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Abstract: In this paper, we explore the use of aggregation functions in the construction of coherent up-
per previsions. Sub-additivity is one of the defining properties of a coherent upper prevision defined
on a linear space of random variables and thus we introduce a new sub-additive transformation of
aggregation functions, called a revenue transformation, whose output is a sub-additive aggregation
function bounded below by the transformed aggregation function, if it exists. Method of constructing
coherent upper previsions by means of shift-invariant, positively homogeneous and sub-additive
aggregation functions is given and a full characterization of shift-invariant, positively homogeneous
and idempotent aggregation functions on [0, ∞[n is presented. Lastly, some concluding remarks
are added.

Keywords: sub-additivity; revenue transformation; aggregation function; coherent upper prevision

1. Introduction

In the subjective probability approach [1], prevision of a random variable is defined by
the notion of coherence that assures that the prevision of a random variable X is the amount
the subject is willing to bet on X such that neither the bettor nor the banker can win or loose
for sure. From a mathematical point of view, linear previsions on a linear space of random
variables are coherent if and only if they are linear functionals with values bounded by the
infimum and the supremum value of the random variable. From these defining properties,
we can prove that a linear coherent prevision is a homogeneous functional. Coherent
probabilities are obtained when only indicator functions are considered in the domain.
Because of the incomplete and inaccurate information, or to represent some preference
orderings (e.g., Example 1 of [2]), in some cases it is appropriate to consider non-linear
functionals. Coherent upper and lower previsions can be defined as generalizations of
linear previsions. In particular, if a linear prevision is defined with respect to a countably
additive probability, coherent upper and lower conditional previsions can be defined
by the Choquet integral with respect to the outer and inner measures generated by the
countably additive probability, which are the natural extensions of an additive probability
defined on a σ-field [3]. A new model of coherent upper previsions defined by the Choquet
integral with respect to Hausdorff outer measures is proposed in [4]. Also, coherent
upper and lower previsions have a behavioural interpretation: the lower prevision of X
can be regarded as the supremal buying price for the random variable X and the upper
prevision is an infimal selling price. Nevertheless, we observe that there exist coherent
upper previsions defined on the linear space of random variables without linear restrictions;
an example is the vacuous upper prevision of a random variable, defined as the supremum
of the values assumed by that random variable on Ω. So an open problem is to propose
new mathematical tools to define coherent upper previsions that cannot be obtained as
extensions of linear previsions.
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The main motivation behind this paper is to propose a construction method for
coherent upper previsions using aggregation functions [5,6] that are prolific and latter-day
part of mathematics that found its place both in the theory and applications.

A functional on a linear space of random variables is a coherent upper prevision if
and only if it is bounded by the supremum value of the random variable, sub-additive and
positively homogeneous. In this contribution, coherent upper previsions are constructed by
aggregation functions, which are interpreted as the gains we obtain with a given resource
so that the increase in gains, after increase in resources, can be expressed in terms of
aggregation functions. We introduce a new type of transformation of aggregation functions,
called a revenue transformation, which represents the best upper bound for possible gains;
in the paper we consider only revenue transformations that always assume bounded values.
Some properties of revenue transformations are proven; in particular, it is proven that the
revenue transformation transforms any aggregation function to some other aggregation
function that is sub-additive and is bounded belowed by the transformed function. There
already exists a sub-additive transformation of aggregation functions introduced in [7] and
is heavily studied by researchers [8–10]. This sub-additive transformation always exists
and is bounded above by the aggregation function that is being transformed, whereas
examples are given in this paper of aggregation functions that do not have a bounded
revenue transformation.

The revenue transformation of the Choquet integral, which is an example of aggrega-
tion function, is calculated and an open problem is to determine if it is the Choquet integral
with respect to a monotone measure. An example of revenue transformation of Choquet
integral with respect to a monotone measure µ, which is not sub-modular, is given such
that the transformation is the Choquet integral with respect to a sub-modular monotone
measure and it can be used to define a coherent upper prevision.

The paper is organized as follows. In Section 2, some basic preliminaries needed
later are given. In Section 3, we define a new sub-additive transformation of aggregation
functions, called a revenue transformation, and study its properties. Section 4 consists
of a construction method of coherent upper previsions based on aggregation functions.
This construction method is heavily exemplified in this section. The last section contains
some concluding remarks on the topic.

2. Preliminaries

Let Ω be a non-empty set and let A be a σ-algebra on Ω such that A is finite. With this
assumption we may, without loss of generality, assume that Ω = {1, 2, . . . , n} and A = 2Ω

for some n ∈ N. This natural number n is fixed throughout. Note that the motivation
of the concepts discussed in this paper given in the literature, see, e.g., [3], including
illustrative examples, deal mostly with finite Ω only, therefore we focus on this framework
only. Though most of concepts we recall or introduce in this paper remain valid also
when a general measurable space (Ω,A) is considered, this is not the case, e.g., with the
constructions based on the aggregation functions.

In this setting, every random variable X : Ω → R on (Ω,A) can be represented as
n-tuple x ∈ Rn with i-th coordinate (denoted by xi) being equal to X(i) for i = 1, 2, . . . , n.
All such vectors (i.e., random variables) form a vector space Rn with coordinate-wise
addition + and coordinate-wise scalar multiplication (over field R). Note that coordinate-
wise difference −, coordinate-wise multiplication ·, coordinate-wise division /, coordinate-
wise supremum ∨, and coordinate-wise infimum ∧ can be also introduced.

Also, a partial order ≤ can be introduced by x ≤ y if and only if xi ≤ yi for all
i ∈ {1, 2, . . . , n} and all x, y ∈ Rn. By 0 we denote the all-zero vector and by 1 we denote
the all-one vector. An indicator vector 1A of a set A ⊆ Ω is given by its i-th coordinate
being equal to 1A(i), where 1A is the indicator function of the set A. A positive cone of a
vector space Rn is the set

Rn
+ = {x ∈ Rn : x ≥ 0},

i.e., Rn
+ = [0, ∞[n.
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Let x ∈ Rn be any vector with coordinates xi. There exists a permutation σ : Ω→ Ω
such that

xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(n).

For simplicity, we denote x(1) = xσ(1), x(2) = xσ(2), . . . , x(n) = xσ(n). Thus we have
∧ixi = x(1) and ∨ixi = x(n). Note that x(i) is just the i-th order statistics of the sample
(x1, . . . , xn).

An aggregation function [5,6] is any mapping A : Rn
+ → [0, ∞[ such that A is non-

decreasing, i.e., 0 ≤ x ≤ y implies A(x) ≤ A(y); and grounded, i.e., A(0) = 0. In practice,
it is convenient to assume that there exists at least one x ∈ Rn

+ such that A(x) 6= 0.
This restriction is not necessary, but A(x) ≡ 0 is not an interesting aggregation function for
us and thus such case will be omitted in proofs (with explicit declaration). We say that an
aggregation function A is sub-additive, respectively super-additive, if and only if

A(x + y) ≤ A(x) + A(y), respectively A(x + y) ≥ A(x) + A(y),

holds for all x, y ∈ Rn
+. We say that an aggregation function A is positively homogeneous if

and only if
A(αx) = αA(x)

for all x ∈ Rn
+ and all α ≥ 0. Lastly, we say that an aggregation function A is shift-invariant

if and only if
A(x + α1) = A(x) + αA(1)

for all x ∈ Rn
+ and all α ≥ − inf x. A [0, 1]-aggregation function is any mapping A : [0, 1]n →

[0, 1] such that A is non-decreasing, i.e., 0 ≤ x ≤ y ≤ 1 implies A(x) ≤ A(y); and obeys
conditions A(0) = 0 and A(1) = 1. Sub-additivity, super-additivity, positive homogeneity,
and shift-invariance can be introduced analogously for [0, 1]-aggregation functions.

Note that a full characterization of positively homogenenous and shift-invariant [0, 1]-
aggregation functions was given in [6] (Proposition 7.37): A [0, 1]-aggregation function A
is shift-invariant and positively homogeneous (interval scale invariant in [6]) if and only if
A satisfies the following conditions:

(i) A(x)− A(y) ≤ ∨i(xi − yi) for all x, y ∈ [0, 1]n such that x ≥ y and xi = yi = 0 for
some i ∈ {1, 2, . . . , n};

(ii) A(x)/A(y) ≥ ∧i(xi/yi) for all x, y ∈ [0, 1]n such that x ≤ y and xj = yj = 1 for some
j ∈ {1, 2, . . . , n}, with convention 0/0 = 1.

Observe that then

A(x) = (∨ixi −∧ixi)A
(

x− (∧ixi)1
∨ixi −∧ixi

)
+ ∧ixi = (x(n) − x(1))A

(
x− x(1)1

x(n) − x(1)

)
+ x(1)

for all x such that ∨ixi 6= ∧ixi and
A(x1) = x

for all x ∈ [0, 1]. See also, e.g., [11,12].
A monotone measure [13] is any set function µ : A → [0, ∞[ that is non-decreasing,

i.e., A ⊆ B ⊆ Ω implies µ(A) ≤ µ(B); and grounded, i.e., µ(∅) = 0. Note that a monotone
measure can be viewed as an aggregation function defined on 2Ω with the partial order ≤
being set inclusion. We say that a monotone measure µ is sub-modular if and only if

µ(A ∪ B) + µ(A ∩ B) ≤ µ(A) + µ(B)

for all A, B ∈ 2Ω. Sub-modular monotone measures are also sometimes referred to as
2-alternating monotone measures, see, e.g., [14,15]. If A = {x, y, . . . , z} ∈ 2Ω we will write,
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for simplicity, µxy...z instead of µ({x, y, . . . , z}) or µA instead of µ(A). A conjugate monotone
measure for a monotone measure µ is a monotone measure µ : 2Ω → [0, ∞[ such that

µ(A) = µ(Ω)− µ(Ω \ A)

for all A ∈ 2Ω.
The Choquet integral [16] with respect to a monotone measure µ is the operator

Chµ : Rn
+ → [0, ∞[ such that

Chµ(x) = x(1)µA1 +
k

∑
i=2

(
x(i) − x(i−1)

)
µAi ,

where Ai = {j ∈ Ω : xj ≥ x(i)} for i = 1, 2, . . . , n. Choquet integral is an aggregation
function and if µ is sub-modular then Chµ is a sub-additive aggregation function. In the
theory of imprecise probabilities, an extension of Choquet integral, called an asymmetric
Choquet integral, that is an operator aChµ : Rn → R given by

aChµ(x) = Chµ(x ∨ 0)− Chµ
(
(−x) ∨ 0

)
,

is used to construct coherent upper previsions, see, e.g., [17].
A coherent upper prevision is a mapping P : Rn → R such that conditions

(CUP1) P(x) ≤ sup x for all x ∈ Rn;

(CUP2) P(αx) = αP(x) for all x ∈ Rn and all α ∈ [0, ∞[; and

(CUP3) P(x + y) ≤ P(x) + P(y) for all x, y ∈ Rn

hold. Note that condition (CUP2) is positive homogeneity of P and condition (CUP3)
represents sub-additivity of P. A coherent lower prevision is any mapping P : Rn → R such
that P(x) = −P(−x) for all x ∈ Rn, where P is some coherent upper prevision.

3. Revenue Transformation and Its Properties

Let us start with a notion of a revenue transformation. Imagine that the value of
an aggregation function A : Rn

+ → [0, ∞[ at y ∈ Rn
+ represents gains with resources

represented by y. The increase in gains after increasing resources by x is equal to

A(x + y)− A(y),

i.e., the difference between gains with increased resources and original resources. Imagine,
that the original resources are not known and we ask ourselves a question: What is the
maximal gain (or the best upper bound for possible gains) if we increase our resources
by x? The answer is

sup
y≥0

(
A(x + y)− A(y)

)
.

This defines the revenue transformation of A that will be denoted by A. We would
like to ensure that A is again an aggregation function and thus we must prevent A to being
equal to ∞. Such value is obtainable, see following example.

Example 1. Consider a one-dimensional aggregation function A : [0, ∞[→ [0, ∞[ given by

A(x) = x2.

Then one obtains that

A(x + y)− A(y) = (x + y)2 − y2 = x2 + 2xy
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and thus
sup
y≥0

(
2xy + y2

)
= ∞,

for any x > 0. As an example for n-dimensional aggregation function that has a similar behavour is
an aggregation function A : Rn

+ → [0, ∞[ : x 7→ x2
1 + x2

2 + · · ·+ x2
n.

One of the existence conditions (and we will prove later that it is the only condition)
for A to be an aggregation function is

sup
y≥0

(
A(x + y)− A(y)

)
< ∞

that is required to hold for all x ∈ Rn
+. This defines a sub-class of aggregation functions

that will be denoted by Arev. Whenever we refer to any revenue transformation we will
always assume that this condition is satisfied and thus we will only work with A ∈ Arev in
such a case.

Definition 1. Let A : Rn
+ → [0, ∞[ be an aggregation function such that A ∈ Arev. Then its

revenue transformation is a mapping A : Rn
+ → [0, ∞[ given by

A(x) = sup
y≥0

(
A(x + y)− A(y)

)
for all x ∈ Rn

+.

As we hinted before, any revenue transformation of any aggregation function belong-
ing to Arev yield again an aggregation function. This is stated in the following proposition.

Proposition 1. Let A : Rn
+ → [0, ∞[ be an aggregation function from Arev. Then A is also an

aggregation function.

Proof. Let us start by proving that A(0) = 0 holds. It is easy to see that

A(0) = sup
y∈Rn

+

(
A(0 + y)− A(y)

)
= sup

y∈Rn
+

(
A(y)− A(y)

)
= sup

y∈Rn
+

0 = 0.

Now we will show that A is also non-decreasing. Let x, z ∈ Rn
+ be such that x ≤ z.

From the monotonicity of A we have A(x + y) ≤ A(z + y), or, equivalently, A(x + y)−
A(y) ≤ A(z + y)− A(y) for any y ∈ Rn

+ and thus

A(x) = sup
y∈Rn

+

(
A(x + y)− A(y)

)
≤ sup

y∈Rn
+

(
A(z + y)− A(y)

)
= A(z).

Thus, A is an aggregation function.

Now we give some properties of revenue transformations. These are summarized in
the following proposition.

Proposition 2. Let A be an aggregation function. Then

a A is a sub-additive aggregation function;

b A ≥ A;

c if A is sub-additive then A = A;

d if A is shift-invariant then the diagonal of A coincides with the diagonal of A;

e if A is shift-invariant then so is A;
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f if A is positively homogeneous then so is A.

Proof. (a) To see that A is a sub-additive aggregation function, let x, z ∈ Rn
+. Then

A(x + z) = sup
y∈Rn

+

(
A(x + z + y)− A(y)

)
= sup

y∈Rn
+

(
A(x + z + y)− A(z + y) + A(z + y)− A(y)

)
≤ sup

y∈Rn
+

(
A(x + z + y)− A(z + y)

)
+ sup

y∈Rn
+

(
A(z + y)− A(y)

)
= sup

y≥z

(
A(x + y)− A(y)

)
+ A(z) ≤ sup

y∈Rn
+

(
A(x + y)− A(y)

)
+ A(z) = A(x) + A(z)

and thus A is a sub-additive aggregation function.
To prove (b) it is sufficient to notice that

A(x) = sup
y∈Rn

+

(
A(x + y)− A(y)

)
≥
(

A(x + y)− A(y)
)∣∣∣

y=0
= A(x)− A(0) = A(x)

for all x ∈ Rn
+ which implies that A ≥ A.

(c) If A is sub-additive then A(x + y) ≤ A(x) + A(y) which implies that

A(x) = sup
y∈Rn

+

(
A(x + y)− A(y)

)
≤ sup

y∈Rn
+

(
A(x) + A(y)− A(y)

)
= sup

y∈Rn
+

A(x) = A(x),

i.e., A ≤ A. Combining this with part (b) of this proposition we obtain that A = A as
needed.

To see (d) notice that

A(α1) = sup
y∈Rn

+

(
A(α1 + y)− A(y)

)
= sup

y∈Rn
+

(
A(y + α1)− A(y)

)
= sup

y∈Rn
+

(
A(y) + αA(1)− A(y)

)
= sup

y∈Rn
+

αA(1) = αA(1) = A(α1),

i.e., the diagonal of A coincides with the diagonal of A if A is shift-invariant.
To prove (e), notice that

A(x + α1) = sup
y∈Rn

+

(
A(x + α1 + y)− A(y)

)
= sup

y∈Rn
+

(
A(x + y) + αA(1)− A(y)

)
= sup

y∈Rn
+

(
A(x + y)− A(y)

)
+ αA(1) = A(x) + A(α1).

Now using (d) we have that A(1) = A(1) and thus

A(x + α1) = A(x) + αA(1),

i.e., A is indeed a shift-invariant aggregation function if A is. Now, to prove (f) notice that

A(αx) = sup
y∈Rn

+

(
A(αx + y)− A(y)

)
= sup

y∈Rn
+

(
A(αx + αy)− A(αy)

)
= α sup

y∈Rn
+

(
A(x + y)− A(y)

)
= αA(x)

for all x ∈ Rn
+ and all α ≥ 0 if A is positively homogeneous.
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Example 2. If we take, for the sake of exemplification, a one-dimensional aggregation function
A : [0, ∞[→ [0, ∞[ given by

A(x) =

{
xp, if x ∈ [0, 1],
1, otherwise,

for any p > 0 then we obtain by item c) of Proposition 2 that A = A if p ∈]0, 1] since A is
sub-additive and

A(x) =

{
1− (1− x)p, if x ∈ [0, 1],
1, otherwise,

if p > 1.

Example 3. If we consider a one-dimensional aggregation function A : [0, ∞[→ [0, ∞[ defined by

A(x) = sgn(α)
(

exp(αx)− 1
)

,

where α ∈ R \ {0} then we obtain by c) of Proposition 2 that A = A if α < 0 since A is
sub-additive. On the other hand, if α > 0, the revenue transformation of A does not exist.

Example 4. Let us consider Ω = {1, 2} and Choquet integral Chµ : R2
+ → [0, ∞[. Then one can

easily compute its revenue transformation as

Ch
µ
(x1, x2) =

{
x1 max{µ1, µ12 − µ2}+ x2 min{µ2, µ12 − µ1}, if x1 ≥ x2,
x1 min{µ1, µ12 − µ2}+ x2 max{µ2, µ12 − µ1}, if x1 < x2,

for all x ∈ R2
+, which coincides with Choquet integral Chµ̂ where µ̂ is given by

µ̂12 = µ12, µ̂i = µi + max{0, µ12 − µ1 − µ2}

for i ∈ {1, 2}.

In general, for n > 2, it is an open problem whether for any monotone measure µ,
Ch

µ
= Chν for some monotone measure ν. Clearly, if this is the case, ν(A) = Ch(1A) for any

A ⊆ Ω. Note that for any µ, ν(A) = Ch
µ
(1A) defines a sub-modular monotone measure.

Example 5. Consider a Choquet integral Chµ on Ω = {1, 2, 3} with respect to a monotone measure
µ given by

µ(A) =


0, if A = ∅,
2/3, if |A| ∈ {1, 2},
1, if A = Ω.

This monotone measure is not sub-modular and one can find that Chµ(x) = (x(1) + 2x(3))/3,
i.e., Chµ is an OWA (Ordered Weighted Averaging) operator [18]. Its revenue transformation is
again Choquet integral Chµ

= Chµ̂ with respect to a monotone measure µ̂ given by

µ̂(A) =


0, if A = ∅,
2/3, if |A| = 1,
1, if |A| ≥ 2,

and Chµ̂ = (x(2) + 2x(3))/3; and µ̂ is a sub-modular monotone measure.

Example 6. Let Ω = {1, 2, 3, 4} and let µ be a monotone measure on Ω. Let us continue with
Example 2 that we presented in [19]. Note that based on the monotone measure µ introduced there,
we can construct a new monotone measure ν : 2Ω → [0, ∞[ by ν(A) = Ch

µ
(1A) for all A ∈ 2Ω.
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The values of the chosen monotone measure µ and the related monotone measure ν can be found in
Table 1. Note that ν is a sub-modular monotone measure and also, if Chµ is Choquet integral then it
would coincide with Chν.

Table 1. Values of capacities µ and ν from Example 6.

A ∅ {1} {2} {3} {4} {1, 2} {1, 3} {1, 4} {2, 3} {2, 4} {3, 4}
µ(A) 0 1/4 0 1/4 0 1/2 1/2 1/2 1/2 1/2 1/2

ν(A) 0 1/2 1/2 1/2 1/2 1 1 1 1 1/2 1

A {1, 2, 3} {1, 2, 4} {1, 3, 4} {2, 3, 4} {1, 2, 3, 4}

µ(A) 3/4 1/2 3/4 1/2 1

ν(A) 1 1 1 1 1

4. Constructions of Coherent Upper Previsions

In this section, we will construct coherent upper previsions using aggregation func-
tions with special properties. Analogous construction process as in [4,19] will be adopted.

Proposition 3. Let A : Rn
+ → [0, ∞[ be a sub-additive, positively homogeneous and shift-invariant

aggregation function such that A(1) 6= 0. Then the mapping cup : Rn → R given by

cup(x) =
A(x− (inf x)1)

A(1)
+ inf x

for all x ∈ Rn defines a coherent upper prevision.

Proof. First of all, note that for all x ∈ Rn, x− (inf x)1 ≥ 0, and thus the definition of cup
is valid. Since Rn is a linear space to prove that cup defines a coherent upper prevision we
will prove that cup obeys conditions (CUP1)-(CUP3). To see that (CUP1) holds, notice that

cup(x) =
A
(
x− (inf x)1

)
A(1)

+ inf x ≤
A
(

sup
(
x− (inf x)1

)
1
)

A(1)
+ inf x

=
(

sup x− inf x
)A(1)

A(1)
+ inf x = sup x− inf x + inf x = sup x

for all x ∈ Rn. To see (CUP2) it is enough to consider

cup(αx) =
A
(
αx− (inf αx)1

)
A(1)

+ inf αx =
A
(
αx− α(inf x)1

)
A(1)

+ α inf x

= α
A
(
x− (inf x)1

)
A(1)

+ α inf x = α

(
A
(
x− (inf x)1

)
A(1)

+ inf x

)
= αcup(x)

for all α ≥ 0 and all x ∈ Rn. Lastly, it remains to show that the condition (CUP3) holds,
i.e., to show that cup is sub-additive. Because infimum is a super-additive aggregation
function, we know that inf(x+ y) ≥ inf x+ inf y and thus r = inf(x+ y)− inf x− inf y ≥ 0.
Note that

cup(x + y) =
A
(

x + y−
(

inf(x + y)
)
1
)

A(1)
+ inf(x + y).

Now, from − inf(x + y) = − inf x− inf y− r, we obtain that

cup(x + y) =
A
(
x + y− (r + inf x + inf y)1

)
+

0︷ ︸︸ ︷
rA(1)− rA(1)

A(1)
+ inf(x + y).
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Using the shift-invariance of A and the fact that r ≥ 0 we have that

cup(x + y) =
A
((

x− (inf x)1
)
+
(
y− (inf y)1

))
A(1)

− r + inf(x + y).

Noticing that inf(x + y)− r = inf x + inf y and by the sub-additivity of A we finally
obtain that

cup(x + y) ≤
A
(
x− (inf x)1

)
A(1)

+ inf x +
A
(
y− (inf y)1

)
A(1)

+ inf y = cup(x) + cup(y)

for all x, y ∈ Rn, i.e., cup is sub-additive.

Remark 1. Moreover, we may assume that A is also idempotent, i.e., A(α1) = α for all α ≥ 0.
With the fact that A is shift-invariant it is enough to consider only the fact that A(1) = 1.
Assuming this extra condition, the coherent upper prevision can be constructed by

cup(x) = A
(
x− (inf x)1

)
+ inf x,

which simplifies the construction.

Remark 2. As another remark, note that a positively homogeneous and idempotent aggregation
function A : Rn

+ → [0, ∞[ is fully determined by its restriction to [0, 1]n because

A(x) = (sup x)A
(

x
sup x

)
,

for any x ∈ Rn
+ \ {0}, where x/(sup x) ∈ [0, 1]n. Also note that the given restriction A|[0,1]n is a

[0, 1]-aggregation function and thus we can characterize all positively homogeneous, shift-invariant
and idempotent aggregation functions. To authors’ best knowledge, this characterization has not
been published anywhere, yet.

Proposition 4. An aggregation function A : Rn
+ → [0, ∞[ is positively homogeneous, shift-

invariant and idempotent if and only if there exists a positively homogeneous and shift-invariant
[0, 1]-aggregation function B : [0, 1]n → [0, 1] such that A|[0,1]n= B and

A(x) = (sup x)A
(

x
sup x

)
whenever x 6= 0.

Remark 3. Note that there are positively homogeneous and shift-invariant aggregation functions
that are not idempotent. As a trivial example of such aggregation function we give the sum function
(with n > 1).

Coherent lower previsions are obtained by the conjugacy property

clp(x) = −cup(−x) = −A(−x− (inf(−x))1)
A(1)

− inf(−x) = −A(−x− (sup(x))1)
A(1)

− sup(x)

We can observe that if the aggregation function A, that is considered to define a coherent
upper prevision, is linear, then clp(x) = −cup(−x) and a linear prevision is obtained.

Coherent upper probabilities can be obtained by Proposition 3 when only indicator
vectors are considered.
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The coherent upper probability of an event E ⊆ Ω is defined by

P(E) = cup(1E) =
A(1E)

A(1)
.

and the coherent lower probability is obtained by the conjugacy property,

clp(1E) = 1− cup(1Ec)

Example 7. Let A : Rn
+ → [0, ∞[ be an aggregation function defined by A(x) = sup x. Note that

A satisfies all requirements of Proposition 3 and thus A can be used to construct a coherent upper
prevision. This construction leads to cup(x) = sup x which is the vacuous upper prevision.

Example 8. The Choquet integral Chµ̂ defined in Example 5 by the revenue transformation of Chµ

(which is not a coherent upper prevision because it is not sub-additive), is a coherent upper prevision
since it is sub-additive, positively homogeneous and such that

Chµ̂(x) =
x(2) + 2x(3)

3
≤ x(3) = sup x.

Coherent upper probabilities are obtained when only indicator vectors 1E, for all E ∈ 2Ω, are
considered. These are given by

P(1E) = cup(1E) =
Chµ̂(1E)

Chµ̂(1)
= Chµ̂(1E) = µ̂(E) =


0, if E = ∅,
2/3, if |E| = 1,
1, if |E| ≥ 2,

In the following example an aggregation function which cannot be used to define a
coherent upper prevision is given.

Example 9. Let Ω = {1, 2, . . . , n}. The aggregation function A(x) = ∑n
i=1 x2

i can not be used
to construct a coherent upper prevision, because it is not sub-additive; moreover the revenue
transformation A does not exists as shown in Example 1.

Example 10. Let Ω = {1, 2, . . . , n}. The aggregation function A(x) = ∑n
i xi can be used to

construct a coherent upper prevision, because it is linear and homogeneous; by Proposition 3 we
obtain that cup(x) is the mean and the coherent probability of an event is defined by the counting
measure, which is the Hausdorff measure of order 0. In this setting, A = A.

In the following theorem a construction of aggregation functions, which are idem-
potent, positively homogeneous, shift invariant and sub-additive are proposed. They are
applied in the construction of coherent upper conditional previsions.

Theorem 1. Denote by Kn the class of all n-ary aggregation functions on [0, ∞[, which are
idempotent, positively homogeneous, shift invariant and sub-additive, then for any n, k ∈ N, let
A ∈ Kn and E1, E2, . . . , En be non-empty subsets of {1, 2, . . . , k} with cardinalities k1, k2, . . . , kn,
respectively, so that Ei =

{
ei,1, ei,2, . . . , ei,ki

}
, where ei,1 < ... < ei,ki

, si : {1, ..., k} → {1, ..., k}
are permutations and Bi ∈ Kki

, then the aggregation function C defined by

C(x1, . . . , xk) = A
(

B1
(

xs1(e1,1)
, . . . , xs1(e1,k1

)

)
, . . . , Bn

(
xsn(en,1)

, . . . , xsn(en,kn )

))
belongs to Kk.
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Proof. Observe first that each function Ci : [0, ∞[k→ [0, ∞[ given by

Ci(x1, . . . , xk) = Bi(xsi(ei,1)
, . . . , xsi(ei,ki

)),

for i = 1, 2, . . . , n, is an aggregation function from the class Kk. Then, for any c ∈ [0, ∞[,

C(c) = A(C1(c), . . . , Cn(c)) = A(c, . . . , c) = c,

i.e., C is idempotent. Similarly, one can show the positive homogeneity, shift invariantness
and sub-additivity of C, which ensures C ∈ Kk.

The previous construction method can be used to define coherent upper previsions if
C(1) 6= 0.

Corollary 1. Let A ∈ Kn be a weighted arithmetic mean, i.e., a linear prevision given by

A(x1, . . . , xn) = ∑ cixi,

and let B1, . . . , Bn be given as in Theorem 1. Then the convex combination

C(x1, . . . , xk) =
n

∑
i=1

ciBi(xei,1 , . . . , xei,ki
)

belongs to Kk.

Also multi-step Choquet integrals [20–22], which are multi-step aggregation functions
and which are not Choquet integrals, in general, can be used to construct coherent upper
previsions.

Example 11. Let n = 2, k = 3, A = max, B1(x1, x2) = (min{x1, x2}+ 2 max{x1, x2})/3,
and B2(x3) = x3 then

C(x1, x2, x3) = max
{

min{x1, x2}+ 2 max{x1, x2}
3

, x3

}
,

and C belongs to K3 and C(1) = 1 6= 0 hence it can be used, by Proposition 1 and Remark 1, to
build the following coherent upper prevision

cup(x1, x2, x3) =
C(x1, x2, x3)

C(1)
= max

{
min{x1, x2}+ 2 max{x1, x2}

3
, x3

}
,

Note that A, B1 and B2 are OWA operators and thus Choquet integrals, but C cannot be
expressed as a Choquet integral.

5. Conclusions

In this paper a construction method, based on sub-additive positively homogeneous
and shift-invariant aggregation functions is proposed to define coherent upper previsions.
Moreover a sub-additive transformation of an aggregation function, named revenue trans-
formation is introduced to obtain a sub-additive aggregation function. Under some mild
additional constraints, this transformed aggregation function is then used to define a co-
herent upper prevision. As a distinguished example one can recall the Choquet integral. If
the considered monotone measure µ is sub-modular then the related asymmetric Choquet
integral Chµ is a coherent upper prevision. If µ is not sub-modular, clearly, Chµ is not a
coherent upper prevision, but based on our proposal one can define a coherent upper
prevision Ch

µ. It is an interesting open problem whether the operator Chµ is comonotone
additive and thus it can be represented as a Choquet integral Chν, where ν is a sub-modular
monotone measure given by ν(E) = Ch

µ
(1E).
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We have considered finite σ-algebras A only, being inspired by the motivation and
basic examples of coherent upper (lower) previsions known from the literature. In our
future work, we aim to focus on constructions of coherent upper (lower) previsions on
general measurable spaces (Ω,A).
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