ(|T−1|), µ|T−1|,U0ξ)
−−−−−−−−−−−−→

R|T−1|,U0ξ H

Therefore, we said that the linear operator FH
xx∗ is associated with Fxx∗ . Subsequently, we see that

FH
xx∗ is a unitary operator and by Lemma 3, we obtain

A(|T|−1)ξ = H = A(|T−1|)U0ξ .

Subsequently, we obtain

H |T|−1
−−−−−−−−−→

H
FH

xx∗ ↓ ↓ FH
xx∗

H
−−−−−−−−−→
|T−1| H

Naturally, there is
FH

xx∗ |T|−1 = |T−1|FH
xx∗ .

Afterwards, FH
xx∗ is the corresponding unitary operator associated with Fxx∗ , which is, associated

with the almost everywhere nonzero function |φ|T|( 1
z )|, such that

dµ|T−1|,U0ξ = |φ|T|(
1
z
)|dµ|T|−1,ξ = |z|2|φ|T|(z)|dµ|T|,ξ ,

where |φ|T|(z)| ∈ L1(σ(|T|), µ|T|,ξ) .

We easily deduce (FH
xx∗)

∗ = FH
xx∗ and the next results also readily follows. Let T be an invertible

bounded linear operator on H, ξ be a A(|T|)-cyclic vector, such that H = A(|T|)ξ and let U0 ∈ B(H)

be a unitary operator, such that U0P(|T|−1) = P(|T−1|)U0 . In the proof of Theorem 2, and with the
isomorphic representations R|T|−1,ξ and R|T−1|,U0ξ of H , we provide that

Fxx∗ = R−1
|T−1|,U0ξ

◦ FH
xx∗ ◦ R|T|−1,ξ .

Especially, let U0 = FH
xx∗ . Subsequently,

Fxx∗ = R−1
|T−1|,FH

xx∗ ξ
◦ FH

xx∗ ◦ R|T|−1,ξ .

Corollary 1. Let T be an invertible bounded linear operator on H and let ξ be a A(|T|)-cyclic vector, such that
H = A(|T|)ξ. Then σ(|T|) = σ(|T∗|) and the equality FH

xx∗ |T| = |T∗|FH
xx∗ is valid. Moreover, FH

xx∗ is the
corresponding unitary operator associated with Fxx∗ , whih is, associated with the almost everywhere nonzero
function |φ|T|(z)|, such that

dµ|T∗ |,FH
xx∗ ξ = |φ|T|(z)|dµ|T|,ξ ,

where |φ|T|(z)| ∈ L1(σ(|T|), µ|T|,ξ).
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Next, for any given g(z) ∈ L∞(σ(|T|), µ|T|,ξ), we define

Mg : L2(σ(|T|), µ|T|,ξ)→ L2(σ(|T|), µ|T|,ξ), Mg f (z) = g(z) f (z).

Theorem 3. Let T be an invertible bounded linear operator on H and T = U|T| be its Polar Decomposition.
Let ξ be a A(|T|)-cyclic vector, such that H = A(|T|)ξ and |T| = R|T|,ξ MzR−1

|T|,ξ . Subsequently, there exists

ψ(z) ∈ L∞(σ(|T|), µ|T|,ξ), such that U = R|T∗ |,FH
xx∗ ξ Fxx∗Mψ(z)R

−1
|T|,ξ and T = R|T∗ |,FH

xx∗ ξ Fxx∗Mzψ(z)R
−1
|T|,ξ .

Here Mzψ(z) = Mz Mψ(z) = Mψ(z)Mz = Mψ(z)z .

Proof. Let U0 = FH
xx∗ in the proof of Theorem 2. Afterwards, we get

Fxx∗ = R−1
|T−1|,FH

xx∗ ξ
◦ FH

xx∗ ◦ R|T|−1,ξ and FH
xx∗ = R|T−1|,FH

xx∗ ξ ◦ Fxx∗ ◦ R−1
|T|−1,ξ .

By the polar decomposition theorem [50] (p. 15) we have T = U|T|. Hence, we get

T∗T = |T|2 and TT∗ = U|T|2U∗.

By Corollary 1, we get
TT∗ = FH

xx∗ |T|2(FH
xx∗)

∗,

that is,
FH

xx∗ |T|2(FH
xx∗)

∗ = TT∗ = U|T|2U∗ .

We see that
FH

xx∗U|T|2 = |T|2FH
xx∗U .

With the fact that {Mψ(z) : ψ(z) ∈ L∞(σ(|T|), µ|T|,ξ)} is a maximal abelian von Neumann algebra
in B(L2(σ(|T|), µ|T|,ξ)) and the Fuglede–Putnam theorem [49] (p. 279), we obtain that there exists
ψ(z) ∈ L∞(σ(|T|), µ|T|,ξ) such that

FH
xx∗U = R|T|,ξ Mψ(z)R

−1
|T|,ξ = R|T|−1,ξ Mψ( 1

z )
R−1
|T|−1,ξ .

Therefore, we get that

U = FH
xx∗R|T|−1,ξ Mψ( 1

z )
R−1
|T|−1,ξ = R|T−1|,FH

xx∗ ξ ◦ Fxx∗ ◦ R−1
|T|−1,ξ R|T|−1,ξ Mψ( 1

z )
R−1
|T|−1,ξ .

That is,
U = R|T−1|,FH

xx∗ ξ Fxx∗Mψ( 1
z )

R−1
|T|−1,ξ = R|T∗ |,FH

xx∗ ξ Fxx∗Mψ(z)R
−1
|T|,ξ

and
T = U|T| = R|T∗ |,FH

xx∗ ξ Fxx∗Mψ(z)R
−1
|T|,ξ R|T|,ξ MzR−1

|T|,ξ = R|T∗ |,FH
xx∗ ξ Fxx∗Mzψ(z)R

−1
|T|,ξ .

Corollary 2. Let T ∈ B(H). Suppose a ∈ ρ(T) = C \ σ(T) and let ξ be a A(|T− a|)-cyclic vector, such that
H = A(|T − a|)ξ . Subsequently, there exists a function ψ(z) ∈ L∞(σ(|T − a|), µ|T−a|,ξ), such that

T = R|(T−a)∗ |,FH
xx∗ ξ Fxx∗Mzψ(z)R

−1
|T−a|,ξ + a.

Proof. For a ∈ ρ(T), T− a is an invertible bounded linear operator on H. By the proof of Theorem 3,
we get that T − a = R|(T−a)∗ |,FH

xx∗ ξ Fxx∗Mzψ(z)R
−1
|T−a|,ξ , that is,

T = R|(T−a)∗ |,FH
xx∗ ξ Fxx∗Mzψ(z)R

−1
|T−a|,ξ + a .
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The following definition is quite natural.

Definition 3. For any given T ∈ B(H), we say that R|(T−a)∗ |,FH
xx∗ ξ Fxx∗Mzψ(z)R

−1
|T−a|,ξ + a is the

noncommutative functional calculus of T on Fxx∗ : L2(σ(|T|), µ|T|,ξ)| → L2(σ(|T∗|), µ|T∗ |,FH
xx∗ ξ) ,, where ξ

is a A(|T − a|)-cyclic vector, such that H = A(|T − a|)ξ , ψ(z) ∈ L∞(σ(|T − a|), µ|T−a|,ξ) and a ∈ ρ(T) .

In the final part of this section, we give some properties of normal operator through the
noncommutative functional calculus.

Corollary 3. For T ∈ B(H), if TT∗ = T∗T, then there exists ψ(z) ∈ L∞(σ(|T − a|), µ|T−a|,ξ) such that
R|(T−a)|,ξ(Mzψ(z) + a)R−1

|T−a|,ξ is the noncommutative functional calculus of T on L2(σ(|T− a|), µ|T−a|,ξ) .

and we get T ∈ A′(|T− a|). Where a ∈ ρ(T) , ξ is aA(|T− a|)-cyclic vector, such that H = A(|T − a|)ξ and

A′(|T − a|) = {A ∈ B(H) : AB = BA for every B ∈ A(|T − a|)}.

Proof. For TT∗ = T∗T and a ∈ ρ(T) , we get that

FH
xx∗ = identity and |T − a| = [(T − a)∗(T − a)]

1
2 = [(T − a)(T − a)∗]

1
2 = |(T − a)∗|.

Therefore, we see that
R−1
|(T−a)∗ |,FH

xx∗ ξ
= R−1

|T−a|,ξ

and there exists ψ(z) ∈ L∞(σ(|T − a|), µ|T−a|,ξ) such that

T − a = R|(T−a)|,ξ Mzψ(z)R
−1
|T−a|,ξ .

That is,
T = R|(T−a)|,ξ(Mzψ(z) + a)R−1

|T−a|,ξ .

With the proof of Theorem 3, we get T − a ∈ A′(|T − a|), which is, T ∈ A′(|T − a|) .

Corollary 4. Let T ∈ B(H). Subsequently, the operator T is normal if and only if T is unitary equivalent to
Mψ(z) + a on L2(σ(|T − a|), µ|T−a|,ξ), and if and only if T ∈ A′(|T − a|), where ξ is a A(|T − a|)-cyclic
vector, such that H = A(|T − a|)ξ, ψ(z) ∈ L∞(σ(|T − a|), µ|T−a|,ξ), and a ∈ ρ(|T|).

4. A Sufficient Condition

In this section, we study Problem 1 on infinite-dimensional separable Hilbert spaces. With the
fact that the exist of non-trivial invariant subspace is unchanged by the similarity of bounded linear
operators on Banach spaces [1], which is, for R ∈ B(B1) and S ∈ B(B2), if T : B1 → B2 is an invertible
bounded linear operator and S = TRT−1, then R has non-trivial invariant subspace if and only if S
has, where B1 and B2 are Banach spaces. Therefore, for any given T ∈ B(H), using the construction of
Fxx∗ , we give a sufficient condition to Problem 1 on infinite-dimensional separable Hilbert spaces.

For convenience, we define Fix(FH
xx∗) = {FH

xx∗( f ) = f ; f ∈ H}. Obviously, Fix(FH
xx∗) is a closed

subspace of H.

Theorem 4. Let dimH > 1, T ∈ B(H) and R|(T−a)∗ |,FH
xx∗ ξ Fxx∗Mzψ(z)R

−1
|T−a|,ξ be the noncommutative

functional calculus of T − a on Fxx∗ : L2(σ(|T − a|), µ|T−a|,ξ)| → L2(σ(|(T − a)∗|), µ|(T−a)∗ |,FH
xx∗ ξ) ,

where a ∈ ρ(|T|), ξ is a A(|T − a|)-cyclic vector, such that H = A(|T − a|)ξ and ψ(z) ∈ L∞(σ(|T −
a|), µ|T−a|,ξ) . If R|T−a|,ξ Mzψ(z)R

−1
|T−a|,ξ Fix(FH

xx∗) ⊆ Fix(FH
xx∗), then T has a non-trivial invariant subspace.
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Proof. It is enough to prove the result for infinite-dimensional separable complex Hilbert space H.
Obviously, if A ⊂ H is a non-trivial invariant subspace of T if and only if A is a non-trivial invariant
subspace of T − a, where a ∈ C.

Let a ∈ ρ(T) and let ξ be a A(|T − a|)-cyclic vector such that H = A(|T − a|)ξ . Subsequently,
following Corollary 2, we get that there exists ψ(z) ∈ L∞(σ(|T − a|), µ|T−a|,ξ), such that
R|(T−a)∗ |,FH

xx∗ ξ Fxx∗Mzψ(z)R
−1
|T−a|,ξ is the noncommutative functional calculus of T − a on

Fxx∗ : L2(σ(|T − a|), µ|T−a|,ξ)| → L2(σ(|(T − a)∗|), µ|(T−a)∗ |,FH
xx∗ ξ) .

By the construction of FH
xx∗ in Theorem 2, we get (FH

xx∗)
2 = identity and Fix(FH

xx∗) 6= ∅.
(1) If Fix(FH

xx∗) = H, that is FH
xx∗ = identity, by the proof of Corollary 3, then T is unitary

equivalent to Mzψ(z) + a. Because Mzψ(z) + a is a normal operator, it possesses a non-trivial invariant
subspace and, hence, the same is true for T. For details, see, e.g., [49].

(2) If Fix(FH
xx∗) 6= H and R|T−a|,ξ Mzψ(z)R

−1
|T−a|,ξ Fix(FH

xx∗) ⊆ Fix(FH
xx∗), then Fix(FH

xx∗) is a

non-trivial invariant subspace of FH
xx∗ and we get

FH
xx∗R|T|,ξ Mzψ(z)R

−1
|T|,ξ Fix(FH

xx∗) ⊆ Fix(FH
xx∗).

Hence, Fix(FH
xx∗) is a non-trivial invariant subspace of FH

xx∗R|T|,ξ Mzψ(z)R
−1
|T|,ξ . With the proof of

Theorem 3, we get that

FH
xx∗R|T|,ξ Mzψ(z)R

−1
|T|,ξ = R|(T−a)∗ |,FH

xx∗ ξ Fxx∗Mzψ(z)R
−1
|T−a|,ξ = T − a.

That is,
(T − a)Fix(FH

xx∗) ⊆ Fix(FH
xx∗).

5. Lebesgue Operator

In this section, we study chaos of an invertible bounded linear operator on an infinite-dimensional
separable Hilbert space. For the example of integral calculus in mathematical analysis, we know
that the convergence or the divergence of the weighted integral calculus of x and x−1 should be
independent of each other; however, sometimes it happens that this indeed depends on a special
choice of the weight function.

In the view of integral calculus, we define the Lebesgue class and prove that if T is a Lebesgue
operator, then T is Li-Yorke chaotic if and only if T∗−1 is. With the idea of the noncommutative
functional calculus R|(T−a)∗ |,FH

xx∗ ξ Fxx∗Mzψ(z)R
−1
|T−a|,ξ , we give an example of a Lebesgue operator that is

not a normal operator.
Let dx be the Lebesgue measure on L2(R+). By Theorem 1, there exists a Borel measure dµ|Tn |,ξn ,

which is complete, such that L2(σ(|Tn|), dµ|Tn |,ξn) is a Hilbert space. If there exists N > 0, such
that, for all n ≥ N, the measure dµ|Tn |,ξn is absolutely continuity with respect to dx, then using the
Radon–Nikodym theorem [49] (p. 380), there exists fn ∈ L1(R+), such that dµ|Tn |,ξn = fn(x)dx, where
n ∈ N, n ≥ N and H = A(|Tn|)ξn.

Definition 4. Let T be an invertible bounded linear operator on the separable Hilbert space H over C. Suppose
that the operator T satisfies the following conditions:
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(1) There exists N ∈ N, such that, for all n ≥ N
dµ|Tn |,ξn = fn(x)dx, fn ∈ L1(R+)

x2 fn(x) = fn(x−1), 0 < x < 1

(2) There exists N ∈ N, such that for all n ≥ N and for any given nonzero x ∈ H, there exists a nonzero
function gn(t) ∈ L2(σ(|Tn|), dµ|Tn |,ξn) and a nonzero vector y ∈ H, such that y = gn(|Tn|−1)ξn whenever
x = gn(|Tn|)ξn .

Subsequently, the operator T is said to be a Lebesgue operator, and the family of all Lebesgue operators on
H is denoted by BLeb(H).

Theorem 5. Let T be a Lebesgue operator on the separable Hilbert space H over C. Subsequently, T is Li-Yorke
chaotic if and only if T∗−1 is.

Proof. Let ξn be a A(|Tn|)-cyclic vector such that

A(|Tn|)ξn = H.

If x0 is a Li-Yorke chaotic point of T, then by Definition 4, we see that, for n ∈ N large enough,
there exist gn(x) ∈ L2(σ(|Tn|), dµ|Tn |,ξn), fn(x) ∈ L1(R+) and y0 ∈ H, such that x0 = gn(|Tn|)ξn,
y0 = gn(|Tn|−1)ξn, and

dµ|Tn |,ξn = fn(x)dx.

Therefore, we get the following

‖Tnx0‖2
H = 〈Tn∗Tnx0, x0〉 =

〈
|Tn|2gn(|Tn|)ξn, gn(|Tn|)ξn

〉
=
〈

gn(|Tn|)∗|Tn|2gn(|Tn|)ξn, ξn
〉

=
∫

σ(|Tn |)

x2gn(x)ḡ(x)dµ|Tn |,ξn(x) =
∫ +∞

0
x2|gn(x)|2 fn(x)dx

=
∫ 1

0
x2|gn(x)|2 fn(x)dx +

∫ +∞

1
x2|gn(x)|2 fn(x)dx

=
∫ 1

0
x2|gn(x)|2 fn(x)dx +

∫ 1

0
x−4|gn(x−1)|2 fn(x−1)dx

,
∫ 1

0
|gn(x)|2 fn(x−1)dx +

∫ 1

0
x−2|gn(x−1)|2 fn(x)dx

=
∫ +∞

1
x−2|gn(x−1)|2 fn(x)dx +

∫ 1

0
x−2|gn(x−1)|2 fn(x)dx

=
∫ +∞

0
x−2|gn(x−1)|2 fn(x)dx =

∫
σ(|Tn |)

x−2gn(x−1)ḡn(x−1)dµ|Tn |,ξn(x)

=
〈

gn(|Tn|−1)∗|Tn|−2gn(|Tn|−1)ξn, ξn
〉
=
〈
|Tn|−2gn(|Tn|−1)ξn, gn(|Tn|−1)ξn

〉
=
〈
|Tn|−2y0, y0

〉
= 〈T−nT−n∗y0, y0〉

= ‖T∗−ny0‖2
H

where , is following Definition 4. By Definition 1, we get that T is Li-Yorke chaotic if and only if T∗−1

is.

Following [54], for T ∈ B(H), x ∈ H and n ∈ N, we introduce the distributional function

Fn
x (τ) =

1
n
]{0 ≤ i ≤ n : ‖Tn(x)‖ < τ}.

In addition, we denote

Fx(τ) = lim inf
n→∞

Fn
x (τ), F∗x (τ) = lim sup

n→∞
Fn

x (τ),
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and introduce the following definition.

Definition 5. Let T ∈ B(H). If there exists x ∈ H and
(1) If Fx(τ) = 0, for some τ > 0 and F∗x (ε) = 1 for ∀ε > 0, then we say that T is distributionally chaotic

or I-distributionally chaotic.
(2) If F∗x (ε) > Fx(τ) for ∀τ > 0 and F∗x (ε) = 1 for ∀ε > 0, then we say that T is

I I-distributionally chaotic.
(3) If F∗x (ε) > Fx(τ) for ∀τ > 0, then we say that T is I I I-distributionally chaotic.

Corollary 5. Let T be a Lebesgue operator on the separable Hilbert space H over C. Then T is I-distributionally
chaotic (or I I-distributionally chaotic or I I I-distributionally chaotic) if and only if T∗−1 is I-distributionally
chaotic (or I I-distributionally chaotic or I I I-distributionally chaotic).

Theorem 6. There exists an invertible bounded linear operator T on the separable Hilbert space H over C, such
that T is Lebesgue operator that is not a normal operator.

Proof. Let 0 < a < b < +∞. Subsequently, L2([a, b]) is a separable Hilbert space over C. Any
separable Hilbert space over R can be expanded to a separable Hilbert space over C. Without loss of
generality, let L2([a, b]) be the separable Hilbert space over R. We prove the conclusion by six parts:

(1) Let 0 < a < 1 < b = 1
a < +∞. We construct a measure preserving transformation on [a, b]. Let

M = {[a, b−a
2 ], [ b−a

2 , b]}. We get a Borel algebra ξ(M) generated by M . We define Φ : [a, b]→ [a, b],

Φ([a,
b− a

2
]) = [

b− a
2

, b], Φ([
b− a

2
, b]) = [a,

b− a
2

].

Subsequently, Φ is an invertible measure preserving transformation on the Borel algebra ξ(M).
With [55] (p. 63), UΦ 6= 1 and UΦ is a unitary operator associated with Φ, where UΦ is the operation
of composition

UΦh = h ◦Φ, ∀h ∈ L2([a, b]).

(2) Define Mxh = xh on L2([a, b]). Subsequently, Mx is an invertible positive operator.

(3) For f (x) =
| ln x|

x
, x > 0, we define dµ = f (x)dx. Afterwards, f (x) is continuous and

f (x) > 0, a.e., x ∈ [a, b]. Hence, dµ that is absolutely continuous with respect to dx is a finite positive
Borel measure that is complete. That is, L2([a, b], dµ) is a separable Hilbert space over R. Moreover,
L2([a, b]) and L2([a, b], dµ) are unitary equivalence.

(4) Let T = UΦ Mx. We get

T∗T = UΦTT∗U∗Φ and UΦ 6= 1.

Because of
UΦ Mx 6= MxUΦ and UΦ Mx2 6= UΦ Mx2 ,

we get that T is not a normal operator and σ(|T|) = [a, b].
(5) Let the operator T = UΦ Mx on L2([a, b]) be corresponding to the operator T′ on L2([a, b], dµ).

Subsequently, T′ is an invertible bounded linear operator that is not a normal operator and σ(|T′|) =
[a, b].

(6) From ∫ b

a
xn f (x)dx =

∫ bn

an
t f (t

1
n )

1

nt
n−1

n
dt .

Let
fn(t) =

1
n

I[an ,bn ] f (t
1
n )

1

t
n−1

n
.
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We get that fn(t) is continuous and almost everywhere positive. Hence, fn(t)dt is a finite positive
Borel measure that is complete.

For any E ⊆ R+, we define IE = 1 when x ∈ E else IE = 0. Subsequently, IE is the identity
function on E. With a simple computing, we get that

fn(t−1) = 1
n I[an ,bn ] f (t−

1
n ) 1

t−
n−1

n
= 1

n I[an ,bn ]
| ln t−

1
n |

t−
1
n

1

t−
n−1

n

= 1
n I[an ,bn ]t| ln t

1
n |

and

t2 fn(t) = 1
n I[an ,bn ] f (t

1
n ) t2

t
n−1

n
= 1

n I[an ,bn ]
| ln t

1
n |

t
1
n

t2

t
n−1

n

= 1
n I[an ,bn ]t| ln t

1
n | .

We see that x2 fn(x) = fn(x−1) . From σ(|T′n|) = [an, bn] and

∫ bn

an
t2 f (t

1
n )

1

nt
n−1

n
dt =

∫ +∞

0
t2 fn(t)dt ,

let dµ|T′n | = fn(t)dt .
Afterwards, dµ|T′n | is a finite positive Borel measure that is complete. For any given nonzero

h(x) ∈ L2([a, b]), we get the nonzero function h(x−1) ∈ L2([a, b]).
Easily, we get that I[a,b] is a A(|Mn

x |)-cyclic vector of the multiplication Mn
x = Mxn and I[an ,bn ] is a

A(|T′n|)-cyclic vector of |T′n|. By Definition 4, we get that T′ is Lebesgus operator, but is not a normal
operator.

Corollary 6. There exists an invertible bounded linear operator T on the separable Hilbert space H over C, such
that T is a Lebesgue operator that is a positive operator.

Corollary 7. Let BNor(H) be the subspace of all normal bounded linear operator on an infinite-dimensional
separable Hilbert space H. Subsequently, the following families of linear operators are non-empty:

BLeb(H) ∩ BNor(H) and BLeb(H) ∩ (B(H) \ BNor(H)).

In fact, both these families contain non-trivial members.

6. Conclusions

By the idea of the isomorphism construction Fxx∗ of this paper, we could study the operator using
the integral calculus on R. This way maybe neither change the properties of chaos nor the difficulty of
computing, but with this we should find some operator class and study its properties, as we give the
Lebesgue class in this section. Hence, if some properties of operators on H only depending the norm
that is compatible with the inner product, then these properties only depend on the corresponding
properties of elements in

{Mψn(z) + an : ψn(z) ∈ L∞(σ(|Tn − an|), µ|Tn−an |,ξn), an ∈ ρ(Tn), n ∈ N,H = A(|Tn − an|)ξn},

just keeping the noncommutative functional calculus in mind.
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