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Abstract: Detecting self-care problems is one of important and challenging issues for occupational
therapists, since it requires a complex and time-consuming process. Machine learning algorithms
have been recently applied to overcome this issue. In this study, we propose a self-care prediction
model called GA-XGBoost, which combines genetic algorithms (GAs) with extreme gradient boosting
(XGBoost) for predicting self-care problems of children with disability. Selecting the feature subset
affects the model performance; thus, we utilize GA to optimize finding the optimum feature subsets
toward improving the model’s performance. To validate the effectiveness of GA-XGBoost, we present
six experiments: comparing GA-XGBoost with other machine learning models and previous study
results, a statistical significant test, impact analysis of feature selection and comparison with other
feature selection methods, and sensitivity analysis of GA parameters. During the experiments,
we use accuracy, precision, recall, and f1-score to measure the performance of the prediction models.
The results show that GA-XGBoost obtains better performance than other prediction models and
the previous study results. In addition, we design and develop a web-based self-care prediction to
help therapist diagnose the self-care problems of children with disabilities. Therefore, appropriate
treatment/therapy could be performed for each child to improve their therapeutic outcome.

Keywords: ICF-CY; pattern classification; predictive models; algorithm design and analysis;
feature selection; genetic algorithms; extreme gradient boosting

1. Introduction

Children with motor and physical disabilities have issues with daily living, and self-care as the
main daily need more consideration for these children. Since self-care classification is a complex
and time-consuming process, it has become a major and challenging issue, especially when there is
a shortage of expert occupational therapists [1]. However, decision tools could be used to support
therapist in diagnosing and classifying the self-care problems so that the appropriate treatment could
be performed for each child [2]. The World Health Organization (WHO) has created a conceptual
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framework called ICF-CY, which stands for international classification of functioning, disability,
and health for children and youth (ICF-CY). This framework has been used as a standardized guideline
to classify self-care problems [3]. Several previous studies have utilized machine learning algorithms,
such as the artificial neural network (ANN) [4], k-nearest neighbor (KNN) [5], naïve Bayes (NB) [6],
extreme gradient boosting (XGBoost) [7], fuzzy neural networks (FNN) [8], deep neural networks
(DNN) [9], and hybrid autoencoder [10] to help occupational therapists improve the classification
accuracy and reducing the time as well as the cost of self-care classification [11].

Extreme gradient boosting (XGBoost) is supervised machine learning algorithm based on the
improvement of gradient boosting trees that can prevent overfitting [12]. Previous researchers
have reported the advantage of XGBoost as classification model for predicting hepatitis B virus
infection [13], gestational diabetes mellitus of early pregnant women [14], future blood glucose level
of type 1 diabetes (T1D) patients [15], coronary artery calcium score (CACS) [16], and heart disease
prediction [17]. However, in the machine learning research, the performance of the classification
model may be influenced by unrelated attributes or features [18,19]. Feature selection is used to
reduce the dimensionality of data [20,21] and in medical diagnosis, is used to identify most significant
features related to disease [22,23]. Genetic algorithm (GA) is a feature selection method that has
been used to find the best feature subsets [24,25] and shown significant advantage for improving
the performance of emotional stress state detection [26], severe chronic disorders of consciousness
prediction [27], children’s activities regarding recognition and classification [28], gene encoder [29],
hepatitis prediction [30], and coronavirus disease (COVID-19) patient detection [31]. A previous study
revealed that a combination of GA and XGBoost has improved the model performance [32]. However,
to the best of our knowledge, none of the previous studies have combined GA and XGBoost together
to improve the performance of the model, especially for the case of self-care classification. In addition,
the absence of model evaluation based on statistical tests as well as practical application of self-care
predication are the major limitations of previous works. As suggested by Demšar [33], a statistical
significance test can be utilized to prove the significance of the proposed model as compared to other
classification models. Furthermore, previous studies have also reported the effectiveness and usefulness
of the practical application of prediction model to identify risks and assist the decision-making for
pediatric readmission prediction [34], preventive medicine [35], violent behavior prediction [36],
and trauma therapy [37].

Therefore, the present study proposes GA-XGBoost to improve the performance of the self-care
prediction model. To our best knowledge, this is the first time GA and XGBoost have been applied to
improve self-care prediction accuracy. In addition, we validate our results by performing two-step
statistical significance test to confirm the significant performance differences between our proposed
model and other models used in the study. Furthermore, we also design and develop the prototype of
web-based self-care prediction to assist therapists in diagnosing the self-care problems of children with
disabilities. Thus, it is expected that an appropriate treatment/therapy could be performed for each
child and can improve their therapeutic outcomes. The contributions of our study can be summarized
as follows: (i) we propose a combined method of GA and XGBoost for self-care prediction, which has
never been done before; (ii) we improve the performance of the proposed model by adjusting the
population size of GA; (iii) we conduct extensive comparative experiments on the proposed model with
other prediction models and previous study results; (iv) we perform a two-step statistical significance
test to verify the performance of proposed model; (v) we provide the impact analysis of feature selection
method with or without GA as well as other feature selection methods toward model’s accuracy
performance; and (vi) finally, we show the practicability of our proposed model by designing and
developing the web-based self-care prediction model. In addition, we publicly share the source code
of our program so that it might be useful for decision makers and practitioners as practical guidelines
on developing and implementing self-care prediction models for real application.

The structure of this study is organized as follows: Section 2 contains the literature review.
In Section 3, we present the proposed self-care prediction model with detailed explanation of datasets,
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methodologies, and performance evaluations used in the study. Section 4 presents and discusses the
experimental results, covering the performance evaluation, the impact analyses of feature selections on
the model’s performance, and the comparison of the proposed model with previous works. We present
the applicability of our self-care prediction in Section 5. The concluding remarks and future study
avenues are presented in Section 6. Finally, the list of acronyms and/or abbreviations used in the study
is summarized in Appendix A (see Table A1).

2. Literature Review

This section discusses previously developed machine learning models for self-care prediction,
with consideration of XGBoost and GA for health-related datasets.

2.1. Self-Care Prediction Based on ICF-CY Dataset

Machine learning algorithms (MLAs) have been recently developed to diagnose children with
disabilities according to the standard international classification of functioning, disability, and health:
children and youth version (ICF-CY) dataset. SCADI (self-care activities based on ICF-CY) is the only
publicly available dataset that complies with ICF-CY standard and has been utilized by researchers
to build the self-care prediction model. Zarchi et al. (2018) provided the original SCADI dataset
and showed the possible expert systems for self-care prediction [4]. They applied an artificial neural
network (ANN) to classify the children and C4.5 decision tree algorithm to extract the related rules
related with self-care problems. Using 10-fold cross-validation (10-fold CV) for evaluation, the ANN
achieved an accuracy of up to 83.1%. Islam et al. (2018) proposed a combination of principal
component analysis (PCA) and k-nearest neighbor (KNN) to reduce the size of original features and
detect multi-class self-care problems [5]. Based on 5-fold CV experimental results, the KNN was
the best performer, achieving an accuracy of 84.29%. Liu et al. (2019) proposed a feature selection
method called information gain regression curve feature selection (IGRCFS) [6]. The IGRCFS was
applied to the SCADI dataset to obtain the optimal features. The experimental results from 10-fold
CV revealed that the combination of IGRCFS and naïve Bayes (NB) achieved the highest accuracy of
78.32%. Le and Baik (2019) aimed to improve the diagnosis performance of self-care prediction [7].
To achieve this, the authors used Synthetic Minority Over Sampling Technique (SMOTE) to balance
the dataset. Based on their 10-fold CV experiment results, the proposed model, e.g., extreme gradient
boosting (XGBoost) achieved an accuracy of 85.4%. The work of Souza et al. (2019) treated the original
SCADI dataset differently [8]. They converted the original SCADI dataset into a binary classification
(binary-class) problem to identify the children who were diagnosed with the presence (positive class)
or absence (negative class) of self-care problems. Fuzzy neural networks (FNN) were reported as the
best classifier, providing 85.11% test accuracy on the binary class of SCADI dataset. Most recently,
Akyol (2020) evaluated the performance of deep neural networks (DNN) and extreme learning machines
(ELM) on the multi-class SCADI dataset [9]. The study used the hold-out method to divide the data
into 60% and 40% for training and testing data, respectively. The result showed that the maximum
accuracy was achieved by DNN and ELM at 97.45% and 88.88%, respectively. Furthermore, a hybrid
autoencoder for classifying the self-care problem based on the combination of autoencoders and deep
neural networks (DNN) was proposed by Putatunda (2020) [10]. The proposed model was tested using
the 10-fold CV, achieving average accuracy by up to 84.29% and 91.43% for multi-and binary-class
datasets, respectively.

2.2. Extreme Gradient Boosting (XGBoost) and Genetic Algorithms (GA)

Extreme gradient boosting (XGBoost) is a supervised machine learning model based on an
improved gradient boosting decision trees and can be used for regression and classification problems [12].
Previous studies have utilized XGBoost and shown significant results for predicting hepatitis B virus
infection, gestational diabetes mellitus of early pregnant women, future blood glucose level of T1D
patients, and coronary artery calcium score (CACS). A hepatitis B virus infection prediction based
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on XGBoost and Borderline-Synthetic minority oversampling technique (Borderline-SMOTE) was
developed by Wang et al. (2019) to identify high-risk populations in China [13]. The result revealed
that their model performed better than other models, achieving an area under the receiver operating
characteristic curves (AUC) of 0.782. Liu et al. (2020) employed a XGBoost-based model for predicting
the status of gestational diabetes mellitus (GDM) among Chinese pregnant women that were registered
before the 15th week of pregnancy in Tianjin, China [14]. The hold-out method was adopted to divide
dataset into 70%, and 30% for training and testing data, respectively. The result showed that XGBoost
outperformed logistic regression by achieving an accuracy of 75.7%. Alfian et al. (2020) developed a
model based on XGBoost to predict the future value of blood glucose for T1D patients [15]. Based on
30- and 60-min prediction horizon (PH) results, the XGBoost showed its superiority by achieving
average of root mean square error (RMSE) of 23.219 mg/dL and 35.800 mg/dL for PH-30 and-60 min,
respectively. Finally, Lee et al. (2020) assessed several machine learning models including XGBoost to
predict the CACS from a healthy population [16]. With 5-fold cross-validation, the XGBoost was the
best model as compared to other models by achieving AUC of 0.823.

Feature selection is an important task that affects the performance of classification models [18,19].
Genetic algorithms (GA) is a nature inspired and heuristic algorithm that is utilized for search
optimization problems and has been widely adopted to find the optimum feature subsets toward
improving the performance of models [24,25]. In healthcare area, GA was utilized to improve the
classification models by finding the optimum feature subsets for gene encoder, hepatitis prediction,
and COVID-19 patients’ detection. Uzma et al. (2020) proposed gene encoder based on GA to
evaluate the feature subset and three machine learning models such as support vector machine (SVM),
k-nearest neighbors (KNN), and random forest (RF) were used to classify the cancer samples [29].
The experiments on six benchmark datasets revealed that GA-based feature selection improved
the performance of all models used in their study. Parisi et al. (2020) utilized GA to improve the
performance of prognosis model for hepatitis prediction [30]. Based on the experimentation on publicly
available hepatitis dataset, the proposed model achieved the highest accuracy of 90.32% as compared
to the results from previous study. Finally, GA has recently been applied to improve early COVID-19
patient prediction [31]. They used GA as the wrapper method to find the most relevance features
from the chest computed tomography (CT) images for positive and negative COVID-19 subjects.
The experimental results showed that their model achieved highest accuracy of 96% as compared to
other recent methods for detecting the COVID-19 patients.

Furthermore, a previous study has reported positive and promising result by integrating GA
as a feature selection method and XGBoost as a classification model. Qu et al. (2019) proposed
GA-XGBoost to identify the characteristics/features related with traffic accidents [32]. They applied
the model into big data of traffic accidents in 7 cities in China. The empirical analysis showed that
GA-XGBoost performed better, achieving AUC of 0.94 as compared to other models compared in the
study. Their study also revealed that the selected optimum feature subsets were accurate with better
performance. However, to the best of our knowledge, none of the previously mentioned studies have
utilized GA and XGBoost together to improve the performance of the classification model, especially
for the case of self-care activities problems. In addition, the absence of model evaluation based on
statistical test as well as practical application of self-care predication are the major limitations of the
previous works. As suggested by Demšar [33], a statistical significance test can be utilized to prove
the significance of the proposed model as compared with other classification models and datasets.
Previous studies have reported the effectiveness and usefulness of practical application of prediction
model to identify risks and assist the decision-making for pediatric readmission prediction [34],
preventive medicine [35], violent behavior prediction [36], and trauma therapy [37].

Therefore, the present study proposes GA-XGBoost to improve the performance of the self-care
prediction model. To our best knowledge, this is the first time GA and XGBoost have been applied to
improve self-care prediction accuracy. In addition, we validate our results by performing a two-step
statistical significance test to confirm the significant performance differences between our proposed
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model and other models used in the study. Furthermore, we also design and develop the prototype
of web-based self-care prediction to assist therapist diagnose the self-care problems of children with
disabilities. Thus, it is expected that an appropriate treatment/therapy could be performed for each
child and can improve their therapeutic outcomes. Finally, the detailed previous works on self-care
prediction as compared to our present study are summarized in Table 1.

Table 1. Summary of existing works for self-care prediction of children with disabilities as compared to
our proposed study.

Study Method Feature
Selection

Validation
Method

Classification
Type Statistical Test Practical

Application

Zarchi et al.,
2018 [4] ANN No 10-fold CV Multi-class No No

Islam et al.,
2018 [5] KNN Yes 5-fold CV Multi-class No No

Liu et al.,
2019 [6] NB Yes 10-fold CV Multi-class No No

Le and Baik,
2019 [7]

SMOTE +
XGBoost No 10-fold CV Multi-class No No

Souza et al.,
2019 [8] FNN No k-fold * Binary-class No No

Akyol, 2020 [9] DNN No Hold-out Multi-class No No

Putatunda,
2020 [10]

Hybrid
autoencoder No 10-fold CV Multi-class,

Binary-class No No

Our proposed
study

GA +
XGBoost Yes 10-fold CV Multi-class,

Binary-class
Yes, with two-step

statistical test Yes

Notes: CV = cross-validation; * there was no clear number of k-fold used in the source paper.

3. Methodology

3.1. Dataset

We used the publicly available standard dataset related to self-care activity problems of children
with disabilities, namely SCADI (self-care activities based on ICF-CY). The SCADI dataset was
provided by Zarchi et al. (2018) and collected by expert occupational therapists from 2016 to 2017 at
educational and health centers in Yazd, Iran [4]. The dataset consists of 70 subjects in the age range of
6–18 years old, 41% female. The original dataset considered 29 self-care activities based on ICF-CY code
standards which the detailed description can be seen in Table 2. For each feature code, the extent of
impairment is applied and indicated as 0: no impairment, 1: mild impairment, 2: moderate impairment,
3: severe impairment, 4: complete impairment, 8: no specified, and 9: not applicable. For example,
the feature code “d 5100-1” indicates that the subject has mild impairment of washing body parts.
For each subject, 203 (29 × 7) self-care activities and 2 additional features for age and gender are
provided. In the gender feature, the value of 0 and 1 represent males and females, respectively. While in
the self-care activities feature, the value of 0 and 1 represents the absence or presence of a self-care
activity, respectively. The self-care problems as the target class in this dataset have been categorized by
the therapist into 7 classes, as presented in Table 3. The original target output of SCADI dataset is a
multi-class problem with the value range from 1 to 7. The 7 value is used to represent the absence of
self-care problems while the values from 1 to 6 are used to represent the presence of self-care problems
with its different conditions. In our study, we considered the original multi-target/category output from
the SCADI as the dataset I. In addition, we followed previous studies [8,10] in converting the target
class output from a multi-class problem to a binary-class problem and we considered this as dataset II.
The final target class output for dataset II is set to 0 if self-care problem is not present in the subject and
to 1 for all the subjects who have been categorized as having self-care problems. We pre-processed the
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data by applying the previous rule to the original records. Finally, after data pre-processing, the final
dataset II consists of 70 subjects with 54 and 16 subjects being labeled with the presence (positive class)
and absence (negative class) of self-care problem, respectively. Both datasets are then used for the next
process of GA-based feature selection for improving the self-care classification model.

Table 2. Self-care activity codes of the self-care activities based on ICF-CY (SCADI) dataset [4].

Self-Care No. Activity Description Feature Code Impairment Extension Code

I. Washing oneself
1 Washing body parts d 5100

0, 1, 2, 3, 4, 8, 92 Washing whole body d 5101
3 Drying oneself d 5102

II. Caring for
body parts

4 Caring for skin d 5200

0, 1, 2, 3, 4, 8, 9

5 Caring for teeth d 5201
6 Caring for hair d 5202
7 Caring for fingernails d 5203
8 Caring for toenails d 5204
9 Caring for nose d 5205

III. Toileting

10 Indicating need for urination d 53000

0, 1, 2, 3, 4, 8, 9
11 Carrying out urination appropriately d 53001
12 Indicating need for defecation d 53010
13 Carrying out defecation appropriately d 53011
14 Menstrual care d 5302

IV. Dressing

15 Putting clothes d 5400

0, 1, 2, 3, 4, 8, 9
16 Taking off clothes d 5401
17 Putting on footwear d 5402
18 Taking off footwear d 5403
19 Choosing appropriate clothing d 5404

V. Eating 20 Indicating need for eating d 5500 0, 1, 2, 3, 4, 8, 9
21 Carrying out eating appropriately d 5501

VI. Drinking 22 Indicating need for drinking d 5600 0, 1, 2, 3, 4, 8, 9
23 Carrying out feeding from bottle d 5602

VII. Looking after
one’s health

24 Ensuring one’s physical comfort d 5700

0, 1, 2, 3, 4, 8, 9

25 Managing diet and fitness d 5701

26 Managing medications and following
health advice d 57020

27 Seeking advice or assistance from
caregivers or professionals d 57021

28 Avoiding risks of abuse of drugs
or alcohol d 57022

VIII. Looking after
one’s safety 29 Looking after one’s safety d 571 0, 1, 2, 3, 4, 8, 9

Notes: For extent of impairment, the meanings of the values are as follows. 0: no impairment, 1: mild impairment,
2: moderate impairment, 3: severe impairment, 4: complete impairment, 8: no specified, and 9: not applicable.

Table 3. The target class and description for each dataset used in this study.

Dataset Target
Class Description # of Subject

I (multi-class)

1 Unable to do caring for body parts 2

2 Unable to do toileting 7

3 Unable to do dressing 1

4 Unable to do washing and caring for body
parts and dressing 12

5 Unable to do washing, caring for body parts,
toileting, and dressing 3

6 Unable to do eating, drinking, washing, caring
for body parts, toileting, and dressing 29

7 No issues 16

II (binary-class)
0 No issues 16

1 Having self-care issues 54
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3.2. Design of Proposed Self-Care Prediction Model

Figure 1 shows the general ideas of the proposed self-care prediction model based on genetic
algorithms (GAs) and extreme gradient boosting (XGBoost). First, we utilized a standardized self-care
dataset based on ICF-CY (SCADI). Second, we used 10-fold cross-validation (10-fold CV) as a validation
method for the proposed and comparison machine learning models. In 10-fold CV, the dataset is
split into 10 subsets of equal size and the instances for each subset or fold are randomly selected.
Each subset in turn is used for the test set and the remaining are used for the training set. The model
is evaluated 10 times, such as that each subset is used once as the test set. The training set is then
used by GA to find the best feature sets and then the XGBoost classifier is used to learn the pattern
from the best GA-selected features from a set of paired input and desired outputs. Once the learning
process is finished, the trained model is then used to predict the self-care problems from the test set
data. The prediction outputs are then compared with the original target of test data (ground truth) to
calculate the model’s performance.
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3.3. Genetic Algorithm (GA)

Feature selection is an important task in classification problems to reduce the cost and training
time as well as increase its model performance [38]. Genetic algorithms (GAs) have been previously
used for feature selection and showed significant results for selecting the best feature sets [24,25].
In the health arena, GA can highly improve the performance of models for emotional stress state
detection [26], severe chronic disorders of consciousness prediction [27], children’s activity recognition
and classification [28], gene encoder [29], hepatitis prediction [30], and COVID-19 patient detection [31].

GA is a robust optimization technique based on a population of solutions that develops through
genetic operations such as selection, crossover, and mutation [39]. GA works first by randomly
generating an initial population which consists of fixed-length binary strings (individuals) as a
candidate solution for the best possible feature’s subset (FS). A feature subset is represented in each
string (as individual) and the values at each position in the string are coded in binary such that a feature
is selected (1) or unselected (0). Next, the fitness score (i.e., how well a feature subset endures over the
defined assessment criteria) is calculated for each feature subset. We adopt the wrapper method [24,25]
and select the classification accuracy as the fitness score. Better feature subsets (i.e., indicate with
high fitness score) have a higher chance of being selected to form a new feature subset (as offspring)
through a crossover or mutation operation. Crossover creates two new feature subsets (offspring) from
a pair of selected feature subsets by exchanging part of their bit values randomly with the random
value should be less than the predefined crossover probability (cx-pb). While mutation changes some
of the bit values (either changing the string value from 0 to 1 or 1 to 0) in a subset randomly with
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the random value should be less than the predefined mutation probability (mt-pb). The GA method
is an iterative procedure in which each generation is formed by applying the GA operators to the
members of the present generation. In this way, good individuals are developed over time until the
stopping criteria are met. Thus, the population size (pop-size), the number of generations (n-gen),
mutation probability (mt-pb), and crossover probability (cx-pb) are the major parameters of the GA
method. Figure 2 shows the flow-chart of the GA-based feature selection and the detailed procedure is
summarized in Algorithm 1.

Algorithm 1. Genetic Algorithms (GA)-based feature selection pseudocode

Input: population size, pop-size; crossover probablity, cx-pb; mutation probability, mt-pb; number of
generations, n-gen;
Output: Best individual, best-ind;
1: Generate initial population, pop
2: pop← population(pop-size)
3: Calculate initial fitness score, fitnesses
4: fitnesses← list(map(evaluate, pop))
5: For individual ind, fitness value fit in zip(pop, fitnesses) do
6: Individual fitness score ind-fit← fit
7: end for
8: For each generation g in range(n-gen) do
9: Select the next generation individuals, offspring
10: offspring← select (pop, len(pop))
11: Clone the selected individuals
12: offspring← list(map(clone, offspring))
13: Apply crossover on the offspring
14: for child1, child2 in zip(offspring[::2], offspring[1::2]) do
15: if random() < cx-pb then
16: mate(child1, child2)
17: end if
18: end for
19: Apply mutation on the offspring
20: for mutant in offspring do
21: if random() < mt-pb then
22: mutate(mutant)
23: end if
24: end for
25: Evaluate the individuals with an invalid fitness score
26: Weak individual weak_ind← [ind for ind in offspring if not individual with valid fitness score]
27: fitnesses← list(map(evaluate, weak_ind))
28: for ind, fit in zip(weak_ind, fitnesses) do
29: Individual fitness score ind-fit← fit
30: end for
31: The population is fully replaced by the offspring
32: pop[:] ← offspring
33: end for
34: Gather all the fitnesses in one list, all-fitnesses
35: all-fitnesses← [ind-fit[0] for ind in pop]
36: Select the best individual, best-ind
37: best-ind← selectBest(pop, 1)[0]
38: return best-ind
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Through the different setup of experiments, the optimal parameters for the population size
(pop-size), the crossover probability (cx-pb), and the mutation probability (mt-pb) were discovered;
they are 160, 0.7, 0.19 for dataset I and 170, 0.9, 0.36 for dataset II, respectively. In addition, we used
the number of generations (n-gen) = 30 for all datasets. After applying GA, approximately 42.93%
and 54.15% were selected as the best feature subsets for dataset I and II, respectively. The detailed
parameters used in GA and its best-selected feature subsets for each dataset are presented in Table 4.

Table 4. Genetic algorithm parameters and its best selected features for each dataset used in this study.

Dataset
GA Parameter # of Feature

Best Selected Feature
pop-size cx-pb mt-pb n-gen Original (%) Selected (%)

I
(multi-class) 160 0.7 0.19 30 205 (100%) 88 (42.93%)

d 5100-3, d 5101-1, d 5101-2, d 5101-4,
d 5101-8, d 5101-9, d 5102-0, d 5102-2,
d 5102-4, d 5200-0, d 5200-1, d 5200-3,
d 5200-4, d 5201-3, d 5201-8, d 5202-9,
d 5203-9, d 5204-1, d 5204-4, d 5204-9,
d 5205-0, d 5205-1, d 5205-3, d 5205-8,
d 53000-1, d 53000-4, d 53000-8, d
53000-9, d 53001-0, d 53001-2, d
53001-3, d 53001-4, d 53001-9, d
53010-2, d 53010-4, d 53010-9, d
53011-3, d 53011-4, d 5302-4, d 5400-0,
d 5400-1, d 5400-2, d 5400-8, d 5401-1,
d 5401-3, d 5401-4, d 5401-8, d 5401-9,
d 5402-0, d 5403-0, d 5403-2, d 5403-9,
d 5404-0, d 5404-1, d 5404-4, d 5404-8,
d 5404-9, d 5500-0, d 5500-2, d 5500-3,
d 5500-4, d 5500-9, d 5501-8, d 5600-4,
d 5600-9, d 5602-3, d 5602-4, d 5602-9,
d 5700-0, d 5700-2, d 5700-3, d 5701-0,
d 5701-1, d 5701-3, d 5701-4, d 5701-8,
d 57020-2, d 57020-3, d 57020-4, d
57020-8, d 57021-2, d 57022-3, d
57022-8, d 57022-9, d 571-1, d 571-2, d
571-3, d 571-8
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Table 4. Cont.

Dataset
GA Parameter # of Feature

Best Selected Feature
pop-size cx-pb mt-pb n-gen Original (%) Selected (%)

II
(binary-class) 170 0.9 0.36 30 205 (100%) 111 (54.15%)

Gender, d 5100-0, d 5100-3, d 5100-4, d
5100-9, d 5101-0, d 5101-1, d 5101-2, d
5102-0, d 5102-8, d 5102-9, d 5200-0, d
5200-1, d 5200-2, d 5200-3, d 5200-4, d
5201-0, d 5201-1, d 5201-2, d 5201-3, d
5201-8, d 5202-2, d 5202-8, d 5203-1, d
5203-2, d 5203-3, d 5203-9, d 5204-0, d
5204-1, d 5204-2, d 5204-3, d 5204-9, d
5205-2, d 5205-3, d 5205-8, d 53000-1, d
53000-4, d 53000-8, d 53001-4, d
53001-9, d 53010-2, d 53010-4, d
53011-3, d 53011-4, d 5302-1, d 5302-2,
d 5302-4, d 5400-0, d 5400-1, d 5400-9, d
5401-0, d 5401-3, d 5401-4, d 5401-8, d
5402-1, d 5402-2, d 5402-4, d 5402-8, d
5403-0, d 5403-1, d 5403-8, d 5403-9, d
5404-0, d 5404-3, d 5404-9, d 5500-8, d
5501-0, d 5501-1, d 5501-4, d 5501-8, d
5501-9, d 5600-0, d 5600-1, d 5600-2, d
5600-4, d 5600-8, d 5600-9, d 5602-0, d
5602-1, d 5602-3, d 5602-8, d 5602-9, d
5700-0, d 5700-4, d 5700-8, d 5700-9, d
5701-0, d 5701-2, d 5701-3, d 5701-4, d
5701-8, d 5701-9, d 57020-3, d 57020-8,
d 57020-9, d 57021-2, d 57021-4, d
57021-5, d 57021-6, d 57022-0, d
57022-1, d 57022-2, d 57022-3, d
57022-4, d 57022-8, d 57022-9, d 571-0,
d 571-3, d 571-4, d 571-8, d 571-9

Notes: pop-size = the number of populations; cx-pb = the crossover probability; mt-pb = the mutation probability;
n-gen = the number of generations.

3.4. Extreme Gradient Boosting (XGBoost)

After selecting the best feature sets by utilizing the GA from the training data, the XGBoost is
used to learn and generate the robust prediction model. Previous studies have reported the advantage
of using XGBoost for predicting hepatitis B virus infection [13], gestational diabetes mellitus of early
pregnant women [14], future blood glucose level of T1D patients [15], coronary artery calcium score
(CACS) [16], and heart disease prediction [17]. XGBoost was proposed by Chen and Guestrin and is
a scalable supervised machine learning algorithm based on the improvement of gradient boosting
decision trees (GBDT) and used for regression and classification problems [12]. The improvement
parts of XGBoost as compared to GBDT are in terms of regularization, loss function, and column
sampling. Gradient boosting is a method where new prediction models are constructed and employed
to calculate the prediction error, after which the scores are summed to obtain the ultimate prediction
outcome. XGBoost used the gradient descent and objective functions to minimize the loss score and
measure the model performance when a new model is formed, respectively. The objective function
term L(φ) can be calculated as:

L(φ) =
∑

i

l(ŷi,, yi) +
∑

k

Ω( fk), (1)

where
Ω( f ) = γT +

1
2
λ||w||2. (2)

Here, term l is a differentiable convex loss function that is used to calculate the difference between
the prediction term (ŷi) and the target term (yi). While the term Ω is utilized to penalize the complexity
of the trained model. The term T represents the number of leaves in the tree. Furthermore, each term
fk relates to an independent tree structure (q) and leaf weight (w). Finally, the γ relates to the threshold
and pre-pruning is performed while optimizing to limit the growth of the tree and term λ is used to
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smooth the final learned weights to tackle the overfitting problems. In summary, the objective function
optimization in the XGBoost is transformed into a problem of defining the minimum of a quadratic
function. Finally, XGBoost has a better capability to overcome overfitting problems because of the
establishment of the regularization term.

3.5. Performance Metrics and Experimental Setup

In this study, we used four performance metrices, including accuracy, precision, recall, and F1-score,
to evaluate and compare the performance of our proposed model with other classification models [40].
Tables 5 and 6 show the detailed performance metrices used in this study for dataset I (multi-class) and II
(binary-class) respectively. To provide a general and robust model, we applied 10-fold cross-validation
for all classification models, with the ultimate performance result being the average. We used Python
V3.6.5 to implement all the classification models with the help of several libraries such as Sklearn
V0.20.2 [41] and XGBoost V0.81. We conducted all experiments on a Windows machine, 16 GB memory,
and Intel Core i7 processor with 3.60 GHz × 8 cores. In addition, we used the default parameters set by
Sklearn and XGBoost to provide fewer configurations so that our study could easily be reproduced by
the reader.

Table 5. Performance metrices for multi classification problem (dataset I).

Metric Formula

Average accuracy
∑l

i=1
tpi+tni

tpi+ f ni+ f pi+tni
l

PrecisionM

∑l
i=1

tpi
tpi+ f pi
l

RecallM
∑l

i=1
tpi

tpi+ f ni
l

F1 scoreM
(β2+1)PrecisionMRecallM
β2PrecisionM+RecallM

Notes: tpi , f pi , f ni , tni are true positive, false positive, false negative and true negative for class Ci respectively.
M indices represent macro-averaging.

Table 6. Performance metrices for binary classification problem (dataset II).

Metric Formula

Accuracy (tp + tn)/(tp + f n + f p + tn)
Precision tp/(tp + f p)

Recall tp/(tp + f n)

F1 score (β2+1) tp
(β2+1) tp+β2 f n+ f p

Notes: tp, fp, fn, and tn are true positive, false positive, false negative and true negative respectively.

4. Results and Discussion

In this section, we present and discuss all the experiment results. Firstly, we present the
performance evaluation of our proposed models as compared with state-of-the art models, followed by
the feature selection implication analysis on the model’s performance. Next, we provide the impact
analysis of population size with respects to accuracy. Finally, we present the benchmark discussion of
our models as compared with existing results from previous studies.

4.1. Performance Evaluation of Proposed Models

This sub-section reported the performance of our proposed model towards other models,
i.e., NB, LR, MLP, SVM, DT, and RF for all datasets. We employed some performance metrices
such as accuracy, precision, recall, and F1-score from 10-fold cross validation (10-fold CV) and
presented the results in mean ± standard deviation. Tables 7 and 8 show the detailed performance
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comparison results for a dataset I and II, respectively. The results revealed our proposed model
outperformed other models by achieving accuracy, precision, recall, and F1-score up to 90%, 79.92%,
84.75%, 81.21% for dataset I and 98.57%, 98.33%, 100%, 99.09% for dataset II, respectively. In addition,
the proposed model utilized GA for finding the best feature sets and selected around 42.93% and
54.15% for dataset I and II, respectively. The results confirmed that the GA-selected features have
increased the model’s performance in our study.

Table 7. Performance comparison of several classification models for dataset I (multi-class).

Method Feature
Selection

# of
Features (%)

Performance Metric (%)

Accuracy Precision Recall F1-Score

NB

None 205 (100%)

82.86 ± 10.69 65.25 ± 22.36 73.25 ± 18.10 67.70 ± 20.35
LR 78.57 ± 14.64 63.08 ± 24.81 70.58 ± 21.88 65.31 ± 23.27

MLP 82.86 ± 10.69 67.58 ± 22.08 74.00 ± 18.03 69.13 ± 20.33
SVM 74.29 ± 12.45 53.92 ± 13.07 63.08 ± 15.21 57.23 ± 13.70
DT 74.29 ± 20.00 58.50 ± 21.74 61.58 ± 22.02 58.81 ± 22.10
RF 82.86 ± 10.69 67.83 ± 21.31 74.08 ± 18.71 69.31 ± 20.22

Proposed
Model GA 88 (42.93%) 90.00 ± 9.15 79.92 ± 20.18 84.75 ± 15.43 81.21 ± 18.43

Notes: all performance metric values are in mean ± standard deviation (%).

Table 8. Performance comparison of several classification models for dataset II (binary-class).

Method Feature
Selection

# of
Features (%)

Performance Metric (%)

Accuracy Precision Recall F1-Score

NB

None 205 (100%)

78.57 ± 17.20 91.31 ± 11.14 83.00 ± 19.75 85.16 ± 12.48
LR 90.00 ± 11.16 93.81 ± 9.94 95.00 ± 10.67 93.61 ± 7.19

MLP 88.57 ± 14.00 93.81 ± 9.94 93.33 ± 15.28 92.27 ± 10.20
SVM 88.57 ± 10.69 87.86 ± 10.93 100.00 ± 0.00 93.17 ± 6.29
DT 85.71 ± 12.78 92.38 ± 9.98 91.33 ± 15.58 90.39 ± 9.47
RF 90.00 ± 14.36 95.48 ± 9.43 93.33 ± 15.28 93.18 ± 10.44

Proposed
Model GA 111 (54.15%) 98.57 ± 4.29 98.33 ± 5.00 100.00 ± 0.00 99.09 ± 2.73

Notes: all performance metric values are in mean ± standard deviation (%).

We further investigated the performance of our proposed model by comparing the significance
among the models using a two-step statistical test. We followed the suggestion from Demšar [33] to
apply the Friedman test [42] with the post-hoc tests for the comparison of multiple models over several
datasets. A post-hoc test can be performed if the performance differences between the models can
be identified. Once the difference is discovered; a post-hoc test is performed by utilizing the Holm
method [43] for pairwise comparisons of the “control” with another model. The Holm method is used
since we want to evaluate the significance of our proposed model as compared with other models.
In this case, we set our “proposed” model as a “control” which will be benchmarked against other
models such as NB, LR, MLP, SVM, DT, and RF. The p-value indicates whether our proposed model
has a significant difference. The significant difference is confirmed when the p-value is lower than the
threshold (0.05 in our study). Table 9 shows the Friedman test results including the rank and p-value.
It should be noted that the lower the rank of the model, the better the model. The presented results
confirmed that our proposed model arises as to the best model, resulting from the fact that it has the
lowest rank and the p-value = 4.89 × 10−19 is lower than the threshold (p-value < 0.05). This means
that we can reject the null hypothesis that says there is no significant difference between the models.
Furthermore, since the null hypothesis is rejected, we proceed with the post-hoc test utilizing Holm to
estimate the performance differences of our proposed model with another model. Table 10 shows the
results of Friedman post-hoc test comparison among the pairs. The results revealed that the proposed
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model has significant performance differences as compared with other models (p-value < 0.05). Finally,
based on two-step statistical test results, we can conclude that our proposed model has significant
performance differences as compared to other models used in this study.

Table 9. Friedman test results by utilizing the value of accuracy for all datasets.

Method Friedman Rank p-Value

NB 9.37

4.89 × 10−19

LR 8.44
MLP 7.92
SVM 10.09
DT 9.63
RF 7.50

Proposed Model 5.02

Table 10. Comparative results of all models using the Holm-based Friedman post-hoc test.

Comparison Post-Hoc p-Value Significant?

Proposed vs. NB 0.000055 Yes
Proposed vs. LR 0.001908 Yes

Proposed vs. MLP 0.007504 Yes
Proposed vs. SVM 0.000002 Yes
Proposed vs. DT 0.000021 Yes
Proposed vs. RF 0.012983 Yes

4.2. Impacts of Features Selections on the Classification Performance

In this sub-section, we analyzed the impacts of feature selections on the classification model’s
performance. Figure 3a shows the implication of GA for a dataset I toward model’s accuracy. It shows
that most of the classification models were improved, aside from NB. Similarly, Figure 3b shows the
impacts of GA for dataset II on the model’s accuracy. The result showed that most of the classification
model’s accuracy was improved, except for RF. Thus, selecting the best feature sets using GA can
improve most of the classification models’ accuracy for all datasets. GA provided significant accuracy
improvement for all classification models as compared those without GA, representing average
improvement by up to 5.71% and 3.47% for dataset I and II, respectively. In addition, feature selection
based on GA has also significantly improved our proposed XGBoost model in all datasets, achieving
accuracy from 84.29% and 92.86% to 90% and 98.57%, for dataset I and II respectively, with average
improvement as much as 5.71%. Therefore, incorporating GA with XGBoost model was the best choice
to improve the model accuracy for all datasets.
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The optimal number of population size (pop-size) is essential to implement GA. Therefore,
we investigated the impact of pop-size on model accuracy. The detailed parameter settings for GA are
presented in Table 4. As shown in Figure 4, the optimal accuracy is achieved up to 90% and 96.57%
when the number of population (pop-size) is set to 160 and 170 for dataset I and II, respectively. It is
clear that the increased number of population size has potentially increased the model’s accuracy.
Finally, with the selected optimal number of population size, 88 and 111 feature-sets were selected
for dataset I and II, respectively. These selected features were then applied to the proposed model to
improve the model’s accuracy.
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Feature selection can be grouped into three categories, known as wrapper, filter, and embedded
methods [44,45]. Filter methods find the relevance of features by their correlation with target output,
while wrapper methods utilize machine learning model to measure the usefulness of feature subsets
according to their predictive performance. The embedded methods perform feature selection in
the process of training based on the specified learning algorithm. In our study, we used GA as an
application of wrapper methods, while mutual information (MI) and chi-squared were utilized for
the filter methods. In case of embedded methods, we utilized the extra-trees algorithm [46] to extract
relevant features. Figure 5a,b shows the impact of several feature selection methods on the XGboost
model accuracy for dataset I and II, respectively. The extra-trees-based feature selection automatically
found the optimal number of features; they are 62 and 67 for dataset I and II, respectively. In addition,
based on our investigation, we found that the optimal number of features for MI and chi-squared
are 35 and 6, and 5 and 50 for dataset I and II, respectively. GA performed superior accuracy for
the proposed XGboost model, up to 5.71% accuracy improvements for all datasets as compared to
outcomes without feature selection (original). However, the other feature selection methods considered
in this study, i.e., MI and chi-squared, performed poorly, with slight accuracy improvement for all
datasets. As for extra-trees, there were no accuracy improvement for all datasets. Thus, GA was
the most excellent option for XGBoost model, providing optimum classification model accuracy for
all datasets.



Mathematics 2020, 8, 1590 15 of 21

Mathematics 2020, 8, x FOR PEER REVIEW 15 of 21 

  
(a) (b) 

Figure 5. Comparison analysis of several feature selection methods on the XGBoost model accuracy 
for dataset (a) I (multi-class), and (b) II (binary-class). 

4.3. Comparison of the Proposed Model with Previous Works 

In this study, we compared the performance of our proposed model with the previous study 
results that have utilized the same SCADI dataset. Table 11 summarizes the comparison study of the 
proposed model with previous related works. In general, the proposed model has outperformed all 
previous study results applied on the same dataset such as ANN [4], KNN [5], NB [6], SMOTE + 
XGBoost [7], FNN [8], DNN [9], and hybrid autoencoder [10]. The best accuracy for multi-class 
classification problem on the SCADI dataset still goes for DNN [9]; however, it should be noted that 
they used hold-out validation method (60%/40% for training and testing) which is less reliable and 
increase the possibility of over-fitting and over-optimism, as compared with 10-fold cross-validation 
[47]. Finally, in term of binary-class classification problem, our proposed model has the highest 
performance by achieving the accuracy up to 98.57% as compared with the results from previous 
related works. Furthermore, none of previous studies have utilized statistical tests for evaluating 
their models. In addition, none of the previous studies have provided the practical application of 
their developed model into real application. Hence, in the present study, we provide a two-step 
statistical test to confirm the significance of our proposed model as compared to state-of-the-art 
models. Finally, we design and develop the practical application of our proposed model into web-
based self-care prediction. 

It worth mentioning that the direct performance comparison of the presented results is not fair, 
since they have been obtained from different classification models and validation methods. 
Therefore, the results which were presented in Table 11 cannot be used to merely justify the 
performance of the classification models, but it simply could be used as an overall comparison 
between the proposed model and previous studies. Benchmarking machine learning models will turn 
out to be rather fairer as other standardized self-care datasets become publicly available in the future. 

Table 11. Comparison of the proposed model with the results from previous related works. 

Method Year 
Feature 

Selection 

# of 
Features 

(%) 

Validation 
Method 

Classification 
Type 

Accuracy 
(%) 

Statistical 
Test 

Practical 
Application 

ANN [4] 2018 - 
205 

(100%) 
10-fold CV Multi-class 83.1 No No 

KNN [5] 2018 PCA 
53 

(25.85%) 
5-fold CV Multi-class 84.29 No No 

NB [6] 2019 IGRCFS 
12 

(5.85%) 
10-fold CV Multi-class 78.32 No No 

SMOTE + 
XGBoost [7] 

2019 - 
31 

(15.12%) 
10-fold CV Multi-class 85.4 No No 

FNN [8] 2019 - 
205 

(100%) 
k-fold * Binary-class 85.11 No No 

DNN [9] 2019 - 205 
(100%) 

Hold-out Multi-class 97.45 No No 

Figure 5. Comparison analysis of several feature selection methods on the XGBoost model accuracy for
dataset (a) I (multi-class), and (b) II (binary-class).

4.3. Comparison of the Proposed Model with Previous Works

In this study, we compared the performance of our proposed model with the previous study results
that have utilized the same SCADI dataset. Table 11 summarizes the comparison study of the proposed
model with previous related works. In general, the proposed model has outperformed all previous
study results applied on the same dataset such as ANN [4], KNN [5], NB [6], SMOTE + XGBoost [7],
FNN [8], DNN [9], and hybrid autoencoder [10]. The best accuracy for multi-class classification problem
on the SCADI dataset still goes for DNN [9]; however, it should be noted that they used hold-out
validation method (60%/40% for training and testing) which is less reliable and increase the possibility
of over-fitting and over-optimism, as compared with 10-fold cross-validation [47]. Finally, in term of
binary-class classification problem, our proposed model has the highest performance by achieving the
accuracy up to 98.57% as compared with the results from previous related works. Furthermore, none of
previous studies have utilized statistical tests for evaluating their models. In addition, none of the
previous studies have provided the practical application of their developed model into real application.
Hence, in the present study, we provide a two-step statistical test to confirm the significance of our
proposed model as compared to state-of-the-art models. Finally, we design and develop the practical
application of our proposed model into web-based self-care prediction.

Table 11. Comparison of the proposed model with the results from previous related works.

Method Year Feature
Selection

# of Features
(%)

Validation
Method

Classification
Type

Accuracy
(%) Statistical Test Practical

Application

ANN [4] 2018 - 205 (100%) 10-fold CV Multi-class 83.1 No No

KNN [5] 2018 PCA 53 (25.85%) 5-fold CV Multi-class 84.29 No No

NB [6] 2019 IGRCFS 12 (5.85%) 10-fold CV Multi-class 78.32 No No

SMOTE +
XGBoost [7] 2019 - 31 (15.12%) 10-fold CV Multi-class 85.4 No No

FNN [8] 2019 - 205 (100%) k-fold * Binary-class 85.11 No No

DNN [9] 2019 - 205 (100%) Hold-out Multi-class 97.45 No No

Hybrid
autoencoder [10] 2020 - 205 (100%) 10-fold CV

Multi-class 84.29
No No

Binary-class 91.43

Proposed Model
(GA + XGBoost) 2020 GA

88 (42.93%)
10-fold CV

Multi-class 90.00 Yes, with two-step
statistical test

Yes
111 (54.15%) Binary-class 98.57

Notes: CV = cross-validation; * there was no clear number of k-fold used in the source paper.

It worth mentioning that the direct performance comparison of the presented results is not fair,
since they have been obtained from different classification models and validation methods. Therefore,
the results which were presented in Table 11 cannot be used to merely justify the performance of the
classification models, but it simply could be used as an overall comparison between the proposed



Mathematics 2020, 8, 1590 16 of 21

model and previous studies. Benchmarking machine learning models will turn out to be rather fairer
as other standardized self-care datasets become publicly available in the future.

5. Practical Application of the Proposed Self-Care Prediction Model

Previous studies have shown the effectiveness and usefulness of web-based risk assessments in
identifying risks and assisting the decision-making for pediatric readmission prediction [34], preventive
medicine [35], violent behavior prediction [36], and trauma therapy [37]. Thus, in this section, we aim to
design and develop web-based self-care prediction application (web-app) to provide decision tools for
therapist in diagnosing children with disabilities. The web-based self-care prediction was developed
in Python V3.8.5 by utilizing Flask V1.1.2 as a Python web server with Milligram framework v1.4.1 for
data representation, while the proposed prediction model was loaded using Joblib V0.14.1 and applied
with XGBoost V1.2.0. As illustrated in Figure 6, the user/therapist can access the web-based self-care
prediction through their web-browser via personal computers or mobile devices. Then, the user can
choose the prediction tasks, either binary or multi-classification and fill out the corresponding diagnosis
form. The diagnosis data are then transmitted into a Flask-based web server and its corresponding
prediction model is used to predict the subjects’ self-care status. The prediction result is then sent
back to the web-based self-care prediction result interface. The proposed self-care prediction model is
generated from dataset I and II for the multi and binary model, respectively.
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Figure 7a shows the first menu page interface of web-based self-care prediction in which users
can choose the prediction model. After choosing the menu, the corresponding diagnosis form will
be shown to the users so that its necessary diagnosis data can be filled out by the users. Once all
the diagnosis data are filled, the user can press the “SUBMIT” button to send all the data to the
Flask-based web server, which loads the trained prediction model to diagnose the subjects’ self-care
status. The diagnosis form and its prediction result interface for binary- and multi-classification can
be seen in Figure 7b–e, respectively. The developed web-based self-care prediction is expected to
help therapists in diagnosing children with disabilities and improve the effectiveness of self-care
classification problems. Therefore, the appropriate treatment/therapy could be performed for each
child to improve their therapeutic outcomes.

The developed web-based self-care prediction and its source codes can be accessed at https:
//scp.muhammadsyafrudin.com and https://github.com/justudin/selfcare-apps, respectively. It worth
noting that this developed model is only limited to the specific dataset; therefore, the trained
models cannot be utilized for other demographic subjects. In addition, we have not employed the
models for experimenting with therapists due to the limitation of the dataset (specific for Iranian
children). Once another demographic subjects (for example in Korea) are gathered, we could perform
experimenting our self-care prediction model with therapist and it is currently out of the scope of our
present study.

https://scp.muhammadsyafrudin.com
https://scp.muhammadsyafrudin.com
https://github.com/justudin/selfcare-apps
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6. Conclusions and Future Works

This study presents a self-care prediction model known as GA-XGBoost, which combined genetic
algorithms (GA) with extreme gradient boosting (XGBoost) for predicting self-care problems of children
with disabilities. Due to the fact that it is a complex and time-consuming process for occupational
therapists to diagnose self-care problems, many researchers have focused on developing self-care
prediction models. We combined GA-XGBoost to improve the performance of self-care prediction
model which are based on two research ideas. First, GA is used to find the best feature subsets from
the training dataset. Second, the selected features are then used for XGBoost to learn the pattern and
generate a robust prediction model.

We conducted six experiments to evaluate the performance of our proposed model. First,
we performed 10-fold cross-validation and compared GA-XGBoost with six prediction models such as
NB, LR, MLP, SVM, DT, and RF. The results revealed that GA-XGBoost achieved superior performance
as compared to other six prediction models with an accuracy up to 90% and 98.57% for dataset I
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and II, respectively. Second, we performed two-step statistical significant test to prove the improved
performance of the proposed model. The obtained p-value from first and second step of test were both
lower than the threshold (p-value < 0.05) which showed and confirmed the significance performance of
our proposed model. Third, we presented the impact analysis of feature selection with and without GA
on the accuracy of all prediction models. The result found that GA significantly increased the accuracy
of all prediction models with average improvement by up to 5.71% and 3.47% for dataset I and II,
respectively. Fourth, we analyzed the impact of number of population size (pop-size) parameter in GA
on the model accuracy and found that the maximum accuracy was achieved when the pop-size = 160
and 170 for dataset I and II, respectively. Fifth, we conducted comparison GA with other feature
selection methods such as MI, chi-squared, and extra-trees. This experiment revealed that GA was
superior in improving XGBoost accuracy, while MI and chi-squared both performed poorly and there
was no accuracy improvement from extra-trees. Finally, the sixth step was to compare the performance
of the proposed model with the previous study results. The results revealed that the proposed model
was better than previous study in terms of accuracy, providing statistical tests and practical application
for self-care prediction. We also designed and developed the model to help therapists diagnose the
self-care problems of children with disabilities. Therefore, the appropriate treatment/therapy could be
performed for each child to improve their health outcomes. Furthermore, these extensive experiments
as well as the developed application could be useful for health decision makers and practitioners as
practical guidelines on developing improved prediction models and implementing the model into
real application.

It is worth noting that we still have many aspects that have not been considered in the current
study. Thus, we could explore these in the future. First, we only utilized one specific demographic
dataset (from children in Iran). We could investigate the robustness of GA-XGBoost by applying to
other similar datasets related to children with disabilities once new datasets become available in the
future. Second, we only utilized GA as an optimization method to optimize the best feature subsets.
However, there are many different optimization methods such as particle swarm optimization (PSO),
ant colony optimization (ACO), forest optimization algorithm (FOA), and so on. In the future, we could
use different optimization methods to find the best feature subsets. In addition, we have not conducted
experiments with therapists in Korea yet because the dataset was come from different demographic
(Iran), however; we could perform it if the specific demographic dataset (for example in Korea) are
gathered in the future.
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Appendix A

Table A1. List of acronyms and/or abbreviations used in the study.

Acronym/Abbreviation Definition

GA Genetic algorithms
XGBoost Extreme gradient boosting

WHO World health organization
ICF-CY International classification of functioning, disability, and health: children and youth version
SCADI Self-care activities dataset based on ICF-CY
MLAs Machine learning algorithms
ANN Artificial neural network
KNN K-nearest neighbor
NB Naïve bayes

FNN Fuzzy neural networks
DNN Deep neural networks

LR Logistic regression
MLP Multi-layer perceptron
SVM Support vector machine
DT Decision tree
RF Random forest

T1D Type 1 diabetes
CACS Coronary artery calcium score

COVID-19 Coronavirus disease
CV Cross-validation

PCA Principal component analysis
IGRCFS Information gain regression curve feature selection
SMOTE Synthetic minority over sampling technique

ELM Extreme learning machines
FS Feature’s subset

Borderline-SMOTE Borderline-Synthetic minority oversampling technique
AUC Area under the receiver operating characteristic curves
GDM Gestational diabetes mellitus

PH Prediction horizon
RMSE Root mean square error

CT Computed tomography
cx-pb Crossover probability
mt-pb Mutation probability

pop-size Population size
n-gen Number of generations
GBDT Gradient boosting decision trees

MI Mutual information
Web-app Web-based application
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