
mathematics

Article

Solving the Capacitated Vertex K-Center Problem
through the Minimum Capacitated Dominating
Set Problem

José Alejandro Cornejo Acosta 1 , Jesús García Díaz 1,2,* , Ricardo Menchaca-Méndez 3 and
Rolando Menchaca-Méndez 3

1 Instituto Nacional de Astrofísica, Óptica y Electrónica, Santa María Tonantzintla, Puebla 72840, Mexico;
alexcornejo@inaoep.mx

2 Consejo Nacional de Ciencia y Tecnología, Mexico City 03940, Mexico
3 Centro de Investigación en Computación del Instituto Politécnico Nacional, Mexico City 07738, Mexico;

ric@cic.ipn.mx (R.M.-M.); rmen@cic.ipn.mx (R.M.-M.)
* Correspondence: jesus.garcia@conacyt.mx

Received: 11 August 2020; Accepted: 8 September 2020; Published: 10 September 2020
����������
�������

Abstract: The capacitated vertex k-center problem receives as input a complete weighted graph
and a set of capacity constraints. Its goal is to find a set of k centers and an assignment of vertices
that does not violate the capacity constraints. Furthermore, the distance from the farthest vertex
to its assigned center has to be minimized. The capacitated vertex k-center problem models real
situations where a maximum number of clients must be assigned to centers and the travel time
or distance from the clients to their assigned center has to be minimized. These centers might be
hospitals, schools, police stations, among many others. The goal of this paper is to explicitly state
how the capacitated vertex k-center problem and the minimum capacitated dominating set problem
are related. We present an exact algorithm that consists of solving a series of integer programming
formulations equivalent to the minimum capacitated dominating set problem over the bottleneck
input graph. Lastly, we present an empirical evaluation of the proposed algorithm using off-the-shelf
optimization software.

Keywords: facility location; graph theory; integer programming; optimization

1. Introduction

The capacitated vertex k-center problem is a fundamental NP-Hard problem from the family
of Location Problems [1]. This problem’s input is a complete weighted graph G = (V, E) with edge
weights that follow a metric, a capacity function fcap : V → N, and an integer k ∈ N. The goal is to
find a set C ⊆ V with at most k elements and an assignment function fC : V \ C → C. The number
of vertices assigned to each vertex vi ∈ C must not exceed its associated capacity fcap(vi), and the
distance from the farthest vertex to its assigned vertex has to be minimum [2,3]. We refer to the vertices
in the set C as centers.

The capacitated vertex k-center problem can be defined under different input parameters.
Some authors consider each vertex vj ∈ V to have an associated demand dj ∈ N [4–8]. In this
case, the total demand of the vertices assigned to any center vi ∈ C cannot be greater than its capacity
fcap(vi). Some other authors consider the special case where the demand of every vertex is of one
unit, and the capacity fcap(vi) is the same for all vertices vi ∈ V [2,3]. They refer to this problem as the
uniform capacitated vertex k-center problem. Other authors consider the case where demands are of
one unit for all vertices, and capacities are not necessarily the same for all vertices [9]. Summarizing,
by setting uniform or non-uniform demands and capacities, we obtain the main variants of the

Mathematics 2020, 8, 1551; doi:10.3390/math8091551 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-7168-2799
https://orcid.org/0000-0001-6334-2305
https://orcid.org/0000-0003-4064-732X
https://orcid.org/0000-0001-6733-9445
http://www.mdpi.com/2227-7390/8/9/1551?type=check_update&version=1
http://dx.doi.org/10.3390/math8091551
http://www.mdpi.com/journal/mathematics

Mathematics 2020, 8, 1551 2 of 16

capacitated vertex k-center problem. In this paper, we work with uniform demands and non-uniform
capacities, i.e., every vertex has one unit demand, and the capacity of every vertex can be different.
To avoid new terminology, we will refer to this problem just as the capacitated vertex k-center problem.

A typical application of the capacitated vertex k-center problem determines the location of a set
of capacity-limited facilities where the travel time or distance from the users to the facilities has to
be minimized. For instance, government agencies need to determine locations of public services like
schools and hospitals so that communities can access them. Furthermore, these services may be subject
to capacity limitations. In the private sector, companies must locate warehouses or distribution centers
to minimize the cost of serving retail establishments from a warehouse. Usually, each warehouse is
limited to serve a specific number of retail establishments. In this latter context, poor location decisions
may lead to increase costs and decrease competitiveness [10]. It is important to remark that the
assignment function for the capacitated vertex k-center problem is usually defined as fC : V → C [3–9].
However, like other authors, in this paper, we define this function as fC : V \ C → C [2]. This way,
we can show how the capacitated vertex k-center problem can be solved through the minimum
capacitated dominating set problem. Such relationship is important because both problems are usually
associated with problems in different contexts. While the capacitated vertex k-center problem is mainly
used to model facility location problems [1], the minimum capacitated dominating set problem is
mainly used in networking problems [11,12]. Regarding the state of the art, the known exact algorithms
for the capacitated vertex k-center problem are based on integer programming formulations of the
capacitated concentrator location problem, the bin packing problem, and the capacitated set-covering
problem [5,6,8].

The remaining of the document is organized as follows. Section 2 presents a literature review.
Section 2.1 presents the classical integer programming formulation for the capacitated vertex k-center
problem and Section 2.2 introduces an alternative integer programming formulation of the problem
that is equivalent to the minimum capacitated dominating set problem over a bottleneck input graph.
Based on this formulation, Section 3 presents an exact algorithm for solving the capacitated vertex
k-center problem. It is important to point out that the goal of introducing this algorithm is explicitly
stating how the capacitated vertex k-center problem is related to the minimum capacitated dominating
set problem, and not necessarily to compete against the known exact algorithms from the literature.
However, in Section 4, we present an empirical evaluation of the proposed algorithm that shows its
usefulness over small instances using off-the-shelf optimization software. Lastly, Section 5 presents the
concluding remarks.

2. The Capacitated Vertex K-Center Problem

The capacitated vertex k-center problem generalizes the more fundamental uncapacitated
vertex k-center problem where any number of vertices can be assigned to each center. This way,
the uncapacitated vertex k-center problem (best known as the vertex k-center problem) aims
at minimizing the distance from the farthest vertex to its nearest center. Many approximation
algorithms [13–18], heuristics [19,20], metaheuristics [21–25], and exact algorithms have been proposed
for this problem [26–32].

Mathematics 2020, 8, 1551 3 of 16

The capacitated vertex k-center problem has also been approached through different algorithmic
perspectives. However, the algorithms for the capacitated version have not been as successful as those
for the uncapacitated version. For instance, most of the exact algorithms for the uncapacitated vertex
k-center problem can solve instances with thousands of vertices. Even an instance with one million
vertices has been solved [32]. Nonetheless, the exact algorithms designed for the capacitated version
struggle to find optimal solutions (We refer to any element in the problem’s search space as a “solution”.
A “feasible solution” is a solution that satisfies all the constraints of the problem. An ”optimal solution”
is a feasible solution of optimal size.) for instances from benchmark data sets with just some hundreds
of vertices. This extra difficulty comes from the fact that in the capacitated vertex k-center problem,
the output consists of a set of centers and an assignment function. Namely, this problem has location
and allocation elements involved, being both an NP-Hard problem on its own [33]. Furthermore,
the heuristic and metaheuristic algorithms for the capacitated version rely mostly on exploitation [4,7].
Therefore, their running time tends to become impractical as the size of the input grows. Finally,
while some conceptually simple algorithms achieve the best possible approximation factor for the
uncapacitated version (ρ = 2 under P 6= NP), the approximation algorithms for the capacitated
versions are conceptually more complicated and have an approximation factor of 6 and 9 for the
uniform-demand version with uniform and non-uniform capacities, respectively [3,9,13,14].

Among the approximation algorithms for the capacitated vertex k-center problem with uniform
demands and capacities, there is a 10-approximation algorithm [2], and two 6-approximation
algorithms [3,9]. To date, no one has found an algorithm with a better approximation factor for
this problem. In the case of the capacitated vertex k-center problem with uniform demands and
non-uniform capacities, the situation is not better; the approximation factor of the best-known
approximation algorithm is 9 [9]. Since the uniform versions of the problem are a particular case of
the non-uniform versions, all the algorithms designed for the non-uniform versions also get feasible
solutions for the uniform versions.

Among the heuristic and metaheuristic algorithms designed for the capacitated vertex k-center
problem with non-uniform demands and capacities is a large scale local search heuristic algorithm [4],
a greedy randomized adaptive search procedures (GRASP) metaheuristic algorithm [34], and an
iterated greedy local search and variable neighborhood descent metaheuristic algorithm [7]. Since these
metaheuristics rely primarily on exploitation, their running time tends to become impractical as the
input grows. However, the experimental evidence shows that these algorithms are among the most
effective for this problem. Regarding exact algorithms, there are some proposals based on integer
programming or mixed integer programming formulations of the problem [5,6,8].

2.1. Classical Integer Programming Formulation

Since the capacitated vertex k-center problem is a generalization of the uncapacitated vertex
k-center problem, we begin by defining the latter. The uncapacitated vertex k-center problem consists
in, given a complete weighted graph G = (V, E), and an integer k ∈ N, finding a set of centers C ⊆ V,
|C| ≤ k, such that the solution size r(C) is minimized, where r(C) (often known as covering radius) is
defined as the distance from the farthest vertex in V to its nearest center in C (Equation (1)). Since the
set of edge weights follows a metric, the distance between two vertices vi, vj ∈ V is equal to the weight
of the edge {vi, vj} ∈ E. For practicity, we may refer to the weight w({vi, vj}) of each edge {vi, vj} ∈ E
as the distance between vi and vj. We refer to the optimal solution for the uncapacitated vertex k-center
problem as C∗, which has a size of r(C∗). Expressions (2) to (7) show the classical integer programming
formulation for the uncapacitated vertex k-center problem [10,21]. We refer to this formulation as F1U:

r(C) = max
v∈V

d(v, C), where d(v, C) = min
c∈C

w({v, c}) (1)

Mathematics 2020, 8, 1551 4 of 16

minimize

z (2)

subject to
n

∑
j=1

xij = 1, ∀i ∈ {1, 2, ..., n} (3)

xij ≤ yj, ∀i, j ∈ {1, 2, ..., n} (4)
n

∑
j=1

yj ≤ k (5)

n

∑
j=1

wij xij ≤ z, ∀i ∈ {1, 2, ..., n} (6)

where

xij, yj ∈ {0, 1} (7)

In this formulation, there is a variable yj ∈ {0, 1} for every vertex vj ∈ V. If a vertex vj is selected
as a center, then yj = 1; otherwise, yj = 0. There is also a set of variables xij ∈ {0, 1}. If vertex vi is
assigned to some vertex vj that has been selected as center (yj = 1), then xij = 1; otherwise, xij = 0.
The value of each wij is equal to the weight of edge {vi, vj} ∈ E. This way, constraints (3) and (4)
work together. While constraint (3) indicates that every vertex has to be assigned to exactly one vertex,
constraint (4) indicates that the vertices can be assigned only to vertices that have been selected as
centers. Constraint (5) prevents selecting more than k centers. Notice that, in the uncapacitated vertex
k-center problem, the output consists only of the set of centers C ⊆ V, and there is no need to return
an assignment function fC : V \ C → C. Thus, the role of performing assignments through variables
xij is just to satisfy constraint (6), which assures that the distance from every vertex to its nearest center
is smaller than or equal to z, which is the objective function (2) that we want to minimize. Notice that
the value of z depends on the assigned vertices, which are codified through variables xij. Finally, all xij
and yj are binary variables.

By adding capacity constraints to the uncapacitated vertex k-center problem, we obtain the
capacitated vertex k-center problem. This problem receives as input a complete weighted graph
G = (V, E), a capacity function fcap : V → N, and an integer k ∈ N. Its goal is to find a pair (C, fC)

such that C ⊆ V, |C| ≤ k, ∀v ∈ C, |{(u, v) ∈ fC}| ≤ fcap(v), and the solution size r(C, fC) is minimized,
where r(C, fC) is defined as the distance from the farthest vertex in V \ C to its assigned center in
C (Equation (8)) and fC : V \ C → C. We refer to the optimal solution for the capacitated vertex
k-center problem as (C∗, fC∗), which has a size of r(C∗, fC∗). Expressions (9) to (15) show the classical
integer programming formulation for the capacitated vertex k-center problem [4,5]. This formulation
is referred as F1C. This formulation is similar to formulation F1U, except that it turns constraint (3)
into constraint (10), and adds constraint (14):

r(C, fC) = max
v∈V\C

w({v, fC(v)}) (8)

Mathematics 2020, 8, 1551 5 of 16

minimize

z (9)

subject to
n

∑
j=1

xij = 1− yi, ∀i ∈ {1, 2, ..., n} (10)

xij ≤ yj, ∀i, j ∈ {1, 2, ..., n} (11)
n

∑
j=1

yj ≤ k (12)

n

∑
j=1

wij xij ≤ z, ∀i ∈ {1, 2, ..., n} (13)

n

∑
i=1

xij ≤ fcap(vj), ∀j ∈ {1, 2, ..., n} (14)

where

xij, yj ∈ {0, 1} (15)

Since the domain of the assignment function fC is V \ C, the vertices that are selected as centers
cannot be assigned to themselves or any other center. By turning (3) into (10), this formulation prevents
assigning a center to itself or any other center. Furthermore, constraint (14) indicates that the maximum
number of vertices that can be assigned to every vertex vj is at most fcap(vj), where fcap : V → N is
part of the input.

2.2. A New Formulation Based on the Minimum Capacitated Dominating Set

In addition to the classical formulations F1U and F1C, many alternative integer programming or
mixed integer programming formulations have been proposed for the capacitated and uncapacitated
vertex k-center problem [5,6,26–32]. Perhaps, the simplest of these formulations are based on the
relationship between the uncapacitated vertex k-center problem and the NP-Hard set covering and
minimum dominating set problems [26,35,36]. In fact, the uncapacitated vertex k-center problem is
equivalent to the minimum dominating set problem when the size r(C∗) of the optimal solution C∗

is known ahead of time (Lemma 1 and Theorem 1) [35,36]. To better understand this relationship,
Definition 1 describes what a dominating set is and Definition 2 describes what a minimum dominating
set is. Then, Expressions (16) to (19) show the integer programming formulation for the uncapacitated
vertex k-center as a minimum dominating set problem [11,36–38].

Mathematics 2020, 8, 1551 6 of 16

Definition 1. Given a graph G = (V, E), a dominating set is a set D ⊆ V such that, for every vertex
v ∈ V \ D, an edge {v, u} ∈ E with u in D exists.

Definition 2. A minimum dominating set is a set of minimum cardinality among all the dominating sets.

Definition 3. Given a weighted graph G = (V, E), a bottleneck graph Gr = (V, Er) is a graph such that Er

consists of all the edges in E with weight less than or equal to r.

Lemma 1. Let G = (V, E) be a complete weighted graph and let k be a positive integer. If r(C∗) is the size
of the optimal solution C∗ for the uncapacitated vertex k-center problem over G = (V, E), then the minimum
dominating set for the bottleneck graph Gr(C∗) = (V, Er(C∗)) has at most k elements.

Proof. The proof is by contradiction. Let D be a minimum dominating set over the bottleneck graph
Gr(C∗) = (V, Er(C∗)). Let us assume that |D| > k. Under this assumption, ∀B ⊆ V such that |B| = k,
there will always be at least one vertex u ∈ V \ B that is not adjacent to some element of B. This is
the same as saying that there is no edge {u, v} ∈ Er(C∗) such that v is in B. If such edge does not
exist, then its weight must be greater than r(C∗) (otherwise, it would not have been removed). Thus,
the distance from vertex u to its nearest vertex in any set B must be greater than r(C∗). However,
this contradicts the premise that there is a set C∗ ⊆ V of cardinality k such that the distance from
every vertex v ∈ V \ C∗ to its nearest vertex in C∗ is less than or equal to r(C∗). Therefore, the number
of elements in the minimum dominating set of the bottleneck graph Gr(C∗) = (V, Er(C∗)) cannot be
greater than k.

Theorem 1. Let G = (V, E) be a complete weighted graph and let k be a positive integer. If r(C∗) is the size
of the optimal solution C∗ for the uncapacitated vertex k-center problem over G = (V, E), then the optimal
solution to the minimum dominating set problem over the bottleneck graph Gr(C∗) = (V, Er(C∗)) is the optimal
solution for the uncapacitated vertex k-center problem too.

Proof. By Lemma 1, the minimum dominating set D of the bottleneck graph Gr(C∗) = (V, Er(C∗)) has
cardinality less than or equal to k. Since all edges e ∈ Er(C∗) have a weight at most r(C∗), and all
vertices v ∈ V \ D are in the neighborhood of at least one element of D. Then, the distance from every
vertex v ∈ V \ D to its nearest vertex in D is also less than or equal to r(C∗). Therefore, D is a set
with no more than k vertices such that the distance from every vertex v ∈ V \ D to its nearest vertex
in D is no more than r(C∗). In other words, D is the optimal solution to the uncapacitated vertex
k-center problem:

minimize
n

∑
i=1

yi (16)

subject to
n

∑
i=1

aij yi ≥ 1− yj, ∀j ∈ {1, 2, ..., n} (17)

aij =

{
1, if wij ≤ r(C∗) and i 6= j

0, otherwise
(18)

where

yi ∈ {0, 1} (19)

Mathematics 2020, 8, 1551 7 of 16

Expressions (16) to (19) show the integer programming formulation for the uncapacitated vertex
k-center problem as a minimum dominating set problem. We refer to this formulation as F2U. In this
formulation, there is a variable yi ∈ {0, 1} for each vertex vi ∈ V. If a vertex vi is selected as a center,
then yi = 1; otherwise, yi = 0. Let C be the set of selected centers. At (18), the matrix defined by all the
aij values represents the adjacency matrix of the bottleneck graph Gr(C∗) = (V, Er(C∗)), which results
from removing all the edges with weight greater than r(C∗) from the original input graph G = (V, E),
where r(C∗) is the size of the optimal solution C∗ for the uncapacitated vertex k-center problem
over the input graph G = (V, E). Since simple graphs do not have loops, we set aij to 0 for i = j.
This way, constraint (17) indicates that, for every vertex vj ∈ V \ C, there must be at least one edge
{vj, vi} ∈ Er(C∗) such that vi is selected as a center (yi = 1), and (16) indicates that the number of
selected centers must be minimized.

In more detail, constraint (17) indicates that, for each vertex vj not selected as center (yj = 0),
there must be at least one vertex vi selected as a center (yi = 1) such that the edge {vi, vj} is in Er(C∗)
(aij = 1). This way, each vertex v ∈ V \ C is adjacent to at least one center in the set of centers. Thus,
by Definition 1, C is a dominating set in the bottleneck graph Gr(C∗) = (V, Er(C∗)). Now, since (16)
minimizes the number of elements of the set C, this set is also a minimum dominating set in the
bottleneck graph Gr(C∗) = (V, Er(C∗)). By Theorem 1, the optimal solution to this formulation is the
optimal solution to the uncapacitated vertex k-center problem.

As well as the uncapacitated vertex k-center problem is related to the minimum dominating set
problem, the capacitated vertex k-center problem is related to the minimum capacitated dominating
set problem. Lemma 2 and Theorem 2 show that the capacitated vertex k-center problem is
equivalent to the minimum capacitated dominating set problem when the size r(C∗, fC∗) of the
optimal solution (C∗, fC∗) is known ahead of time. Here, r(C, fC) is defined as the distance from
the farthest vertex to its assigned center, where fC : V \ C → C. Definition 4 describes what a
capacitated dominating set is, and Definition 5 describes what a minimum capacitated dominating
set is [11,39,40]. Expressions (22) to (28) show the proposed integer programming formulation for the
capacitated vertex k-center problem as a minimum capacitated dominating set problem. We refer to
this formulation as F2C.

Definition 4. Given a graph G = (V, E) and a capacity function fcap : V → N, a capacitated dominating
set D ⊆ V is a set such that every vertex v ∈ V \ D is assigned to some vertex u ∈ D ∩ N(v). In addition,
the number of vertices assigned to each vertex u ∈ D is not greater than its capacity fcap(u). Here, N(u) is the
neighborhood of u ∈ V.

Definition 5. A minimum capacitated dominating set is a set of minimum cardinality among all the capacitated
dominating sets.

Lemma 2. Let G = (V, E) be a complete weighted graph, let k be a positive integer, and let fcap : V → N be a
capacity function. If r(C∗, fC∗) is the size of the optimal solution (C∗, fC∗) for the capacitated vertex k-center
problem over G = (V, E), then the optimal solution (D, fD) for the minimum capacitated dominating set
problem over the bottleneck graph Gr(C∗ , fC∗)

= (V, Er(C∗ , fC∗)
) is such that D has at most k elements and fD

assigns no more than fcap(v) vertices to every vertex v ∈ D.

Mathematics 2020, 8, 1551 8 of 16

Proof. The proof is by contradiction. Let (D, fD) be the optimal solution to the minimum capacitated
dominating set problem over the bottleneck graph Gr(C∗ , fC∗)

= (V, Er(C∗ , fC∗)
). Here, D ⊆ V is a

dominating set, and fD : V \ D → D is a function that assigns no more than fcap(v) ∈ N vertices to
each vertex v ∈ D. By Definition 4, ∀(u, v) ∈ fD, v ∈ D ∩ N(u), and ∀v ∈ D, |{(u, v) ∈ fD}| ≤ fcap(v).
Let us assume that the minimum capacitated dominating set (D, fD) falls into some of the following
cases: (a) |D| > k or (b) fD assigns more than fcap(v) vertices to some vertex v ∈ D. If case (a) occurs,
then ∀(B, fB), where B ⊆ V, |B| ≤ k, and fB : V \ B→ B, at least one of the following statements must
be true:

∃(u, v) ∈ fB such that v 6∈ B ∩ N(u) (20)

or
∃v ∈ B such that |{(u, v) ∈ fB}| > fcap(v). (21)

On one hand, if Equation (20) is true, then, there is at least one vertex u ∈ V \ B that is assigned
to a vertex v ∈ B \ N(u). Since v is not in the neighborhood of u, {u, v} 6∈ Er(C∗ , fC∗)

and the distance
from vertex u to v is greater than r(C∗, fC∗); otherwise, edge {u, v} would not have been removed
from the original input graph G = (V, E). This means that there is not a pair (B, fB) of size r(B, fB)

less than or equal to r(C∗, fC∗), where B ⊆ V, |B| ≤ k, and fB : V \ B → B assigns no more than
fcap(v) vertices to each vertex v ∈ B. However, our premise is that such pair exists and is the pair
(C∗, fC∗). Thus, Equation (20) cannot be true. On the other hand, if Equation (21) is true, then, the same
pair (C∗, fC∗) cannot exist. Actually, this is case (b). Therefore, case (a) and case (b) cannot be true.
Namely, it cannot be true that ∀(B, fB), where B ⊆ V, |B| ≤ k, and fB : V \ B → B, Equation (20) or
Equation (21) hold. In other words, a minimum capacitated dominating set (D, fD) over the bottleneck
graph Gr(C∗ , fC∗)

= (V, Er(C∗ , fC∗)
) is such that D has at most k vertices and fD assigns no more than

fcap(v) vertices to every vertex v ∈ D.

Theorem 2. Let G = (V, E) be a complete weighted graph, let k be a positive integer, and let fcap : V → N be
a capacity function. If r(C∗, fC∗) is the size of the optimal solution (C∗, fC∗) for the capacitated vertex k-center
problem over G = (V, E), then the optimal solution to the minimum capacitated dominating set problem over
the bottleneck graph Gr(C∗ , fC∗)

= (V, Er(C∗ , fC∗)
) is the optimal solution for the capacitated vertex k-center

problem too.

Proof. By Lemma 2, the optimal solution (D, fD) to the minimum capacitated dominating set problem
over the bottleneck graph Gr(C∗ , fC∗)

= (V, Er(C∗ , fC∗)
) consists of a set D with no more than k elements

and a function fD : V \ D → D that assigns no more than fcap(v) vertices to every vertex v ∈ D.
Since all edges e ∈ Er(C∗ , fC∗)

have weight at most r(C∗, fC∗), and all vertices v ∈ V \ D are assigned to
some vertex in D. Then, the distance from every vertex v ∈ V \ D to its assigned vertex in D is also
less than or equal to r(C∗, fC∗). Therefore, D is a set with no more than k vertices such that the distance
from every vertex v ∈ V \ D to its assigned vertex in D is no more than r(C∗, fC∗), and no more
than fcap(v) vertices are assigned to every vertex v ∈ D. In other words, the minimum capacitated
dominating set (D, fD) is the optimal solution to the capacitated vertex k-center problem:

Mathematics 2020, 8, 1551 9 of 16

minimize
n

∑
i=1

yi (22)

subject to
n

∑
i=1

xij ≤ fcap(vj), ∀j ∈ {1, 2, ..., n} (23)

n

∑
i=1

xji = 1− yj, ∀j ∈ {1, 2, ..., n} (24)

xij ≤ yj, ∀i, j ∈ {1, 2, ..., n} (25)

xij ≤ aij, ∀i, j ∈ {1, 2, ..., n} (26)

where

aij =

{
1, if wij ≤ r(C∗, fC∗) and i 6= j

0, otherwise
(27)

xij, yi ∈ {0, 1} (28)

Expressions (22) to (28) show the integer programming formulation for the capacitated vertex
k-center problem as a minimum capacitated dominating set problem. We refer to this formulation
as F2C. In this formulation, we added variables xij ∈ {0, 1}, which take a value xij = 1 if a vertex vi
is assigned to a vertex vj; otherwise, xij = 0. Constraint (23) indicates that the number of vertices
assigned to any vertex vj ∈ V cannot be greater than its capacity fcap(vj), where fcap : V → N is part of
the input. Constraint (24) indicates that every vertex vj ∈ V \ C (yj = 0) has to be assigned to exactly
one vertex, and that vertices vj ∈ C (yj = 1) does not have to be assigned to any vertex at all. Finally,
constraint (25) indicates that every vertex vi can be assigned only to vertices that have been selected
as a center (yj = 1) and constraint (26) indicates that every vertex vi can be assigned only to vertices
in its neighborhood (aij = 1). With these constraints, we add capacity restrictions and an explicit
assignment to the minimum dominating set problem; i.e., a maximum of fcap(vi) vertices from V \ C
must be assigned to each selected vertex vi ∈ C (yi = 1). In addition, notice that constraints (24) to (26)
guarantee that every vertex v ∈ V \C is assigned to exactly one vertex u ∈ V, which, by constraints (25)
and (26), is in C ∩ N(v). By Definition 5, this integer programming formulation is equivalent to the
minimum capacitated dominating set problem over the bottleneck graph Gr(C∗ , fC∗)

= (V, Er(C∗ , fC∗)
),

where Er(C∗ , fC∗)
contains edges from E of cost less than or equal to r(C∗, fC∗), being r(C∗, fC∗) the

size of the optimal solution (C∗, fC∗) of the capacitated vertex k-center problem over the input graph
G = (V, E). By Theorem 2, the optimal solution to this formulation is the optimal solution to the
capacitated vertex k-center problem.

3. An Exact Algorithm for the Capacitated Vertex K-Center Problem

The integer programming formulation F2C can be solved using off-the-shelf optimization software.
However, to do so, it is necessary to know the size r(C∗, fC∗) of the optimal solution (C∗, fC∗) in
advance. One way to solve this issue is by using a series of guesses on the optimal solution size
r(C∗, fC∗). Since the optimal solution size r(C∗, fC∗) must be equal to the weight of some edge in the
input graph G = (V, E), we can solve formulation F2C using the set of weights of the edges of the
input graph. That is, replacing r(C∗, fC∗) of Equation (27) by w(e) for every e ∈ E. This will generate
up to |E| solutions of the form (C, fC). Of course, not all of these solutions will be feasible. Among the
obtained solutions, the optimal one will be the solution with no more than k elements, and with the
minimum distance from the farthest vertex to its assigned center. Thus, this method implies that
formulation F2C has to be solved |E| times. Fortunately, it can be improved by performing a binary

Mathematics 2020, 8, 1551 10 of 16

search over the non-decreasing ordered set of edge weights of the input graph. This way, formulation
F2C has to be solved only log |E| times, which is O(log |V|) times. Algorithm 1 shows the pseudocode
of the proposed procedure that exploits this idea, where line 5 can be replaced by formulation F2C,
setting r(C∗, fC∗) of Equation (27) as w(emid). Theorem 3 shows the correctness of this algorithm.

Algorithm 1: An exact algorithm for the capacitated vertex k-center problem

Input: A complete weighted graph G = (V, E), a positive integer k, a capacity function
fcap : V → N, and an ordered list of the |E| edge weights of G: w(e1), w(e2), ..., w(e|E|),
where w(ei) ≤ w(ei+1)

Output: A set of vertices C ⊆ V, |C| ≤ k, and an assignment function fC : V \ C → C
1 high = |E| ;
2 low = 1 ;
3 while high− low ≥ 1 do
4 mid = d(high + low)/2e ;
5

(C, fC) =

{
Any capacitated dominating set (D, fD) over Gw(emid)

, if |D| ≤ k

A minimum capacitated dominating set (D, fD) over Gw(emid)
, otherwise

6 if mid = high then
7 low = high ;
8 end
9 if |C| ≤ k then

10 high = mid ;
11 else
12 low = mid ;
13 end
14 end
15 return (C, fC) ;

Theorem 3. Algorithm 1 returns an optimal solution for the capacitated vertex k-center problem.

Proof. The goal of Algorithm 1 is to use some off-the-shelf optimization software to solve the integer
programming formulation F2C for the capacitated vertex k-center problem (line 5) over the input
graph G with a value of w(emid) that equals the optimal solution size r(C∗, fC∗), where (C∗, fC∗) is the
optimal solution to the capacitated vertex k-center problem. To achieve this, Algorithm 1 performs
a binary search (while loop from line 3 to 14) over the non-decreasing ordered set of edge weights of
the input graph. Every time a solution (C, fC) with |C| ≤ k is generated, high is set to mid (line 10);
otherwise, low is set to mid (line 12). This is because, when the minimum capacitated dominating set
of a bottleneck graph G′ has more than k elements, it is necessary to add more edges to this graph
in order to get a minimum capacitated dominating set with fewer elements, and setting low to mid
implies that the next value of w(emid) will be greater than the previous one. Therefore, it will generate
a new bottleneck graph with more edges, including the edges of the previous bottleneck graph. Now,
if the minimum capacitated dominating set of a bottleneck graph G′ has k or fewer elements; then, it is
possible that by removing more edges, we can still find a minimum capacitated dominating set with k
or fewer elements. Thus, setting high to mid implies that the next value of w(emid) is going to be smaller.
Therefore, it will generate a new bottleneck graph with fewer edges. In this manner, at the last iteration
of the while loop, the value of w(emid) is equal to w(ehigh), which implies that the bottleneck graph
generated by w(emid) has a minimum capacitated dominating set with k or less elements. Furthermore,
w(elow) equals w(emid−1) and any bottleneck graph generated by any number less than or equal to

Mathematics 2020, 8, 1551 11 of 16

w(elow) has a minimum capacitated dominating set with more than k elements. Therefore, at the last
iteration of the while loop, the value of w(emid) is the smallest one from the set of edge weights in E that
is capable of generating a bottleneck graph with a capacitated dominating set with at most k elements,
i.e., w(emid) = r(C∗, fC∗). Thus, Algorithm 1 solves the capacitated vertex k-center problem optimally.
Finally, the if condition from lines 6 to 8 assures that the stop condition of the binary search is met.

4. Empirical Performance Evaluation

To test Algorithm 1, two sets of instances with non-uniform capacities were created. The instances
from the first set have 100 to 107 vertices (Set 1) and the instances from the second set have 200 to
280 vertices (Set 2). All instances were created as follows. A benchmark instance from TSPLib [41]
was selected. Then, from this instance, four variants with non-uniform capacities were generated.
For example, from instance kroA100, instances kroA100_Q1 to kroA100_Q4 were created and the
capacity associated with each vertex was selected at random from the range [b0.75 · n−k

k c, d1.25 · n−k
k e],

where n is the number of vertices and k is the number of centers. This range was used because
d n−k

k e is the minimum capacity that every vertex must have to guarantee that all vertices can be
assigned to a center when capacities are uniform. Since centers are not assigned, k is subtracted
from the number of vertices n in the numerator. This way, by selecting random capacities from the
range [b0.75 · n−k

k c, d1.25 · n−k
k e], the capacity of each vertex will be relatively close to d n−k

k e. This is
important because, as the capacity of all vertices approaches n, the problem becomes closer to the
uncapacitated version, which is easier to solve according to empirical experiments [32,36]. Thus,
the generated instances remain relatively difficult to solve. Regarding the value of k, it was selected
as follows. For Q1 instances, k = 5; for Q2 instances, k = 10; for Q3 instances, k = 20; and for Q4
instances, k = 40.

Tables 1 and 2 show the results obtained by the proposed exact algorithm (Algorithm 1) and by
the classical formulation F1C over Set 1 and Set 2, respectively. The experiments were performed using
Gurobi version 9.0.0 as off-the-shelf optimization software with its default tuning parameters [42].
Regarding Algorithm 1, we implemented line 5 by setting Gurobi to stop as soon as a feasible solution
of size less than or equal to k is found. This way, Algorithm 1 can reduce its execution time. All the
experiments were performed on an Asus laptop with an Intel Core i5-8300H processor (Santa Clara, CA,
USA) and 16 GB of RAM. The set of instances and the source code of the algorithms can be obtained
from https://github.com/alex-cornejo/exact_ckc. From Table 1, we can observe that Algorithm 1
needs an average of 9.61 s to solve each instance, while the classical formulation F1C needs an average
of 30.58 s. Namely, Algorithm 1 is at least three times faster. Furthermore, Algorithm 1 converged faster
to the optimal solution in 37 out of the 48 instances. From Table 2, we can observe that Algorithm 1
needs an average of 1332 s to solve each instance, while the classical formulation F1C needs an average
time greater than 13,726 s. Thus, for Set 2, Algorithm 1 is at least 10 times faster. Actually, we had
to set a maximum execution time of 24 h for the classical formulation F1C because this time was not
enough for the classical formulation to solve some instances. Furthermore, Algorithm 1 converged
faster to the optimal solution in 39 out of the 48 instances. From these results, we can observe that the
tested algorithms are better suited for solving relatively small instances of the problem and that the
proposed Algorithm 1 tends to converge faster to the optimal solution.

https://github.com/alex-cornejo/exact_ckc

Mathematics 2020, 8, 1551 12 of 16

Table 1. Running time and optimal solution size found by Algorithm 1 and the classical formulation
F1C over Set 1 using Gurobi 9.0.0. Best running times are in bold.

Running Time (Seconds)
Instance n k OPT Algorithm 1 F1C

kroA100_Q1 100 5 895.64 2.32 10.42
6 814.87 1.46 4.18

kroA100_Q2 100 10 606.57 1.86 12.64
11 554.04 1.43 9.07

kroA100_Q3 100 20 411.61 4.95 32.45
21 376.96 2.65 33.78

kroA100_Q4 100 40 325.04 1.00 12.90
41 314.23 0.72 2.67

kroB100_Q1 100 5 924.57 3.39 9.27
6 823.66 1.23 5.43

kroB100_Q2 100 10 602.9 2.25 7.44
11 559.35 1.34 4.99

kroB100_Q3 100 20 425.73 11.91 26.30
21 414.77 6.56 19.76

kroB100_Q4 100 40 343.57 0.77 2.22
41 330.84 0.75 2.69

kroC100_Q1 100 5 867.16 1.79 6.61
6 762.27 1.07 8.94

kroC100_Q2 100 10 580.53 2.69 3.68
11 545.69 2.27 3.32

kroC100_Q3 100 20 426.82 29.29 38.61
21 415.32 13.89 124.56

kroC100_Q4 100 40 307.65 0.90 2.50
41 288.53 0.65 1.39

eil101_Q1 101 5 21.21 4.44 10.40
6 18.68 1.62 9.03

eil101_Q2 101 10 15.23 17.63 25.27
11 13.92 6.96 18.20

eil101_Q3 101 20 10.44 10.66 9.04
21 10.29 7.51 5.15

eil101_Q4 101 40 8.6 4.94 1.59
41 8.48 2.32 1.89

lin105_Q1 105 5 677.44 6.14 7.31
6 610.45 2.81 6.69

lin105_Q2 105 10 555.0 99.23 27.35
11 476.05 152.56 27.1

lin105_Q3 105 20 307.0 3.51 15.74
21 307.0 3.35 25.69

lin105_Q4 105 40 177.01 1.31 2.09
41 162.69 0.84 1.62

pr107_Q1 107 5 2630.58 21.13 868.16
6 1068.87 1.58 2.31

pr107_Q2 107 10 894.42 3.07 8.51
11 824.62 2.79 2.75

pr107_Q3 107 20 538.51 3.17 1.55
21 447.21 3.04 2.48

pr107_Q4 107 40 282.84 1.88 1.10
41 282.84 1.86 0.93

Average time 9.61 30.58

Mathematics 2020, 8, 1551 13 of 16

Table 2. Running time and optimal solution size found by Algorithm 1 and the classical formulation
F1C over Set 2 using Gurobi 9.0.0. Best running times are in bold.

Running Time (Seconds)
Instance n k OPT Algorithm 1 F1C

kroa200_Q1 200 5 919.03 25.61 133.75
6 808.66 10.53 67.71

kroa200_Q2 200 10 599.47 34.48 247.57
11 569.94 41.1 443.19

kroa200_Q3 200 20 415.49 534.92 1568.01
21 403.1 824.89 852.34

kroa200_Q4 200 40 293.29 76.65 242.6
41 287.45 59.69 166.92

kroB200_Q1 200 5 897.66 17.59 83.57
6 784.18 9.22 52.55

kroB200_Q2 200 10 589.86 41.29 904.5
11 567.5 27.26 126.71

kroB200_Q3 200 20 412.14 1352.51 3903.28
21 399.48 391.72 1230.63

kroB200_Q4 200 40 289.27 483.67 37,907.53
41 282.4 69.25 35,200.62

ts225_Q1 225 5 4000.0 127.16 118.97
6 3605.55 44.26 108.12

ts225_Q2 225 10 3041.38 840.59 3037.34
11 3000.0 176.57 4372.96

ts225_Q3 225 20 2000.0 407.86 473.29
21 1802.77 224.0 1566.91

ts225_Q4 225 40 1414.21 194.32 1115.63
41 1118.03 170.12 4623.0

pr226_Q1 226 5 4172.52 140.19 481.23
6 3778.97 53.08 213.13

pr226_Q2 226 10 2863.56 102.9 >86,400
11 2844.29 73.39 >86,400

pr226_Q3 226 20 2450.51 410.74 >86,400
21 2300.54 186.73 >86,400

pr226_Q4 226 40 1320.98 162.73 >86,400
41 1166.19 87.73 >86,400

gr229_Q1 229 5 50.26 15971.84 3036.74
6 37.94 120.27 192.09

gr229_Q2 229 10 37.94 9548.37 746.46
11 28.84 4216.9 685.63

gr229_Q3 229 20 23.23 8412.5 1129.62
21 22.61 2091.64 688.22

gr229_Q4 229 40 19.78 4738.61 1135.16
41 19.67 7827.95 745.42

a280_Q1 280 5 69.85 734.93 626.56
6 58.24 50.37 340.37

a280_Q2 280 10 45.25 93.96 333.76
11 42.52 66.67 328.59

a280_Q3 280 20 31.24 700.75 6289.73
21 28.84 376.45 2186.42

a280_Q4 280 40 21.54 846.97 1046.82
41 20.39 772.48 21,710.55

Average time 1332.78 >13,726.34

Mathematics 2020, 8, 1551 14 of 16

5. Conclusions and Future Work

This paper shows that the capacitated vertex k-center problem can be solved through the minimum
capacitated dominating set problem. This is accomplished by introducing Algorithm 1, which consists
of solving O(log |V|) times an integer programming formulation that is equivalent to the NP-Hard
minimum capacitated dominating set problem. Additionally, this paper presents some experiments
showing the usefulness of the proposed algorithm for solving small instances of the problem.

Since the capacitated vertex k-center problem is an NP-Hard problem, no algorithm can solve
it in polynomial time (under P 6= NP). Thus, as well as other exact algorithms proposed for this
problem, Algorithm 1 is an exponential-time algorithm limited to solving small instances. However,
this algorithm can be used as a basis for designing efficient heuristics or approximation algorithms.
These algorithms may find near-optimal feasible solutions for arbitrary instances in polynomial time.
Finally, our proposal can also serve as a basis for designing exact algorithms for related problems,
such as the capacitated vertex k-center problem with non-uniform demands.

Author Contributions: Conceptualization, J.A.C.A., J.G.D., R.M.-M. (Ricardo Menchaca-Méndez),
and R.M.-M. (Rolando Menchaca-Méndez); Formal analysis, J.A.C.A., J.G.D., R.M.-M. (Ricardo Menchaca-Méndez),
and R.M.-M. (Rolando Menchaca-Méndez); Investigation, J.A.C.A. and J.G.D.; Methodology, J.A.C.A., J.G.D., R.M.-M.
(Ricardo Menchaca-Méndez), and R.M.-M. (Rolando Menchaca-Méndez); Software, J.A.C.A. and J.G.D.; Validation,
R.M.-M. (Ricardo Menchaca-Méndez) and R.M.-M. (Rolando Menchaca-Méndez); Writing—original draft, J.A.C.A.
and J.G.D.; Writing—review and editing, J.A.C.A., J.G.D., R.M.-M. (Ricardo Menchaca-Méndez), and R.M.-M.
(Rolando Menchaca-Méndez). All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: We acknowledge Gurobi for providing a free-of-charge academic license for Gurobi version
9.0.0, which was used in the computations presented in this paper. The authors are grateful to anonymous
reviewers whose questions, comments, and suggestions helped improve an earlier version of this paper.
The authors also acknowledge Instituto Nacional de Astrofísica, Óptica y Electrónica (INAOE) and Consejo
Nacional de Ciencia y Tecnología (CONACYT) for providing the necessary resources for the development of
this research.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Laporte, G.; Nickel, S.; da Gama, F.S. Location Science; Springer International Publishing: Berlin/Heidelberg,
Germany, 2019.

2. Barilan, J.; Kortsarz, G.; Peleg, D. How to allocate network centers. J. Algorithms 1993, 15, 385–415. [CrossRef]
3. Khuller, S.; Sussmann, Y.J. The capacitated k-center problem. SIAM J. Discret. Math. 2000, 13, 403–418.

[CrossRef]
4. Scaparra, M.P.; Pallottino, S.; Scutellà, M.G. Large-scale local search heuristics for the capacitated vertex

p-center problem. Netw. Int. J. 2004, 43, 241–255.
5. Özsoy, F.A.; Pınar, M.Ç. An exact algorithm for the capacitated vertex p-center problem. Comput. Oper. Res.

2006, 33, 1420–1436. [CrossRef]
6. Albareda-Sambola, M.; Díaz, J.A.; Fernández, E. Lagrangean duals and exact solution to the capacitated

p-center problem. Eur. J. Oper. Res. 2010, 201, 71–81. [CrossRef]
7. Quevedo-Orozco, D.R.; Ríos-Mercado, R.Z. Improving the quality of heuristic solutions for the capacitated

vertex p-center problem through iterated greedy local search with variable neighborhood descent.
Comput. Oper. Res. 2015, 62, 133–144. [CrossRef]

8. Kramer, R.; Iori, M.; Vidal, T. Mathematical models and search algorithms for the capacitated p-center
problem. INFORMS J. Comput. 2019, 32, 444–460. [CrossRef]

9. An, H.C.; Bhaskara, A.; Chekuri, C.; Gupta, S.; Madan, V.; Svensson, O. Centrality of trees for capacitated
k-center. Math. Program. 2015, 154, 29–53. [CrossRef]

10. Daskin, M.S. Network and Discrete Location: Models, Algorithms, and Applications; John Wiley & Sons: Hoboken,
NJ, USA, 2011.

11. Potluri, A.; Singh, A. Metaheuristic algorithms for computing capacitated dominating set with uniform and
variable capacities. Swarm Evol. Comput. 2013, 13, 22–33. [CrossRef]

http://dx.doi.org/10.1006/jagm.1993.1047
http://dx.doi.org/10.1137/S0895480197329776
http://dx.doi.org/10.1016/j.cor.2004.09.035
http://dx.doi.org/10.1016/j.ejor.2009.02.022
http://dx.doi.org/10.1016/j.cor.2014.12.013
http://dx.doi.org/10.1287/ijoc.2019.0889
http://dx.doi.org/10.1007/s10107-014-0857-y
http://dx.doi.org/10.1016/j.swevo.2013.06.002

Mathematics 2020, 8, 1551 15 of 16

12. Yuan, F.; Li, C.; Gao, X.; Yin, M.; Wang, Y. A novel hybrid algorithm for minimum total dominating set
problem. Mathematics 2019, 7, 222. [CrossRef]

13. Hochbaum, D.S.; Shmoys, D.B. A best possible heuristic for the k-center problem. Math. Oper. Res. 1985,
10, 180–184. [CrossRef]

14. Gonzalez, T.F. Clustering to minimize the maximum intercluster distance. Theor. Comput. Sci. 1985,
38, 293–306. [CrossRef]

15. Dyer, M.E.; Frieze, A.M. A simple heuristic for the p-centre problem. Oper. Res. Lett. 1985, 3, 285–288.
[CrossRef]

16. Plesník, J. A heuristic for the p-center problems in graphs. Discrete Appl. Math. 1987, 17, 263–268. [CrossRef]
17. Shmoys, D.B. Computing near-optimal solutions to combinatorial optimization problems. Comb. Optim.

1995, 20, 355–397.
18. Garcia-Diaz, J.; Sanchez-Hernandez, J.; Menchaca-Mendez, R.; Menchaca-Mendez, R. When a worse

approximation factor gives better performance: A 3-approximation algorithm for the vertex k-center problem.
J. Heuristics 2017, 23, 349–366. [CrossRef]

19. Rana, R.; Garg, D. The analytical study of k-center problem solving techniques. Int. J. Inf. Technol.
Knowl. Manag. 2008, 1, 527–535.

20. Robič, B.; Mihelič, J. Solving the k-center problem efficiently with a dominating set algorithm.
J. Comput. Inf. Technol. 2005, 13, 225–234.

21. Mladenović, N.; Labbé, M.; Hansen, P. Solving the p-center problem with tabu search and variable
neighborhood search. Netw. Int. J. 2003, 42, 48–64. [CrossRef]

22. Pacheco, J.A.; Casado, S. Solving two location models with few facilities by using a hybrid heuristic: A real
health resources case. Comput. Oper. Res. 2005, 32, 3075–3091. [CrossRef]

23. Pullan, W. A memetic genetic algorithm for the vertex p-center problem. Evol. Comput. 2008, 16, 417–436.
[CrossRef] [PubMed]

24. Davidović, T.; Ramljak, D.; Šelmić, M.; Teodorović, D. Bee colony optimization for the p-center problem.
Comput. Oper. Res. 2011, 38, 1367–1376. [CrossRef]

25. Kaveh, A.; Nasr, H. Solving the conditional and unconditional p-center problem with modified harmony
search: A real case study. Sci. Iran. 2011, 18, 867–877. [CrossRef]

26. Daskin, M.S. A new approach to solving the vertex p-center problem to optimality: Algorithm and
computational results. Commun. Oper. Res. Soc. Jpn. 2000, 45, 428–436.

27. Ilhan, T.; Ozsoy, F.; Pinar, M. An Efficient Exact Algorithm for the Vertex P-Center Problem and Computational
Experiments for Different Set Covering Subproblems; Technical Report; Department of Industrial Engineering,
Bilkent University: Ankara, Turkey, 2002.

28. Elloumi, S.; Labbé, M.; Pochet, Y. A new formulation and resolution method for the p-center problem.
INFORMS J. Comput. 2004, 16, 84–94. [CrossRef]

29. Al-Khedhairi, A.; Salhi, S. Enhancements to two exact algorithms for solving the vertex p-center problem.
J. Math. Model. Algorithms 2005, 4, 129–147. [CrossRef]

30. Chen, D.; Chen, R. New relaxation-based algorithms for the optimal solution of the continuous and discrete
p-center problems. Comput. Oper. Res. 2009, 36, 1646–1655. [CrossRef]

31. Calik, H.; Tansel, B.C. Double bound method for solving the p-center location problem. Comput. Oper. Res.
2013, 40, 2991–2999. [CrossRef]

32. Contardo, C.; Iori, M.; Kramer, R. A scalable exact algorithm for the vertex p-center problem.
Comput. Oper. Res. 2019, 103, 211–220. [CrossRef]

33. Marinakis, Y., Location Routing Problem. In Encyclopedia of Optimization; Floudas, C.A., Pardalos, P.M., Eds.;
Springer: Boston, MA, USA, 2009; pp. 1919–1925. [CrossRef]

34. Quevedo-Orozco, D.R.; Ríos-Mercado, R.Z. A new heuristic for the capacitated vertex p-center problem.
Conference of the Spanish Association for Artificial Intelligence; Springer: Berlin/Heidelberg, Germany, 2013;
pp. 279–288.

35. Minieka, E. The m-center problem. Siam Rev. 1970, 12, 138–139. [CrossRef]
36. Garcia-Diaz, J.; Menchaca-Mendez, R.; Menchaca-Mendez, R.; Hernández, S.P.; Pérez-Sansalvador, J.C.;

Lakouari, N. Approximation Algorithms for the Vertex K-Center Problem: Survey and Experimental
Evaluation. IEEE Access 2019, 7, 109228–109245. [CrossRef]

http://dx.doi.org/10.3390/math7030222
http://dx.doi.org/10.1287/moor.10.2.180
http://dx.doi.org/10.1016/0304-3975(85)90224-5
http://dx.doi.org/10.1016/0167-6377(85)90002-1
http://dx.doi.org/10.1016/0166-218X(87)90029-1
http://dx.doi.org/10.1007/s10732-017-9345-x
http://dx.doi.org/10.1002/net.10081
http://dx.doi.org/10.1016/j.cor.2004.04.009
http://dx.doi.org/10.1162/evco.2008.16.3.417
http://www.ncbi.nlm.nih.gov/pubmed/18811248
http://dx.doi.org/10.1016/j.cor.2010.12.002
http://dx.doi.org/10.1016/j.scient.2011.07.010
http://dx.doi.org/10.1287/ijoc.1030.0028
http://dx.doi.org/10.1007/s10852-004-4072-3
http://dx.doi.org/10.1016/j.cor.2008.03.009
http://dx.doi.org/10.1016/j.cor.2013.07.011
http://dx.doi.org/10.1016/j.cor.2018.11.006
http://dx.doi.org/10.1007/978-0-387-74759-0_345
http://dx.doi.org/10.1137/1012016
http://dx.doi.org/10.1109/ACCESS.2019.2933875

Mathematics 2020, 8, 1551 16 of 16

37. Li, R.; Hu, S.; Liu, H.; Li, R.; Ouyang, D.; Yin, M. Multi-Start Local Search Algorithm for the Minimum
Connected Dominating Set Problems. Mathematics 2019, 7, 1173. [CrossRef]

38. Cabrera Martínez, A.; Hernández-Gómez, J.C.; Inza, E.P.; Sigarreta, J.M. On the Total Outer k-Independent
Domination Number of Graphs. Mathematics 2020, 8, 194. [CrossRef]

39. Liedloff, M.; Todinca, I.; Villanger, Y. Solving capacitated dominating set by using covering by subsets and
maximum matching. Discret. Appl. Math. 2014, 168, 60–68. [CrossRef]

40. Li, R.; Hu, S.; Zhao, P.; Zhou, Y.; Yin, M. A novel local search algorithm for the minimum capacitated
dominating set. J. Oper. Res. Soc. 2018, 69, 849–863. [CrossRef]

41. Reinelt, G. TSPLIB—A traveling salesman problem library. ORSA J. Comput. 1991, 3, 376–384. [CrossRef]
42. Gurobi Optimization. Gurobi Optimizer Reference Manual. 2020. Available online: https://www.gurobi.

com/documentation/9.0/refman (accessed on 11 July 2020).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/math7121173
http://dx.doi.org/10.3390/math8020194
http://dx.doi.org/10.1016/j.dam.2012.10.021
http://dx.doi.org/10.1057/s41274-017-0268-6
http://dx.doi.org/10.1287/ijoc.3.4.376
https://www.gurobi.com/documentation/9.0/refman
https://www.gurobi.com/documentation/9.0/refman
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Capacitated Vertex K-Center Problem
	Classical Integer Programming Formulation
	A New Formulation Based on the Minimum Capacitated Dominating Set

	An Exact Algorithm for the Capacitated Vertex K-Center Problem
	Empirical Performance Evaluation
	Conclusions and Future Work
	References

