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Abstract: This article applies the Bonferroni prioritized induced heavy ordered weighted average 
(OWA) to analyze a series of data and focuses on the Bonferroni average and heavy induced prior-
itized aggregation operators. The objective of the present work is to present a new aggregation op-
erator that combines the heavy induced prioritized Bonferroni and its formulations and represents 
the Bonferroni mean with variables that induce an order with vectors that are greater than one. This 
work develops some extensions using prioritization. The main advantage is that different types of 
information provided by a group of decision makers to compare real situations are included in this 
formulation. Finally, an example using the operators to calculate the transparency of the websites 
of the 32 states of Mexico was performed. The main idea was to visualize how the ranking can 
change depending on the importance of the five components of the methodology. The main results 
show that it is possible to detect some important changes depending on the operator and the experts 
considered. 

Keywords: Bonferroni means; prioritized aggregation operators; induced aggregation operators; 
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1. Introduction 
The Organization for Economic Co-operation and Development (OECD) has recently 

recognized open government initiatives as critical drivers of citizens’ trust and key aspects 
of the modernization, anticorruption, civic freedom, innovation, financial management 
and human resource management of the public sector of a country [1]. Moreover, a culture 
of transparency, participation and accountability that conforms to open government 
yields opportunities for economic growth, as it promotes the creation of businesses, jobs 
and cost-effective public policies [2]. Nonetheless, the design, creation and implementa-
tion of effective open government strategies pose a series of challenges for countries, in-
cluding their alignment with national plans, strategic visions, public governance and tech-
nological resources [3–5]. 

Transparency and access to information are key issues for the establishment of open 
governments. Governmental transparency is the ability to determine what is happening 
inside the government [6]. Moreover, transparency fosters the accountability of actions 
and offers information to citizens regarding governmental decisions [7], thereby dissuad-
ing corruption and promoting efficiency, democracy and legitimacy [8]. In this sense, in-
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formation is an asset, and while some administrations may use it as a trigger for best prac-
tices, others may have a radically different opinion based on their own political, adminis-
trative, institutional and demographic contexts [9,10]. These variations based on country 
contexts constitute the difference between freedom of information laws, their design and 
operations and the challenges they have for their nations, e.g., Canada and the United 
Kingdom or the open government of the People’s Republic of China [11]. 

In Mexico, access to information is a citizen’s right composed of three elements: nor-
mative design, institutional design, and procedures for access to public information and 
transparency obligations [12]. The National Institute of Transparency (INAI) is a special-
ized public institution that regulates transparency at the national level, including access 
to information, personal data protection and the development of methodologies to assess 
transparency [13]. Additionally, the ranking of transparency websites is measured 
through five components: institutional arrangements, open data, vertical collaboration, 
horizontal collaboration, and interface [14]. The main difficulties with this formula are 
that it takes an average of the results that depend on the state; some of the components 
are more important than others. Because the calculation is made with the same weights 
for each subindex for all the states, there is no real evaluation of transparency depending 
on the specific characteristics and problems of each state. 

Recent developments in information technologies have opened the path for assessing 
decision-making in systemic environments. Expert and intelligent systems have proven 
effective in subjective, uncertain and highly complex scenarios [15,16]. In this context, to 
address some of the abovementioned challenges, a combination of several intelligent sys-
tems such as the Bonferroni means [17] and the ordered weighted averaging (OWA) op-
erator [18] will be used. A special focus will be placed on the following extensions: (a) the 
Bonferroni ordered weighted averaging (BON-OWA) operator [19] allows adding infor-
mation and making multiple comparisons between input arguments and capturing their 
interrelation to present information, (b) the induced ordered weighted averaging (IOWA) 
operator [20,21] uses induced variables in the reordering step instead of the traditional 
reordering based on the value of the arguments of the OWA operator, (c) the prioritized 
ordered weighted averaging (PrOWA) operator [22] introduces a mechanism for assign-
ing specific weights to the participants in a group decision-making problem, and, finally, 
(d) the heavy ordered weighted averaging (HOWA) operator [23] features a nonbounded 
weighting vector that allows the over- or underestimation of results according to the ex-
pectation and knowledge of the decision maker. 

According to Blanco-Mesa, León-Castro and Merigó [24], aggregation operators al-
low joining different pieces of information provided by several sources [25], ensuring the 
inclusion of all the fusion information [26,27] and combining several values into a single 
value [15,28]. Since the proposal of the BON-OWA operator, several new methodological 
contributions have been made, among which those developed by Blanco-Mesa, such as 
(1) the Bonferroni means with distance measures applied to entrepreneurship and human 
resource management [29,30], (2) the Bonferroni induced operator and heavy operator 
applied to enterprise risk management and sale forecasting [31,32], (3) the Bonferroni 
OWA variance used in strategic analysis in enterprise risk management [33], and (4) the 
Bonferroni covariance OWA used in research and development investment problems [34], 
stand out as addressing decision-making problems in business management. Recently, a 
paper has been published that proposed measuring transparency with another aggrega-
tion method called the prioritized induced ordered weighted average weighted average 
(PIOWAWA) operator. This operator considers the degree of importance, reordering and 
weight factors given to the information in the same formulation by the decision maker 
and is assessed using a Colombian transparency case [35]. Additionally, formulations 
have become widespread, and extensions have been proposed with other operators, such 
as the induced OWA operator (IOWA) [20,21], the heavy OWA operator (HOWA) [23], 
the OWAWA operator [36] and immediate weights (IWs) [37]. 
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Following the above ideas, it is interesting to explore other operators that can be com-
bined with the Bonferroni means. In that sense, one of the operators that can be extended 
is the prioritized OWA operator [38]. This operator is characterized by balancing the im-
pact that a decision maker has on decision problems where he or she does not have the 
same position in the final decision, i.e., this operator assigns an additional impact to some 
decision makers and less to others. In the case of this research, it is very useful in problems 
calculating and evaluating the importance of each component because of their interrela-
tionship, their interdependence and the importance that various agents have in this eval-
uation process. 

The objective of this paper is to present a new extension of the BON-OWA operator 
using the extensions described above in a single formulation. The introduced operator is 
the Bonferroni prioritized induced heavy OWA (BON-PrIHOWA) operator. The main ad-
vantage of this operator is the consideration of a group decision-making problem in a 
single formulation including a nonlimited to zero weighting vector and an induced 
weighting vector capable of assigning weights according to the highly complex conditions 
of the analyzed phenomena. These features allow the analysis of a changing classification 
according to the additional information provided and the consideration of new scenarios 
for accurate results. The newly introduced BON-PrIHOWA is used as a method for rank-
ing the transparency portals for the 32 states in Mexico based on experts. 

The remainder of this document is organized as follows. In Section 2, we present 
some of the basic aggregation operators. Section 3 presents the new proposed operator, 
the BON-PrIHOWA operator. In Section 4, the evaluation of the characteristics of the 
transparency websites in Mexico based on different experts and aggregation operators are 
included. Finally, in Section 5, the conclusions of the document are presented. 

2. Preliminaries 
In this section, we review some of the required basic concepts related to the OWA 

operator in this article. This operator is supported by criteria that are the bases of a deci-
sion that integrate the expectations of the decision makers in the evaluation that he or she 
makes of the set of actions to be taken [39]. Likewise, the OWA operator has the versatility 
to add data without losing its mathematical properties. Furthermore, according to the ar-
guments, the qualifications can obtain evaluated alternatives. Thus, operators such as the 
HOWA, IOWA, PrOWA, PIOWA and IHOWA have been proposed and studied. Addi-
tionally, the OWA operator has allowed the development of several extensions that com-
bine new parameters and interactions with other methods and some other extensions [39]. 
Among these, the BON-OWA, BON-HOWA, BON-IOWA and BON-PrOWA will also be 
studied to fulfil the purpose of the research. Hence, each of the definitions of the operators 
mentioned above is presented below. 

2.1. OWA Operator and Its Main Extensions 
The OWA operator was introduced by Yager [18], and its main feature is that it is 

possible to obtain the maximum and minimum values according to the operator’s rear-
rangement weight. The purpose of this operator is to obtain a single representative value 
from the aggregation of a series of data that reflect the predetermined optimism/pessi-
mism parameters. It is defined as follows: 

Definition 1. An OWA operator of dimension 𝑛 is a mapping of 𝑂𝑊𝐴: 𝑅 → 𝑅 with a weight 
vector W of dimension n with ∑ 𝑤 = 1 and 𝑤 ∈ [0,1] such that: 

𝑂𝑊𝐴(𝑎 , 𝑎 , . . , 𝑎 ) = 𝑤 𝑏  (1)

where 𝑏  is the jth element and the largest of the collection 𝑎 , 𝑎 , … , 𝑎 . 
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The fundamental characteristic of the OWA operator is that the rearrangement of the 
elements or arguments allows argument 𝑎  not to be associated with weight 𝑤  weight 
if all 𝑤 s are associated with the position in the order for aggregation. 

Definition 2. As introduced by Merigo and Gil-Lafuente [21], an IOWA operator of dimension 𝑛 is an application 𝐼𝑂𝑊𝐴: 𝑅 → 𝑅 that has an associated weight vector W of dimension n where 
the sum of the weights is 1, 𝑤 ∈ [0,1], and an induced set of variables of order are included (𝑢 ). 
The formula is 𝐼𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = ∑ 𝑤 𝑏 , (2)

where (𝑏 , 𝑏 , … , 𝑏 ) is simply (𝑎 , 𝑎 , … , 𝑎 ) reordered descending or ascending according to 
the values of 𝑢 . 𝑏  is the 𝑎  value of the OWA pair < 𝑢 , 𝑎 > having the jth largest 𝑢 . 𝑢  is 
the order inducing variable, and 𝑎  is the argument variable. These operators take argument pairs, 
called OWA pairs, in which a component is used to induce an order on the second components that 
are then added. 

Among the extensions of the OWA operator that focus on the weight vector is the 
heavy OWA (HOWA) operator [23]. In this extension, the weight vector is not ∑ 𝑤 = 1 
but is unbounded; therefore, the weighting vector can be 1 ≤ ∑ 𝑤 ≤ 𝑛. The definition 
is as follows: 

Definition 3. An HOWA operator is a mapping 𝐻𝑂𝑊𝐴: 𝑅 → 𝑅 that is associated with a weight 
vector w, where 𝑤 ∈ [0,1] and 1 ≤ ∑ 𝑤 ≤ 𝑛, such that 𝐻𝑂𝑊𝐴 (𝑎 , 𝑎 , … , 𝑎 ) = ∑ 𝑤 𝑏 , (3)

where 𝑏  is the jth largest element of collection 𝑎 . It is also important to note that in some cases, 
it is possible that the weight vector is −∞ ≤ ∑ 𝑤 ≤ ∞, making it possible to under- or overes-
timate the results according to the expectations of the decision maker. It is important to note that 
Yager (2002) also developed a characteristic of the HOWA operator, which is called the beta value. 
This beta value can be defined as 𝛽(𝑊) = (|𝑊| − 1)/(𝑛 − 1). Note that if 𝛽 = 1, we obtain the 
total operator, and if 𝛽 = 0, we obtain the usual OWA operator. 

Definition 4. The prioritized OWA (PrOWA) operator developed by Yager [40] is an aggregation 
operator that is useful when problem-solving decision makers do not have the same standing in the 
final decision. Thus, this operator allocates an additional impact to some decision makers and less 
to others. This operator can be defined as follows (Yager 2008, 2009a). A prioritized OWA 
(PrOWA) of dimension n is a mapping 𝑃𝑟𝑂𝑊𝐴: 𝑅 → 𝑅 that has an associated 𝑣  that is the 
corresponding weight of the jth criterion in the ith category. 
where 𝐶 (𝑥) = 𝑎 ∈ [0,1] is the degree of satisfaction with criterion 𝐶  by alternative 𝑥. 𝑉 ∈ [0,1] and ∑ 𝑉 = 1, (4)

where 𝑎 ( ) is the kth largest element of collection 𝐶 (𝑥). 𝐶( ) = ∑ ∑ 𝑤 𝐶 (𝑥), (5)

which allows us to obtain ind(j). We calculate this number using the subscript of the associated 𝐶 . 𝑅 = 𝑟 ( ), (6)𝑟 = , (7)𝑣 = 𝑓 𝑅  − 𝑓 𝑅  , (8)𝐶( ) = ∑ 𝑣 ⋅ 𝑎 ( ), (9)
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𝑇 = 1, 𝑇 = 𝐶 𝑇     𝑓𝑜𝑟 𝑖 = 2 𝑡𝑜 𝑛, (10)

where 𝑏  is the jth element that has the largest value of 𝑢 ; 𝑢  is the induced order of variables; 𝑣  is the corresponding weight of the jth criterion in the ith category for each 𝑖 = 1, … , 𝑞 𝑎𝑛𝑑 𝑗 =1, … , 𝑖 ; and 𝐶 (𝑥) measures the satisfaction of the jth criterion in the ith group by alternative 𝑥 ∈𝑋 for each 𝑖 = 1, … , 𝑞 𝑎𝑛𝑑 𝑗 = 1, … , 𝑖 . 

Definition 5. A prioritized induced OWA (PIOWA) of dimension n is a mapping 𝑃𝐼𝑂𝑊𝐴: 𝑅 𝑥 𝑅 → 𝑅 that has an associated weight vector w of dimension 𝑛, where 𝑤 ∈ [0,1] 
and ∑ 𝑤 = 1, such that 

𝑃𝐼𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = 𝑏 𝑣 𝐶 (𝑥), (11)

where 𝑏  is the jth element that has the largest value of 𝑢 ; 𝑢  is the induced order of variables; 𝑣  is the corresponding weight of the jth criterion in the ith category for each 𝑖 = 1, … , 𝑞 𝑎𝑛𝑑 𝑗 =1, … , 𝑖 ; and 𝐶 (𝑥) measure the satisfaction of the jth criterion in the ith group by alternative 𝑥 ∈𝑋 for each 𝑖 = 1, … , 𝑞 𝑎𝑛𝑑 𝑗 = 1, … , 𝑖 . 

Another extension takes the reordering process of the IOWA operator and the un-
bounded weighting vector of the HOWA operator. This operator is called the induced 
heavy OWA (IHOWA) operator. The definition is as follows (Merigó and Casanovas 
2011). 

Definition 6. An IHOWA operator of dimension 𝑛 is a mapping 𝐼𝐻𝑂𝑊𝐴: 𝑅 × 𝑅 → 𝑅 that 
has an associated weighting vector W of dimension n with 𝑤 ∈ [0,1] and 1 ≤ ∑ 𝑤 ≤ 𝑛 such 
that 𝐼𝐻𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = ∑ 𝑤 𝑏 , (12)

where 𝑏  is the 𝑎  of the IHOWA pair < 𝑢 , 𝑎 > having the jth largest 𝑢 . 𝑢  is the order in-
ducing variable, and 𝑎  is the argument variable. 

2.2. Bonferroni-OWA 
In relation to soft mathematics and with respect to models that relate to the theory of 

aggregation [32,38], there is the extension of Bonferroni that allows us to add, organize, 
and relate information objectively and subjectively simultaneously. These models are the 
same ones that are applicable in artificial intelligence. This operator is called the BON-
OWA. Compared to other models such as traditional statistics, the BON-OWA allows us 
to obtain important results by treating information simultaneously [29]. 

Decision-making seeking to reduce uncertainty can improve the results by applying 
the Bonferroni average since it builds confidence intervals and maintains the global con-
fidence coefficient [17]. The operator is defined as follows: 

B(a , a , … , a ) = 1n 11 − n a ,  (13)

Definition 7. The Bonferroni OWA is mean-type aggregation operator. The main characteristics 
of the Bonferroni average (Bonferroni 1950) are that the arguments a must be greater than or equal 
to 0, and the parameters p and q must be greater than or equal to 0. The algorithm that combines 
the OWA operator and the Bonferroni average can be defined as: BON − OWA(a , … , a ) = ∑ 𝑎 𝑂𝑊𝐴 (𝑉 ) , (14)
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where 𝑂𝑊𝐴 (𝑉 ) represents the expression ∑ 𝑎  with (Vi) being the vector of all ajs 

except 𝑎  and 𝑤 being an 𝑛 − 1 vector 𝑊  associated with 𝛼  whose components 𝑤  are the 
OWA weights. Let 𝑊 be an OWA weighting vector of dimension 𝑛 − 1 with components 𝑤 ∈ [0,1] when ∑ 𝑤 = 1. Then, we can define this aggregation as 𝑂𝑊𝐴 (𝑉 ) = ∑ 𝑤 𝑎 ( ) , 
where 𝑎 ( ) is the largest element in the tuple 𝑉  and 𝑤 =  for all 𝑖. 
Definition 8. The Bonferroni IOWA (BON-IOWA) (Blanco-Mesa et al. 2019b) is a mean-type 
aggregation operator that is defined as follows. BON − IOWA(〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = ∑ 𝑎 𝐼𝑂𝑊𝐴 (𝑉 ) , (15)

where (𝑉 ) is the vector of all 𝑎  except 𝑎 . Let 𝑊 be an OWA weighing vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1] when ∑ 𝑤 = 1, where the weights are associated according 
to the largest value of 𝑢 , and 𝑢  is the order-inducing variable. Then, we can define this aggrega-
tion as 𝐼𝑂𝑊𝐴 (𝑉 ) = ∑ 𝑤 𝑎 ( ) , where 𝑎 ( ) is the largest element in the n–1 tuple 𝑉  
= 𝑉 = (〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉). 

Definition 9. The Bonferroni HOWA (BON-HOWA) [31] is a mean-type aggregation operator 
that has an associated weighting vector W with 𝑤 ∈  [0,1] and 1 ≤ ∑ 𝑤 ≤ 𝑛 such that: BON − HOWA(𝑎 , … , 𝑎 ) = ∑ 𝑎 𝐻𝑂𝑊𝐴 (𝑉 ) , (16)

where (𝑉 ) is the vector of all 𝑎 s except 𝑎 . Let 𝑊 be an OWA weighing vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1] when 1 ≤ ∑ 𝑤 ≤ 𝑛. Thus, the sum of the weights 𝑤  is 
bounded to n or can be unbounded if the weighting vector 𝑊 =  −∞ ≤ ∑ 𝑤 ≤ ∞. Then, we 
can define this aggregation as 𝐻𝑂𝑊𝐴 (𝑉 ) = ∑ 𝑤 𝑎 ( ) , where 𝑎 ( ) is the largest ele-
ment in the n−1 tuple 𝑉  = 𝑉 = (𝑎 , … , 𝑎 , 𝑎 , … , 𝑎 ). 

Definition 10. The Bonferroni PrOWA (BON-PrOWA) [41] is a mean-type aggregation operator 
that has an associated weighting vector W: BON − 𝑃𝑟𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = (∑ 𝑎 𝑃𝑟𝑂𝑊𝐴 (𝑉 )) , (17)

where (𝑉 ) is the vector of all 𝑎 s except 𝑎 . Let 𝑊  be an OWA weighing vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1] when ∑ 𝑤 = 1. 𝑊  is the vector of weights (associated 
with the vector 𝑉 ) of all 𝑤 s except 𝑤 . 𝑟 and 𝑞 are parameters such that 𝑟, 𝑞 ≥ 0. The 𝑎  s are 
the some prioritized 𝑎 s, where column “i” is omitted to perform the sorting. A vector of n − 1 
elements remains. r is the exponent of 𝑎 . 

Definition 11. The Bonferroni IHOWA (BON-IHOWA) [31] is a mean-type aggregation opera-
tor that has an associated weighting vector W, where 𝑤 ∈  [0,1] and 1 ≤ ∑ 𝑤 ≤ 𝑛, such that: 𝐵𝑂𝑁 − 𝐼𝐻𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = ∑ 𝑎 𝐼𝐻𝑂𝑊𝐴 (𝑉 ) , (18)

where (𝑉 ) is the vector of all 𝑎 s except 𝑎 s. Let 𝑊 be an OWA weighting vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1] when 1 ≤ ∑ 𝑤 ≤ 𝑛. The weights are associated according 
to the largest value of 𝑢 , and 𝑢  is the order-inducing variable. Likewise, the sum of the weights 𝑤  is bounded to 𝑛 or can be unbounded if the weighting vector 𝑊 = −∞ ≤ ∑ 𝑤 ≤ ∞. Then, 
we can define this aggregation as 𝐼𝐻𝑂𝑊𝐴𝑤(𝑉 ) = ∑ 𝑤 𝑎 ( ) , where 𝑎 ( ) is the largest 
element in the n−1 tuple 𝑉  =𝑉 = (〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉). 
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3. New Propositions—Bonferroni Prioritized Induced Heavy OWA Operator 
In this section, a new proposition considering the theoretical aspects and the revision 

of the definitions of each of the methods necessary for its proposal is presented. Here, it 
is important to mention that the authors of a previous work [35] established an approach 
that improves the evaluation of the transparency index that considers the degree of im-
portance, reordering and weight factors. This approach seeks to improve the integration 
of information by considering their interrelationship, their interdependence and the im-
portance of the information and including a nonlimited to zero weighting vector and an 
induced weighting vector capable of assigning weights according to the highly complex 
conditions of the analyzed phenomena [35,42]. Thus, this approach offers a better way to 
understand the information than just the measurement [42]. In this sense, the proposition 
presented is called the Bonferroni prioritized induced heavy OWA operator (BON-PrI-
HOWA). From this main proposal, the BON-PrOWA, PrIOWA and PrHOWA are also 
presented. Each of the propositions is presented below. 

Proposition 1. The Bonferroni PrOWA (BON-PrOWA) is a mean-type aggregation operator that 
has an associated weighting vector W: BON − 𝑃𝑟𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = (∑ 𝑎 𝑃𝑟𝑂𝑊𝐴 (𝑉 )) , (19)

where (𝑉 ) is the vector of all 𝑎 s except 𝑎 . Let 𝑊  be an OWA weighing vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1] when ∑ 𝑤 = 1. 𝑊  is the vector of weights (associated 
with the vector 𝑉 ) of all 𝑤 s except 𝑤 . 𝑟 and 𝑞 are parameters such that 𝑟, 𝑞 ≥ 0, The 𝑎 𝑠 are 
some prioritized 𝑎 s, where column “i” is omitted to perform the sorting. A vector of n − 1 elements 
remains. r is the exponent of 𝑎 . 𝑃𝑟𝑂𝑊𝐴 (𝑉 ) = ∑ 𝑤 𝑎 ( ) , where 𝑎 ( ) is the largest 
element in the n − 1 tuple 𝑉  = 𝑉 = (𝑎 , … , 𝑎 , 𝑎 , … , 𝑎 ). 

Proposition 2. The Bonferroni PrIOWA is a mean-type aggregation operator that has an associ-
ated weighting vector W: BON − 𝑃𝑟𝐼𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = (∑ 𝑎 𝑃𝑟𝑂𝑊𝐴 (𝑉 )) , (20)

where (𝑉 ) is the vector of all 𝑎 s except 𝑎 . Let 𝑊  be an OWA weighing vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1] when ∑ 𝑤 = 1. 𝑊  is the vector of weights (associated 
with the vector 𝑉 ) of all 𝑤 s except 𝑤 , the weights are associated according to the largest value 
of 𝑢  and 𝑢  is the order-inducing variable. 𝑟 and 𝑞  are parameters such that 𝑟, 𝑞  ≥ 0, The 𝑎 𝑠 are some prioritized 𝑎 s, where column “i” is omitted to perform the sorting. A vector of n –1 
elements remains. r is the exponent of 𝑎 . Then, 𝑃𝑟𝐼𝑂𝑊𝐴 (𝑉 ) = ∑ 𝑤 𝑎 ( ) , where 𝑎 ( ) 
is the largest element in the n − 1 tuple 𝑉  = 𝑉 =(〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉). 

Proposition 3. The Bonferroni PrHOWA is a mean-type aggregation operator that has an associ-
ated weighting vector W: BON − 𝑃𝑟𝐻𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = (∑ 𝑎 𝑃𝑟𝑂𝑊𝐴 (𝑉 )) , (21)

where (𝑉 ) is the vector of all 𝑎 s except 𝑎 . Let 𝑊  be an OWA weighing vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1] when 1 ≤ ∑ 𝑤 ≤ 𝑛. 𝑊  is the vector of weights (associ-
ated with the vector 𝑉 ) of all 𝑤 s except 𝑤 . Thus, the sum of the weights 𝑤  is bounded to n or 
can be unbounded if the weighting vector 𝑊 =  −∞ ≤ ∑ 𝑤 ≤ ∞. 𝑟 and 𝑞  are parameters 
such that 𝑟, 𝑞 ≥ 0. The 𝑎 𝑠 are some prioritized 𝑎 s, where column “i” is omitted to perform the 
sorting. A vector of n – 1 elements remains. r is the exponent of 𝑎 . 𝑃𝑟𝐻𝑂𝑊𝐴 (𝑉 ) =∑ 𝑤 𝑎 ( ) , where 𝑎 ( )  is the largest element in the n − 1 tuple 𝑉  = 𝑉 =(𝑎 , … , 𝑎 , 𝑎 , … , 𝑎 ). 
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Proposition 4. The BON-PrIHOWA on (𝑉 ) is the vector of all 𝑎 s except 𝑎 . Let 𝑊  be an 
OWA weighing vector of dimension 𝑛 − 1 with components 𝑤 ∈  [0,1], where 1 ≤ ∑ 𝑤 ≤𝑛. BON − 𝑃𝑟𝐼𝐻𝑂𝑊𝐴(〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉) = (∑ 𝑎 𝑃𝑟𝐼𝐻𝑂𝑊𝐴 (𝑉 )) , (22)

where 𝑊  is the vector of weights (associated with the vector 𝑉 ) of all 𝑤 s except 𝑤 . Let 𝑊 be 
an OWA weighting vector of dimension 𝑛 − 1  with components 𝑤 ∈  [0,1]  when 1 ≤∑ 𝑤 ≤ 𝑛, where the weights are associated according to the largest value of 𝑢  and 𝑢  is the 
order-inducing variable. The induced 𝑢  given to the elements 𝑎  is given in an ascending or a 
descending manner according to the criteria of each decision maker. Therefore, each element 𝑎  has 
an associated induced 𝑢 . Likewise, the sum of weights 𝑤  is bounded to 𝑛 or can be unbounded if 
the weighting vector 𝑊 = −∞ ≤ ∑ 𝑤 ≤ ∞. Likewise, 𝑟 and 𝑞 are parameters such that 𝑟, 𝑞 ≥ 0. The 𝑎 𝑠 are the same prioritized 𝑎 s, where column “i” is omitted to perform the sorting. A 
vector of n – 1 elements remains. r is the exponent of 𝑎 . Then, we can define this aggregation as 𝑃𝑟𝐼𝐻𝑂𝑊𝐴𝑤(𝑉 ) = ∑ 𝑤 𝑎 ( )  , where 𝑎 ( ) is the largest element in the n–1 tuple 𝑉  = 𝑉 = (〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉, 〈𝑢 , 𝑎 〉, … , 〈𝑢 , 𝑎 〉). 

4. Evaluation of the Transparency Websites in Mexico. 
4.1. Aggregation Operators Calculation 

The objective of this paper is to use and apply the operators proposed in Section 3 to 
rank the transparency websites of the states in Mexico. As mentioned previously, govern-
ment transparency is vital for the development of countries, and therefore, the possibility 
of using web pages to report and be able to make complaints and reports is of the utmost 
importance to facilitate interaction with users. In Mexico, the transparency websites are 
measured and ranked using five components, which are as follows [14]: 
(a) Institutional arrangements. Refers to compliance with regulations; 
(b) Open data. Refers to the amount of information published; 
(c) Vertical collaboration. Measures the use and performance of the portal and the com-

plaints made; 
(d) Horizontal collaboration. Measures the use of social networks, blogs and chats; 
(e) Interface. Eases the use of the website. 

The questionnaire used to measure these websites has 63 items, and within the pre-
sent investigation, the data from the last evaluation are used, which is that of 2017. The 
main problem of the actual ranking is that all five components have the same importance 
to the ranking. Because of that, not all states seek ways to improve their transparency 
because one good component can improve the final score, even when some components 
have a score of 0. The qualification of each component for each of the 32 states of Mexico 
is given in Table A1. Finally, the steps to use the BON-PrOWA operator and other exten-
sions are as follows. 

Step 1. Locate different experts that give information regarding each of the compo-
nents of the ranking of transparency websites. The information that will be requested is 
(a) weights, (b) heavy weights and (c) induced values. The profile of the experts for this 
article was as follows: (a) they had minimum of five years of experience within the gov-
ernment sector, specifically in areas related to transparency; and (b) they work or worked 
directly with government transparency websites. 

Step 2. With the information provided by each expert, generate different classifica-
tions using the BON-OWA, BON-IOWA, BON-HOWA and BON-IHOWA operators. 

Step 3. With the results obtained in Step 3, unify the information of the different ex-
perts based on the BON-PrOWA, BON-PrIOWA, BON-PrHOWA and BON-PrIHOWA 
operators, where the results of each expert are given a specific weight according to their 
experience in the field. 

Step 4. Finally, the results are compared and analyzed. 
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To more clearly visualize the process to obtain the results, a simplified graph is pre-
sented (see Figure 1). 

 
Figure 1. Flowchart of the steps to use the Bonferroni prioritized induced heavy ordered weighted 
average (BON-PIHOWA) operator. 

4.2. Evaluation of the Determinants of Transparency. 
Step 1. The information was provided by five experts. The conditions for being se-

lected were as follows: (a) must be an active worker in an institution related to transpar-
ency and (b) must have more than 10 years in a similar position. The information provided 
by the experts is given in Tables 1–3. 

Table 1. Weights provided by the experts. 

Expert Institutional Arrangements 
(𝒄𝟏) 

Open Data 
(𝒄𝟐) 

Vertical Collaboration 
(𝒄𝟑) 

Horizontal Collaboration 
(𝒄𝟒) 

Interface 
(𝒄𝟓) 𝑒  0.15 0.30 0.20 0.20 0.15 𝑒  0.10 0.20 0.30 0.30 0.10 𝑒  0.10 0.30 0.25 0.25 0.10 𝑒  0.15 0.15 0.30 0.20 0.20 𝑒  0.10 0.15 0.30 0.30 0.15 

  

Analyze the different results

With the original data set and the vectors provided by the experts, use different 
aggregation operators 

Locate different experts that will provide the information of the weighting vectors, 
heavy weighting vectors and induced values

Obtain the data set that is used to evaluate or rank the problem or situation

Identify the problem to be evaluated
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Table 2. Heavy weights (heavy weights are the weights that will be used to calculate the heavy ordered weighted average 
(HOWA) operator. Their difference with the weights in Table 1 is that heavy weights are not bounded to ∑ 𝑤 = 1; in 
this sense, the weighting vector can be from 1 ≤ ∑ 𝑤 ≤ 𝑛) provided by the experts. 

Expert 
Institutional Arrangements 

(𝒄𝟏) 
Open Data 

(𝒄𝟐) 
Vertical Collaboration 

(𝒄𝟑) 
Horizontal Collaboration 

(𝒄𝟒) 
Interface 

(𝒄𝟓) 𝑒  0.20 0.30 0.20 0.20 0.20 𝑒  0.15 0.20 0.30 0.30 0.15 𝑒  0.10 0.30 0.30 0.30 0.10 𝑒  0.20 0.20 0.30 0.20 0.20 𝑒  0.10 0.20 0.30 0.30 0.20 

Table 3. Induced values provided by the experts. Induced values are the values that will be used in the induced ordered 
weighted average (IOWA) operator, instead of a reordering step based on the value of the arguments, in this case, will be 
based on the induced value determined by the experts, generating a different reordering between the arguments and the 
weights. Also, the weights used in the Bonferroni induced ordered weighted average (Bon-IOWA) and Bonferroni priori-
tized induced ordered weighted average (Bon-PIOWA) operators are from Table 1 and for the Bonferroni induced heavy 
ordered weighted average (Bon-IHOWA) and Bonferroni prioritized induced heavy ordered weighted average (Bon-PI-
HOWA) operators are from Table 2. 

Expert Institutional Arrangements 
(𝒄𝟏) 

Open Data 
(𝒄𝟐) 

Vertical Collaboration 
(𝒄𝟑) 

Horizontal Collaboration 
(𝒄𝟒) 

Interface 
(𝒄𝟓) 𝑒  5 2 1 3 4 𝑒  4 2 1 3 5 𝑒  3 2 1 4 5 𝑒  5 4 2 3 1 𝑒  5 2 3 1 4 

Step 2. With the information provided in Step 1, generate the results using the BON-
OWA, BON-IOWA, BON-HOWA and BON-IHOWA operators to understand the process 
that has been performed. An example using the information of expert 1 for the state of 
Zacatecas will be explained in detail, assuming that the process will be the same for all 
other states and experts. The values of q and p are equal to 1. 

The first thing is determine the vectors 𝑉 , and the results are 𝑉 = (90, 56, 85.71, 60) 𝑉 = (56, 85.71, 60, 100) 𝑉 = (85.71, 60, 100, 90) 𝑉 = (60, 100, 90, 56) 𝑉 = (100, 90, 56, 85.71) 

Next, the BON-OWA operator is applied. Then, a weight is assigned to each attribute 
according to a maximum criterion, and the results are 𝑉 = [(90 × 0.30) + (56 × 0.15) + (85.71 × 0.20) + (60 × 0.20)] = 64.54 𝑉 = [(56 × 0.15 +  85.71 × 0.20 +  60 × 0.20 + 100 × 0.30)] = 67.54 𝑉 = (85.71 × 0.15 +  60 × 0.15 +  100 × 0.20 +  90 × 0.20) = 59.86 𝑉 = (60 × 0.15 +  100 × 0.30 +  90 × 0.20 +  56 × 0.15) = 65.40 
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𝑉 = (100 × 0.30 + 90 × 0.20 +  56 × 0.15 +  85.71 × 0.15) = 69.26 

𝐵𝑂𝑁 − 𝑂𝑊𝐴 = [(64.54 × 100) + (67.54 × 90) + (59.86 × 56) + (65.40 × 85.71) + (69.26 × 60)]5  𝐵𝑂𝑁 − 𝑂𝑊𝐴 = 71.62 

All the results for each state and expert are presented in Table A2. 
In the case of the calculation for the BON-IOWA operator, the vectors 𝑉  are the 

same as those used in the BON-OWA operator. The next step is the association of the 
weights with the attributes that in this case will be performed by using the induced vari-
ables instead of the values of the attributes. Here, the results for Zacatecas are the follow-
ing. 𝑉 = [(90 × 0.20) + (56 × 0.30) + (85.71 × 0.20) + (60 × 0.15)] = 64.11 𝑉 = [(56 × 0.20) + (85.71 × 0.30) + (60 × 0.20) + (100 × 0.15)] = 66.11 𝑉 = [(85.71 × 0.20) + (60 × 0.20) + (100 × 0.15) + (90 × 0.15)] = 59.86 𝑉 = [(60 × 0.30) + (100 × 0.20) + (90 × 0.15) + (56 × 0.15)] = 65.40 𝑉 = [(100 × 0.20) + (90 × 0.30) + (56 × 0.15) + (85.71 × 0.15)] = 68.26 

𝐵𝑂𝑁 − 𝐼𝑂𝑊𝐴 = [(64.11 × 100) + (66.11 × 90) + (59.86 × 56) + (65.40 × 85.71) + (68.26 × 60)]5  𝐵𝑂𝑁 − 𝑂𝑊𝐴 = 71.29  
All the results for each state and expert are presented in Table A3. 
In the case of the BON-HOWA operator, the vectors 𝑉  are also the same, but the 

weights will the ones presented in Table 2 and will be ordered with the arguments with a 
maximum criterion. Therefore, the results for Zacatecas are the following. 𝑉 = [(90 × 0.30) + (56 × 0.20) + (85.71 × 0.20) + (60 × 0.20)] = 67.34 𝑉 = [(56 × 0.20) + (85.71 × 0.20) + (60 × 0.20) + (100 × 0.30)] = 70.34 𝑉 = [(85.71 × 0.20) + (60 × 0.20) + (100 × 0.20) + (90 × 0.20)] = 67.14 𝑉 = [(60 × 0.20) + (100 × 0.30) + (90 × 0.20) + (56 × 0.20)] = 71.20 𝑉 = [(100 × 0.30) + (90 × 0.20) + (56 × 0.20) + (85.71 × 0.20)] = 76.34 

𝐵𝑜𝑛 − 𝐻𝑂𝑊𝐴 = [(67.34 × 100) + (70.34 × 90) + (67.14 × 56) + (71.20 × 85.71) + (76.34 × 60)]5  𝐵𝑂𝑁 − 𝐻𝑂𝑊𝐴 = 74.17  
All the results for each state and expert are presented in Table A4. 
Finally, the BON-IHOWA operator is constructed. The vectors 𝑉  are the same as 

the other operators, but the weights will be the ones in Table 2 and will be ordered based 
on the induced values of Table 3 The results for Zacatecas are the following. 𝑉 = [(90 × 0.20) + (56 × 0.30) + (85.71 × 0.20) + (60 × 0.20)] = 66.91 𝑉 = [(56 × 0.20) + (85.71 × 0.30) + (60 × 0.20) + (100 × 0.20)] = 68.91 
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𝑉 = [(85.71 × 0.20) + (60 × 0.20) + (100 × 0.20) + (90 × 0.20)] = 67.14 𝑉 = [(60 × 0.30) + (100 × 0.20) + (90 × 0.20) + (56 × 0.20)] = 71.20 𝑉 = [(100 × 0.20) + (90 × 0.30) + (56 × 0.20) + (85.71 × 0.20)] = 75.34 

𝐵𝑂𝑁 − 𝐼𝐻𝑂𝑊𝐴 = [(66.91 × 100) + (68.91 × 90) + (67.14 × 56) + (71.20 × 85.71) + (75.34 × 60)]5  𝐵𝑂𝑁 − 𝐼𝐻𝑂𝑊𝐴 = 73.86  
All the results for each state and expert are presented in Table A5. 
Step 3. With all the results obtained in Step 2, the results for the BON-POWA, BON-

PIOWA, BON-PHOWA and BON-PIHOWA operators can be obtained. The weights as-
sociated with each expert are the following: 𝑒 = 0.30, 𝑒 = 0.10, 𝑒 = 0.20, 𝑒 = 0.15 
and 𝑒 = 0.25. The result for each operator for Zacatecas is as follows. 𝐵𝑂𝑁 − 𝑃𝑂𝑊𝐴 = [(71.62 × 0.30) + (72.77 × 0.10) + (72.60 × 0.20) + (71.12 × 0.15) + (72.47 × 0.25)] = 72.07 𝐵𝑂𝑁 − 𝑃𝐼𝑂𝑊𝐴 = [(71.29 × 0.30) + (71.97 × 0.10) + (71.77 × 0.20) + (70.77 × 0.15) + (71.32 × 0.25)] = 71.39 𝐵𝑂𝑁 − 𝑃𝐻𝑂𝑊𝐴 = [(74.17 × 0.30) + (75.28 × 0.10) + (76.06 × 0.20) + (73.77 × 0.15) + (75.48 × 0.25)] = 74.93 𝐵𝑂𝑁 − 𝑃𝐼𝐻𝑂𝑊𝐴 = [(73.86 × 0.30) + (74.63 × 0.10) + (75.21 × 0.20) + (73.44 × .15) + (74.75 × 0.25)] = 74.37 

The results for all the states are presented in Table A6. 

4.3. Discussion of the Results 
After an analysis of the different results obtained and presented in Tables A2–A6, the 

main changes that are found are as follows. 
Based on the top 10 results of the different aggregation operators and experts, the 

first four positions do not change at all with the different aggregation operators and ex-
perts. In this sense, even when the importance of each component varies, the four best 
states remain the same: Zacatecas, Oaxaca, Nuevo Leon and Puebla. Then, according to 
the aggregation operator and expert that we analyze, the ranking can change. For exam-
ple, in ranks five and six, we usually find the states of San Luis Potosi and Nayarit, re-
spectively, but with the use of the BON-IHOWA operator, the positions change to Nayarit 
and San Luis Potosi, respectively. The other remaining positions vary, but the states re-
main the same and are Tlaxcala, Sonora, Yucatan and Queretaro. 

Based on the bottom 10 results, the first four positions (as in the case of the top 10) 
remain the same considering the different aggregation operators and experts. In this 
sense, the worst states are Chihuahua, Ciudad de Mexico, Aguascalientes and Campeche. 
Then, the fifth and sixth positions are Tabasco and Guerrero depending on the aggrega-
tion operator and expert. Finally, positions seven to ten can change drastically. For exam-
ple, for expert 1, from the BON-OWA operator, Chiapas is considered among the bottom 
10 states and Jalisco is not; however, according to the information provided by expert 2, 
Jalisco is among the bottom 10 and Chiapas is not. This is important because in this pro-
cess, it is possible to see that depending on the importance that is given to the information, 
the states can be or cannot be in the bottom 10 list. 

The same analysis can be performed for the states in the middle of the ranking, and 
they change positions based on the different experts and aggregation operators. First, the 
top 10 of the lists does not change at all, but it is possible to see some notable changes as 
the ones explained in the bottom 10 analysis. This information is important for policymak-
ers and governments to analyze to change and implement public policies according to the 
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deficiency of each state, which can vary depending on the importance given to the com-
ponents. Additionally, as seen, the ranking changes, and the benefits and government 
support for the states can be rearranged because of their positions in the ranking. 

5. Conclusions 
The main objective of this document is to present the new BON-PrIHOWA operator. 

The main features of this new proposition are that one can combine a nonrestricted to one 
weighting vector, an induced vector that assigns weights to the attributes and a prioritized 
vector that unifies the opinions of the decision makers in a group decision-making pro-
cess, where not all stakeholders have the same importance in the computation. 

Additionally, in this document, the main definitions of the BON-PrIHOWA operator 
are included, and it is important to mention that the BON-PrIHOWA can be reduced to 
the PrIOWA, PrHOWA, IHOWA, and OWA. This is suggested when the complexity of 
the problem is minimal and not very extensive. However, the design of this operator, its 
functionality and its operability are intended for complex phenomena with highly dy-
namic information. This is the case, e.g., when a combination of expert information is re-
quired to assess open government initiatives and public policies. 

The complete design of the BON-PrIHOWA operator uses a ranking of transparency 
websites for Mexico. Among the main results, it was possible to identify that the top and 
bottom four states remained the same even when the weights, operators and experts 
changed. This is important because their positions cannot change easily. However, other 
positions can also change drastically depending on the operator or expert and, because of 
that, the perception of transparency of the citizens and governors. The main component 
that changes the ranking is the importance that is given to each component of transpar-
ency websites. When the weights assigned to each result are not , but rather they depend 
on the focus and goals of each government, the score can change drastically. This change 
in the weights is important because not all information can be treated in the same way 
since the characteristics, objectives and goals of the states are not always the same. They 
are derived from their demographic, economic, and geographic characteristics, among 
others, in such a way that treating similar information is not appropriate. The idea of iden-
tifying changes in the ranking can improve the public policies that are established because 
the ranking can be established not only by using the average of the components but also 
by using a specific operator depending on the individual characteristics of the state. 

For future research, more extensions of the OWA operator can be conceived with the 
use of distance operators [43], Bonferroni means [17,29,44], moving averages [45–48], for-
gotten effects [47,49], the least square deviation [50,51] or logarithmic operators [52,53]. 
This is important when the subjectivity and the uncertainty of the decision–making pro-
cess are presented. With the use of aggregation operators and other fuzzy techniques, it is 
possible to generate new scenarios based on the expertise and expectations of the decision 
makers. Additionally, the use of different coefficients to test the similarity between the 
rankings will be useful to compare rankings in decision-making fields [54]. Finally, these 
new techniques can be applied in different areas such as economics, finance, engineering, 
social science and other areas [55] where the idea and characteristics of fuzzy logic and 
fuzzy sets can be used [56,57]. 
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Appendix A 

Table A1. Ranking of the transparency portal of the states of Mexico. 

Ranking State 
Institutional 

Arrangements 
Open 
Data 

Vertical Col-
laboration 

Horizontal 
Collaboration Interface Total 

1 Zacatecas 90 56 85.71 60 100 78.34 
2 Oaxaca 50 92 100 40 90.91 74.58 
3 Nuevo Leon 80 88 85.71 30 81.82 73.11 
4 Puebla 80 80 71.43 40 81.82 70.65 
5 Nayarit 80 76 71.43 30 72.73 66.03 
6 San Luis Potosí 90 80 57.14 30 72.73 65.97 
7 Tlaxcala 90 44 71.43 30 81.82 63.45 
8 Sonora 80 48 71.43 40 72.73 62.43 
9 Yucatán 90 60 57.14 20 81.82 61.79 

10 Querétaro 70 52 71.43 40 72.73 61.23 
11 Quintara Roo 80 56 42.86 50 63.64 58.50 
12 Estado de México 90 60 42.86 40 45.45 55.66 
13 Guanajuato 70 60 71.43 20 45.45 53.38 
14 Michoacán 90 48 28.57 20 72.73 51.86 
15 Sinaloa 80 28 42.86 30 72.73 50.72 
16 Coahuila 100 64 28.57 0 54.55 49.42 
17 Veracruz 90 44 28.57 0 81.82 48.88 
18 Baja California 70 28 57.14 20 63.64 47.76 
19 Morelos 50 40 57.14 40 45.45 46.52 
20 Hidalgo 90 36 28.57 20 54.55 45.82 
21 Colima 90 36 28.57 0 63.64 43.64 
22 Jalisco 70 40 28.57 40 27.27 41.17 
23 Baja California Sur 50 36 42.86 40 36.36 41.04 
24 Tamaulipas 50 32 28.57 30 63.64 40.84 
25 Chiapas 80 44 14.29 0 63.64 40.39 
26 Durango 80 36 28.57 10 45.45 40.00 
27 Guerrero 50 24 57.14 40 27.27 39.68 
28 Tabasco 60 40 28.57 0 63.64 38.44 
29 Campeche 70 36 14.29 0 54.55 34.97 
30 Aguascalientes 40 24 28.57 0 27.27 23.97 
31 Ciudad de México 40 20 14.29 0 36.36 22.13 
32 Chihuahua 30 12 0 0 45.45 17.49 

Table A2. Bon-OWA operator results. 

States 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 
Zacatecas 71.62 72.77 72.60 71.12 72.47 

Oaxaca 67.75 70.10 69.48 67.75 69.63 
Nuevo Leon 66.19 68.30 67.87 66.23 68.02 

Puebla 63.93 65.61 65.20 64.03 65.41 
Nayarit 59.85 61.66 61.31 59.93 61.38 

San Luis Potosí 60.08 62.46 61.73 60.46 62.25 
Tlaxcala 58.40 60.19 59.86 57.93 59.80 
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Sonora 57.06 58.27 58.03 56.72 58.05 
Yucatán 56.74 59.01 58.63 56.68 58.48 

Querétaro 55.72 56.81 56.61 55.45 56.61 
Quintara Roo 53.38 54.43 54.15 53.54 54.28 

Estado de México 50.73 51.93 51.52 51.09 51.85 
Guanajuato 48.68 50.56 50.14 48.53 50.26 
Michoacán 47.66 49.94 49.18 47.95 49.67 

Sinaloa 46.95 48.07 47.98 46.59 47.67 
Coahuila 44.58 48.27 46.95 45.40 47.98 
Veracruz 44.81 47.80 46.97 45.00 47.31 

Baja California 44.02 45.53 45.23 43.54 45.21 
Morelos 42.22 42.51 42.46 42.08 42.45 
Hidalgo 42.01 43.56 43.14 42.11 43.26 
Colima 39.93 42.36 41.79 39.99 41.87 
Jalisco 37.52 38.51 38.19 37.74 38.44 

Baja California Sur 37.23 37.49 37.46 37.13 37.43 
Tamaulipas 36.91 37.43 37.31 36.84 37.39 

Chiapas 36.62 39.77 38.53 37.23 39.55 
Durango 36.53 38.33 37.84 36.65 38.05 
Guerrero 36.52 36.99 37.10 36.10 36.73 
Tabasco 35.23 37.63 37.01 35.34 37.24 

Campeche 31.78 34.34 33.39 32.22 34.12 
Aguascalientes 21.89 23.15 22.91 21.81 22.92 

Ciudad de México 20.31 21.63 21.30 20.37 21.39 
Chihuahua 15.36 16.50 15.94 15.71 16.50 

Table A3. Bon-IOWA operator results. 

State 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 
Zacatecas 71.29 71.97 71.77 70.77 71.32 

Oaxaca 67.53 69.53 67.46 67.52 68.72 
Nuevo Leon 66.13 68.11 66.85 66.14 67.83 

Puebla 63.90 65.38 64.43 63.98 65.08 
Nayarit 59.74 61.54 60.43 59.78 61.24 

San Luis Potosí 59.80 61.88 60.70 60.07 61.43 
Tlaxcala 57.93 59.31 58.54 57.67 58.54 
Sonora 56.88 57.56 57.31 56.59 57.04 

Yucatán 55.93 58.85 56.73 56.21 58.31 
Querétaro 55.67 56.30 55.99 55.41 55.88 

Quintara Roo 52.82 54.14 53.45 53.10 53.81 
Estado de México 49.96 51.48 50.88 50.07 51.20 

Guanajuato 48.49 50.13 48.74 48.34 49.81 
Michoacán 46.47 49.20 47.53 47.24 48.60 

Sinaloa 45.80 47.60 46.52 45.98 46.98 
Coahuila 43.93 47.11 45.50 44.54 46.54 
Veracruz 43.18 47.20 44.29 44.16 46.46 

Baja California 43.70 44.58 44.16 43.36 43.85 
Morelos 41.93 42.27 42.14 41.81 42.09 
Hidalgo 40.72 43.08 41.67 41.23 42.63 
Colima 38.41 41.92 39.63 39.13 41.46 
Jalisco 36.98 38.08 37.62 37.10 37.65 

Baja California Sur 37.04 37.30 37.21 36.95 37.20 
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Tamaulipas 36.45 37.27 36.58 36.58 37.15 
Chiapas 35.55 38.62 36.68 36.61 37.90 
Durango 35.67 37.82 36.73 36.01 37.54 
Guerrero 36.16 36.59 36.34 35.73 36.24 
Tabasco 34.46 37.23 35.12 34.90 36.67 

Campeche 30.78 33.48 31.76 31.64 32.91 
Aguascalientes 21.72 22.88 22.31 21.66 22.76 

Ciudad de México 19.62 21.41 20.10 20.01 21.08 
Chihuahua 14.13 15.94 15.00 14.94 15.66 

Table A4. Bon-HOWA operator results. 

States 𝒆𝟏 𝒆𝟐 𝒆𝟑 𝒆𝟒 𝒆𝟓 
Zacatecas 74.17 75.28 76.06 73.77 75.48 

Oaxaca 69.82 72.11 73.16 69.82 72.25 
Nuevo Leon 68.33 70.38 71.55 68.33 71.00 

Puebla 66.24 67.86 68.66 66.35 68.28 
Nayarit 61.82 63.57 64.61 61.88 64.08 

San Luis Potosí 61.86 64.17 65.01 62.19 64.60 
Tlaxcala 59.95 61.70 62.77 59.53 62.01 
Sonora 59.00 60.17 60.86 58.68 60.45 

Yucatán 58.05 60.26 61.68 58.09 60.66 
Querétaro 57.74 58.79 59.44 57.49 59.05 

Quintara Roo 55.30 56.31 56.78 55.48 56.49 
Estado de México 52.43 53.59 53.96 52.73 53.81 

Guanajuato 50.00 51.84 52.81 49.85 52.23 
Michoacán 48.60 50.83 51.55 48.96 51.03 

Sinaloa 48.10 49.20 50.09 47.85 49.31 
Coahuila 44.96 48.62 49.55 45.74 48.97 
Veracruz 45.09 48.07 49.30 45.40 48.33 

Baja California 45.07 46.54 47.39 44.61 46.77 
Morelos 43.98 44.26 44.44 43.85 44.33 
Hidalgo 42.90 44.42 45.09 43.05 44.50 
Colima 40.18 42.61 43.81 40.35 42.85 
Jalisco 38.71 39.67 39.99 38.92 39.87 

Baja California Sur 38.79 39.04 39.24 38.70 39.12 
Tamaulipas 38.30 38.80 39.07 38.35 39.00 

Chiapas 36.80 39.93 40.51 37.44 40.08 
Durango 37.15 38.92 39.69 37.31 39.16 
Guerrero 37.66 38.11 38.77 37.27 38.27 
Tabasco 35.56 37.94 39.00 35.76 38.24 

Campeche 31.94 34.49 35.08 32.42 34.64 
Aguascalientes 22.19 23.44 24.16 22.11 23.72 

Ciudad de México 20.45 21.76 22.36 20.56 21.89 
Chihuahua 15.36 16.50 16.50 15.71 16.50 
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Table A5. Bon-IHOWA operator results. 

States e1 e2 e3 e4 e5 
Zacatecas 73.86 74.63 75.21 73.44 74.75 

Oaxaca 69.61 71.57 70.72 69.60 71.66 
Nuevo Leon 68.27 70.27 70.30 68.25 70.88 

Puebla 66.21 67.66 67.71 66.29 68.06 
Nayarit 61.71 63.50 63.56 61.73 63.99 

San Luis Potosí 61.58 63.69 63.89 61.81 64.08 
Tlaxcala 59.50 60.93 61.38 59.28 61.21 
Sonora 58.83 59.57 60.06 58.55 59.80 

Yucatán 57.25 60.18 59.78 57.64 60.55 
Querétaro 57.69 58.33 58.68 57.45 58.58 

Quintara Roo 54.76 56.16 56.24 55.06 56.19 
Estado de México 51.69 53.40 53.62 51.73 53.39 

Guanajuato 49.82 51.55 51.14 49.67 51.94 
Michoacán 47.43 50.21 50.19 48.26 50.33 

Sinaloa 46.98 48.80 48.95 47.26 48.86 
Coahuila 44.31 47.68 48.12 44.89 48.04 
Veracruz 43.47 47.51 46.90 44.56 47.78 

Baja California 44.75 45.69 46.23 44.44 45.91 
Morelos 43.71 44.10 44.22 43.59 44.10 
Hidalgo 41.64 44.18 44.02 42.19 44.10 
Colima 38.68 42.34 42.00 39.49 42.58 
Jalisco 38.19 39.47 39.61 38.30 39.36 

Baja California Sur 38.61 38.96 39.03 38.52 38.98 
Tamaulipas 37.86 38.75 38.42 38.11 38.85 

Chiapas 35.73 38.84 38.81 36.82 39.00 
Durango 36.31 38.68 38.82 36.68 38.83 
Guerrero 37.31 37.87 38.04 36.91 37.95 
Tabasco 34.79 37.56 37.09 35.32 37.87 

Campeche 30.94 33.70 33.63 31.84 33.85 
Aguascalientes 22.03 23.33 23.51 21.96 23.62 

Ciudad de México 19.77 21.56 21.27 20.21 21.69 
Chihuahua 14.13 15.94 16.06 14.94 15.94 

Table A6. Results of prioritized Bonferroni operators. 

States Bon-POWA Bon-PIOWA Bon-PHOWA Bon-PIHOWA 
Zacatecas 72.07 71.39 74.93 74.37 

Oaxaca 68.80 68.01 71.32 70.54 
Nuevo Leon 67.20 66.90 69.85 69.53 

Puebla 64.74 64.46 67.41 67.13 
Nayarit 60.72 60.44 63.13 62.83 

San Luis Potosí 61.25 60.64 63.46 62.91 
Tlaxcala 59.15 58.30 61.14 60.41 
Sonora 57.57 57.03 59.80 59.35 

Yucatán 57.77 57.02 59.65 58.93 
Querétaro 56.19 55.81 58.47 58.14 

Quintara Roo 53.89 53.37 56.02 55.60 
Estado de México 51.34 50.62 53.24 52.68 

Guanajuato 49.53 49.01 51.28 50.77 
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Michoacán 48.74 47.60 50.07 49.11 
Sinaloa 47.39 46.45 48.87 48.07 

Coahuila 46.40 45.31 47.37 46.43 
Veracruz 46.20 44.77 47.08 45.80 

Baja California 44.64 43.87 46.04 45.38 
Morelos 42.33 42.03 44.17 43.93 
Hidalgo 42.72 41.70 43.91 43.07 
Colima 41.04 39.88 41.84 40.81 
Jalisco 38.02 37.40 39.38 38.91 

Baja California Sur 37.34 37.13 38.97 38.81 
Tamaulipas 37.15 36.75 38.69 38.35 

Chiapas 38.14 36.83 38.77 37.64 
Durango 37.37 36.62 38.36 37.73 
Guerrero 36.67 36.19 38.02 37.61 
Tabasco 36.35 35.49 37.18 36.38 

Campeche 33.01 31.90 33.57 32.62 
Aguascalientes 22.47 22.21 23.08 22.84 

Ciudad de México 20.92 20.32 21.34 20.79 
Chihuahua 15.93 14.99 16.04 15.27 

References 

1. OECD. Open Government: The Global Context and the Way Forward; Organisation for Economic Co-operation and Development: 
Paris, France, 2016. 

2. OECD. Government at a Glance 2019; OECD Publishing: Paris, France, 2019. 
3. Jaeger, P.T.; Bertot, J.C. Transparency and technological change: Ensuring equal and sustained public access to government 

information. Gov. Inf. Q. 2010, 27, 371–376. 
4. Abu-Shanab, E.A. Reengineering the open government concept: An empirical support for a proposed model. Gov. Inf. Q. 2015, 

32, 453–463. 
5. Nam, T. Challenges and concerns of open government: A case of government 3.0 in Korea. Soc. Sci. Comput. Rev. 2015, 33, 556–

570. 
6. Piotrowski, S.J.; Van Ryzin, G.G. Citizen attitudes toward transparency in local government. Am. Rev. Public Adm. 2007, 37, 306–

323. 
7. McDermott, P. Building open government. Gov. Inf. Q. 2010, 27, 401–413. 
8. Meijer, A.; ’t Hart, P.; Worthy, B. Assessing government transparency: an interpretive framework. Adm. Soc. 2018, 50, 501–526. 
9. Héritier, A. Composite democracy in Europe: the role of transparency and access to information. J. Eur. Public Policy 2003, 10, 

814–833. 
10. Gupta, A. Transparency in Global Environmental Governance: A Coming of Age? MIT Press: Cambridge, MA, USA, 2010. 
11. Piotrowski, S.J.; Zhang, Y.; Lin, W.; Yu, W. Key issues for implementation of Chinese open government information regulations. 

Public Adm. Rev. 2009, 69, S129–S135. 
12. Terrazas-Tapia, R. IDAIM 2014. Índice del Derecho de Acceso a la Información de México; Fundar, Centro de Análisis e Investigación: 

Mexico City, México, 2014. 
13. INAI. Informe de Labores. Utilidad del Acceso a la Información; Instituto Nacional de Transparencia, Acceso a la Información y 

Protección de Datos Personales: Mexico city, México, 2019. 
14. Sandoval-Almazán, R. Midiendo al gobierno abierto en México: Los portales estatales de transparencia durante el periodo 2015–

2016. Transparencia, Combate a la Corrupción y Gobierno Abierto: La Experiencia en México 2017, 29, 47–66. 
15. Beliakov, G.; Pradera, A.; Calvo, T. Aggregation Functions: A Guide for Practitioners; Springer: Heidelberg, Germany, 2007; Volume 

221. 
16. Yager, R.R.; Kacprzyk, J.; Beliakov, G. Recent Developments in the Ordered Weighted Averaging Operators: Theory and Practice; 

Springer: Berlin/Heidelberg, Germany, 2011; Volume 265. 
17. Bonferroni, C. Sulle medie multiple di potenze. Bollettino dell’Unione Matematica Italiana 1950, 5, 267–270. 
18. Yager, R.R. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans. Syst. Man-

Cybern. 1988, 18, 183–190. 
19. Yager, R.R. Prioritized OWA aggregation. Fuzzy Optim. Decis. Mak. 2009, 8, 245–262. 
20. Yager, R.R.; Filev, D.P. Induced ordered weighted averaging operators. IEEE Trans. Syst. ManCybern. Part B (Cybern.) 1999, 29, 

141–150. 
21. Merigó, J.M.; Gil-Lafuente, A.M. The induced generalized OWA operator. Inf. Sci. 2009, 179, 729–741. 



Mathematics 2021, 9, 24 19 of 19 
 

 

22. Yager, R.R. Generalized OWA aggregation operators. Fuzzy Optim. Decis. Mak. 2004, 3, 93–107. 
23. Yager, R.R. Heavy OWA operators. Fuzzy Optim. Decis. Mak. 2002, 1, 379–397. 
24. Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M. A bibliometric analysis of aggregation operators. Appl. Soft Comput. 2019, 81, 

105488, doi:10.1016/j.asoc.2019.105488. 
25. Detyniecki, M.; Bouchon-meunier, D.B.; Yager, D.R.; Prade, R.H. Mathematical Aggregation Operators and Their Application 

to Video Querying. Ph.D. Thesis, Pierre and Marie Curie University, Paris, France, 2000. 
26. Herrera, F.; Martínez, L. A 2-tuple fuzzy linguistic representation model for computing with words. IEEE Trans. Fuzzy Syst. 

2000, 8, 746–752. 
27. Yu, D. A scientometrics review on aggregation operator research. Scientometrics 2015, 105, 115–133. 
28. Rickard, J.T.; Aisbett, J. New classes of threshold aggregation functions based upon the Tsallis q-exponential with applications 

to perceptual computing. IEEE Trans. Fuzzy Syst. 2013, 22, 672–684. 
29. Blanco-Mesa, F.; Merigó, J.M.; Kacprzyk, J. Bonferroni means with distance measures and the adequacy coefficient in entrepre-

neurial group theory. Knowl. Based Syst. 2016, 111, 217–227. 
30. Blanco-Mesa, F.; Merigó, J.M. Bonferroni distances and their application in group decision making. Cybern. Syst. 2020, 51, 27–

58. 
31. Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M. Bonferroni induced heavy operators in ERM decision-making: A case on large 

companies in Colombia. Appl. Soft Comput. 2018, 72, 371–391. 
32. Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M.; Xu, Z. Bonferroni means with induced ordered weighted average operators. Int. 

J. Intell. Syst. 2019, 34, 3–23. 
33. Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M.; Herrera-Viedma, E. Variances with Bonferroni means and ordered weighted 

averages. Int. J. Intell. Syst. 2019, 34, 3020–3045. 
34. Blanco-Mesa, F.; León-Castro, E.; Merigó, J.M. Covariances with OWA operators and Bonferroni means. Soft Comput. 2020, 1-

16. 
35. Perez-Arellano, L.A.; Leon-Castro, E.; Blanco-Mesa, F.; Fonseca-Cifuentes, G. The ordered weighted government transparency 

average: Colombia case. J. Intell. Fuzzy Syst. 2020, 1–13, doi:10.3233/JIFS-189190. 
36. Merigo, J.M.; Casanovas, M. Decision-making with distance measures and induced aggregation operators. Comput. Ind. Eng. 

2011, 60, 66–76. 
37. Merigó, J.M.; Gil-Lafuente, A.M.; Gil-Aluja, J. A new aggregation method for strategic decision making and its application in 

assignment theory. Afr. J. Bus. Manag. 2011, 5, 4033–4043. 
38. Yager, R.R. On generalized Bonferroni mean operators for multi-criteria aggregation. Int. J. Approx. Reason. 2009, 50, 1279–1286. 
39. Baez-Palencia, D.; Olazabal-Lugo, M.; Romero-Muñoz, J. Toma de decisiones empresariales a través de la media ordenada pon-

derada. Inquietud Empresarial 2019, 19, 11–23. 
40. Yager, R.R. Prioritized aggregation operators. Int. J. Approx. Reason. 2008, 48, 263–274. 
41. Merigó, J.M.; Palacios-Marqués, D.; Soto-Acosta, P. Distance measures, weighted averages, OWA operators and Bonferroni 

means. Appl. Soft Comput. 2017, 50, 356–366. 
42. Blanco-Mesa, F.; Merigó, J.M.; Gil-Lafuente, A.M. Fuzzy decision making: A bibliometric-based review. J. Intell. Fuzzy Syst. 2017, 

32, 2033–2050. 
43. Hamming, R.W. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160. 
44. Espinoza-Audelo, L.F.; Olazabal-Lugo, M.; Blanco-Mesa, F.; León-Castro, E.; Alfaro-Garcia, V. Bonferroni Probabilistic Ordered 

Weighted Averaging Operators Applied to Agricultural Commodities’ Price Analysis. Mathematics 2020, 8, 1350, 
doi:10.3390/math8081350. 

45. León-Castro, E.; Avilés-Ochoa, E.; Merigó, J.M.; Gil-Lafuente, A.M. Heavy Moving Averages and Their Application in Econo-
metric Forecasting. Cybern. Syst. 2018, 49, 26–43, doi:10.1080/01969722.2017.1412883. 

46. León-Castro, E.; Avilés-Ochoa, E.; Merigó, J.M. Induced heavy moving averages. Int. J. Intell. Syst. 2018, 33, 1823–1839. 
47. Olazabal-Lugo, M.; Leon-Castro, E.; Espinoza-Audelo, L.F.; Maria Merigo, J.; Gil Lafuente, A.M. Forgotten effects and heavy 

moving averages in exchange rate forecasting. Econ. Comput. Econ. Cybern. Stud. Res. 2019, 53, doi:10.24818/18423264/53.4.19.05. 
48. Kenny, J.F.; Keeping, E.S. Relative merits of mean, median, and mode. Math. Stat. Van Nostrans Nj (Ed) 1962, 211–212. 
49. Alfaro Calderón, G.G.; Godinez Reyes, N.L.; Gómez-Monge, R.; Alfaro-García, V.G.; Gil Lafuente, A.M. Forgotten effects in the 

valuation of the social well-being index in Mexico’s sustainable development. Fuzzy Econ. Rev. 2019, 24, 67–81. 
50. Hong, D.H.; Han, S. The general least square deviation OWA operator problem. Mathematics 2019, 7, 326. 
51. Wang, Y.-M.; Luo, Y.; Liu, X. Two new models for determining OWA operator weights. Comput. Ind. Eng. 2007, 52, 203–209. 
52. Alfaro-García, V.G.; Merigó, J.M.; Gil-Lafuente, A.M.; Kacprzyk, J. Logarithmic aggregation operators and distance measures. 

Int. J. Intell. Syst. 2018, 33, 1488–1506. 
53. Zhou, L.G.; Chen, H.y. Generalized ordered weighted logarithm aggregation operators and their applications to group decision 

making. Int. J. Intell. Syst. 2010, 25, 683–707. 
54. Sałabun, W.; Urbaniak, K. A new coefficient of rankings similarity in decision-making problems. In Computational Science—ICCS 

2020; ICCS 2020. Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2020; pp. 632–645. 
55. Blanco-Mesa, F. La ciencia de la decisión. Revista UIS Ingenierías 2020, 19, I-V, doi:10.18273/revuin.v19n2-2020020. 
56. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. 
57. Zadeh, L.A. Fuzzy logic. Computer 1988, 21, 83–93. 


