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Abstract: An investigation has been done on the hybrid nanofluid slip flow in the existence of heat
generation over an exponentially stretching/shrinking permeable sheet. Hybridization of alumina
and copper with water as the base fluid is considered. The mathematical model is simplified through
the similarity transformation. A numerical solver named bvp4c in Matlab software is utilized to
facilitate the problem-solving process and dual solutions are attained. The influences of several
pertinent parameters on the main physical quantities of interest and the profiles are scrutinized and
presented in the form of graphs. Through the stability analysis, only the first solution is considered
as the physical solution. As such, the findings conclude that the upsurges of volume fraction on the
copper nanoparticle could enhance the skin friction coefficient and the local Nusselt number.

Keywords: stretching/shrinking; dual solutions; hybrid nanofluid; slip; heat generation; stabil-
ity analysis

1. Introduction

Heat transfer becomes the most important process with the evolution of advanced
technology. Applications and industries involving heat generation, such as manufacturing,
thermal power generation, transportation, chemical processes and many others, necessitate
an efficient heat transfer performance to produce the best outcome. Nanofluid applications
have been thoroughly reviewed by Sidik et al. [1,2] and also by Huminic and Huminic [3].
Historically, various investigations have been conducted to improvise the heat transfer
capability of the transferring medium which is perceived as a heat transfer fluid.

The idea of dispersing high-thermal conductivity solid particles of microsize into the
conventional fluid was first pioneered by Maxwell [4] and then continued by Hamilton
and Crosser [5] to intensify the fluid thermal conductivity. Nevertheless, some limitations
and flaws still occurred, such as the coagulation in the fluid flow passage. Owing to that
limitation, a rapid investigation is being made and nanofluid is established. Choi and
Eastman [6] invented this novel heat transfer fluid by dispersing the nanometer-sized solid
particles into the base fluid, and it is believed these could overcome the coagulation of the
flow passage due to its special feature.

However, along with the development of technologies, another class of heat transfer
fluid named hybrid nanofluid is established as the extension to nanofluid that is invented
by the dispersion of dual or multiple kinds of nanosized solid particles with a good thermal
conductivity into a base fluid. Looking through the reviews of the previous investigations
by the researchers and scientists [7–11], hybrid nanofluid is claimed to have a preferable
capability in terms of thermal conductivity and heat transfer due to its synergistic effects,
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contrasted to mono nanofluid and regular fluid. Because of that, this new heat transfer fluid
captivated many researchers and encouraged them to conduct further investigation into
this fluid to understand its rheological properties and the mechanisms behind it, as well as
to cope with the exponential growth demand of technology and science.

It seems like Devi and Devi [12–14] are among the earliest ones who discovered
the flow of hybrid nanofluid at the boundary layer, mathematically and numerically,
and their study emphasizes alumina and copper as the hybrid nanoparticles. Aly and
Pop [15] considered hybrid nanofluid in their research into the flow and heat transfer
over a stretching/shrinking sheet. They concluded that the hybrid nanofluid causes
more reduction in the temperature profile unlike the mono nanofluid when the magnetic
field, suction and copper volume fraction parameters are amplified. Waini et al. [16] also
reported that the presence of a huge volume fraction of copper intensifies the skin friction
coefficient and the local Nusselt number. Many other recent interesting investigations
towards hybrid nanofluid, focusing on alumina and copper as the hybrid nanoparticles,
with various configurations of parameters, have also been revealed by Yashkun et al. [17],
Lund et al. [18,19], Aladdin et al. [20], Roşca et al. [21], Khashi’ie et al. [22–25], Roy and
Pop [26], Zainal et al. [27], Anuar et al. [28], Gangadhar et al. [29] and Wahid et al. [30].

Slip condition is one of the parameters that is extensively being considered among
the researchers and is significantly important in the heat transfer process. This condi-
tion happens when the fluid flow velocity is different from the velocity at the boundary.
In industrial application, slip is significantly used in the microelectronic cooling system,
micro heat exchangers, internal cavities’ and artificial heart valves’ polishing, and drug
delivery system [31–33]. The presence of slip could reduce the resistance of the flow in
microchannels and nanochannels as well as enhancing the efficiency of microscale viscous
pumps. The appropriate degree of slip should be considered for the effectiveness of the
applications that are also concerned with the other related parameters as well, thus various
investigations towards the slip condition should be examined specifically. Presumably,
Andersson [34] was the first one who examined the slip effect of the flow in the boundary
layer of viscous fluid. In this regard, the investigation on the slip effect towards the hybrid
nanofluid flow is still an ongoing research area. More recently, Hayat et al. [35] considered
the partial slip on the Ag-CuO/H2O hybrid nanofluid due to rotating flow. They found out
that the skin friction coefficient is lessened as the velocity slip is augmented in the case of
the stretching sheet. Nadeem and Abbas [36] scrutinized the micropolar hybrid nanofluid
with slip effect. A comparative investigation was made by Hayat et al. [37] on the hybrid
and mono nanofluid of multi-walled carbon nanotubes with the slip flow. Yan et al. [38]
elucidated the multiple slip conditions on the magnetized hybrid nanofluid with the con-
sideration of a few other parameters. It was found out that thermal slip diminishes the heat
transfer rate. Later, the velocity slip and temperature slip were simultaneously modeled by
Alharbi [39] in the study of hybrid nanofluid and the influence of velocity slip is consistent
with the result obtained by Hayat et al. [35]. Such other studies on slip conditions towards
hybrid nanofluid were also reported by Tlili et al. [40], Aly and Pop [41] and Eid and
Nafe [42]. The reported results in these investigations could provide the initial insight for
the engineers and researchers needed to predict and control the slip parameter towards the
related applied area.

Besides this, heat generation/absorption also becomes an essential aspect when man-
aging the performance of the heat transfer. Due to that, investigations into the effects of
heat generation/absorption towards nanofluid have been carried out up until now. Abbas
et al. [43] contemplated the slip flow of nanofluids with heat generation due to the curved
stretching surface. Upreti et al. [44] explored the heat generation of nanofluids due to the
flat porous plate. Jusoh et al. [45] elaborated on the nanofluid stagnation point flow with
heat generation. Murugesan and Kumar [46] also elucidated the same effect but with the
flow of nanofluid over the exponentially stretching sheet. With the evolution of nanofluid
to hybrid nanofluid, this heat generation/absorption effect has been considered by Hayat
and Nadeem [47] with regard to the model of hybrid nanofluid with the three-dimensional
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flow, which was then continued by Hayat et al. [48], who analyzed such effects on the ro-
tating hybrid nanofluid. Eid and Nafe [42] also considered the presence of heat generation
together with the slip effect in their research on hybrid nanofluid. Most of them indicated
that the amplification of heat generation increases the temperature profile.

Therefore, in this present study, we intended to scrutinize the slip flow and heat
transfer of a hybrid nanofluid of alumina and copper (hybrid nanoparticles) with water
(base fluid) over an exponentially permeable stretching/shrinking sheet with the consid-
eration of heat generation. Both velocity and thermal slips are being considered in the
model. We believe the model of a hybrid nanofluid with such configurated effects and
surface is still not being explored by the researchers, judging by the previous literature.
The influences of various parameters over the main physical quantities are provided in the
figure of the graph, and are discussed. An analysis of flow stability is also conducted, as
the non-unique solutions are visible and the least eigenvalues that imply the stability of
the flow are tabulated.

2. Mathematical Formulation

A steady boundary layer of hybrid nanofluid slip flow induced by an exponentially
permeable stretching/shrinking sheet with heat generation is scrutinized. According to
the physical model in Figure 1, u and v are the elements of velocity in x and y directions,
respectively. The surface velocity is given as uw(x) = cex/L and the wall mass transfer
velocity is specified as vw(x) = v0ex/2L (v0 < 0 is the mass suction and v0 > 0 is the mass
injection), λ > 0 is the stretching constant, λ < 0 is the shrinking constant,λ = 0 refers to a
motionless sheet, T is temperature, Tw = T∞ + T0ex/2L is the sheet of varying temperature
with constant T0 and q = q0ex/L is the heat generation rate constant.
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Figure 1. Physical model.

Therefore, concerning the mentioned boundary layer assumptions, the equations of
continuity, momentum and energy are formulated as (Murugesan and Kumar [46], Ghosh
and Mukhopadhyay [49], Waini et al. [16], Devi and Devi [14], Eid and Nafe [42])

∂u
∂x

+
∂v
∂y

= 0 (1)

u
∂u
∂x

+ v
∂v
∂y

=
µhn f

ρhn f

∂2u
∂y2 (2)

u
∂T
∂x

+ v
∂T
∂y

=
khn f(

ρCp
)

hn f

∂2T
∂y2 +

q(
ρCp

)
hn f

(T − T∞) (3)
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due to the boundary conditions (Ghosh and Mukhopadhyay [49], Mukhopadhyay and
Andersson [50])

u = uw(x)λ + A1
µhn f
ρhn f

∂u
∂y , v = vw, T = Tw(x) + B1

∂T
∂y at y = 0

u→ 0, T → T∞ as y→ ∞
(4)

in which A1 and B1 are the slip factors for velocity and thermal, respectively. The correlation
of the physical properties (Tayebi and Chamkha [51], Takabi and Salehi [52], Babu et al. [11],
Ghalambaz et al. [53]) and the hybrid nanofluid’s thermo-physical properties (Oztop and
Abu-Nada [54]) is depicted in Tables 1 and 2, respectively. Here, the hnf, f, s1 and s2
subscripts refer to the hybrid nanofluid, base fluid and solid nanoparticle for the alumina
and solid nanoparticle for copper, accordingly, and φs1 and φs2 symbolize the alumina and
copper volume fraction parameters, separately.

Table 1. Hybrid nanofluid physical properties.

Properties Hybrid Nanofluid Correlations

Density ρhn f = ρs1φs1 + ρs2φs2 + ρ f (1− φhn f )
where φhn f = φs1 + φs2

Heat Capacity
(
ρCp

)
hn f = (ρCp)s1φs1 + (ρCp)s2φs2 + (ρCp) f

(
1− φhn f

)
Dynamic Viscosity µhn f

µ f
= 1

(1−φhn f )
2.5

Thermal Conductivity khn f
k f

=

 2k f +

(
φs1ks1+φs2ks2

φhn f

)
+2(φs1ks1+φs2ks2)−2φhn f k f

2k f−(φs1ks1+φs2ks2)+

(
φs1ks1+φs2ks2

φhn f

)
+φhn f k f



Table 2. Thermo-physical properties.

Physical Properties Water Al2O3 Cu

ρ
(

kg/m3
)

997.1 3970 8933

Cp (J/kgK) 4179 765 385
k (W/mK) 0.613 40 400

As to reduce the aforementioned governing equations, the similarity variables are
employed (Waini et al. [16], Eid and Nafe [42])

ψ = ex/2L
√

2ν f Lc f (η), u =
∂ψ

∂y
, v = −∂ψ

∂x
, θ(η) =

T − T∞

Tw − T∞
, η = yex/2L

√
c

2ν f L
(5)

which consequently gratify Equation (1) and transform Equations (2) and (3) into the
subsequent equations (

µhn f /µ f

ρhn f /ρ f

)
f ′′′ + f f ′′ − 2 f ′2 = 0 (6)

1
Pr

(
khn f

k f

)
θ′′ +

(
ρCp

)
hn f(

ρCp
)

f

(
f θ′ − f ′θ

)
+ βθ = 0 (7)

due to the transformed boundary conditions

f (0) = S, f ′(0) = λ + A f ′′ (0), θ(0) = 1 + Bθ′(0)
f ′(η)→ 0, θ(η)→ 0 as η → ∞

(8)
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such that Pr =
(
µCp

)
f /k f is the Prandtl number, β = 2q0L/c

(
ρCp

)
f is the heat gen-

eration parameter, A = A1

(
µhn f /ρhn f

)
ex/2L

√
c/2ν f L is the dimensionless velocity slip

parameter and B = B1ex/2L
√

c/2ν f L is the dimensionless thermal slip parameter, and

S = −ν0/
√

ν f c/2L is the wall mass transfer parameter in which S > 0 (ν0 < 0) equates to

mass suction and S < 0 (ν0 > 0) equates to mass injection.
The main physical quantities of interest (local skin friction coefficient C f and the local

Nusselt number Nux) are mathematically computed as (Waini et al. [16], Eid and Nafe [42])

C f =
µhn f

ρ f

1
u2w

(
∂u
∂y

)
y=0

, Nux =
khn f

k f

−2L
(Tw − T∞)

(
∂T
∂y

)
y=0

(9)

or by introducing the transform, we have

Re1/2
x C f =

(
µhn f

µ f

)
f ′′ (0), Re−1/2

x Nux = −
(

khn f

k f

)
θ′(0) (10)

where Rex = 2Luw/ν f is the local Reynolds number.

3. Flow Stability

As it is attainable to compute dual solutions, the flow stability analysis is executed.
The problem is regarded as unsteady in this analysis where the continuity equation (Equa-
tion (1)) is held, and the time derivative is introduced to Equations (2) and (3)

u
∂u
∂x

+ v
∂u
∂y

+
∂u
∂t

=
µhn f

ρhn f

∂2u
∂y2 (11)

u
∂T
∂x

+ v
∂T
∂y

+
∂T
∂t

=
khn f(

ρCp
)

hn f

∂2T
∂y2 +

q(
ρCp

)
hn f

(T − T∞) (12)

where the variable t here denotes time.
Referencing the work reported by Merkin [55], Weidman et al. [56], Waini et al. [16]

and Yan et al. [38], the dimensionless time-dependent variable transformation for Equations
(11) and (12) is

η = yex/2L
√

c
2ν f L

, ψ = f (η, τ) ex/2L
√

2ν f Lc, θ(η, τ) =
T − T∞

Tw − T∞
, τ =

c
2L

tex/L (13)

As such, with the utilization of the transformation, the subsequent equations are
procured (

µhn f /µ f

ρhn f /ρ f

)
∂3 f
∂η3 +

∂2 f
∂η2 f − 2

(
∂ f
∂η

)2
− ∂2 f

∂η∂τ
= 0 (14)

1
Pr

(
khn f

k f

)
∂2θ

∂η2 +

(
ρCp

)
hn f(

ρCp
)

f

(
∂θ

∂η
f − θ

∂ f
∂η
−
(

∂θ

∂τ

))
+ βθ = 0 (15)

restricted to the conditions

f (0, τ) = S, ∂ f
∂η (0, τ) = λ + A ∂2 f

∂η2 (0, τ), θ(0) = 1 + B ∂θ
∂η (0, τ)

∂ f
∂η (η, τ)→ 0, θ(η, τ)→ 0 as η → ∞

(16)



Mathematics 2021, 9, 30 6 of 20

The succeeding perturbation equation is introduced for the stability analysis of the
similarity solutions, f (η) = f0(η) and θ(η) = θ0(η),

f (η, τ) = f0(η) + e−γτ F(η)
θ(η, τ) = θ0(η) + e−γτG(η)

(17)

where γ is an unidentified eigenvalue, while F(η) and G(η) are small relative to f0(η) and
θ0(η), correspondingly (Weidman et al. [56], Waini et al. [16], Yan et al. [38]).

Substituting Equation (17) into Equations (14)–(16) and setting the value of τ to zero,
the initial decay or growth of disturbance in Equation (17) can be identified and the
subsequent linearized equations are attained(

µhn f /µ f

ρhn f /ρ f

)
F′′′ + f0

′′ F + F′′ f0 − 4 f0
′F′ + γF′ = 0 (18)

1
Pr

(
khn f

k f

)
G′′ +

(
ρCp

)
hn f(

ρCp
)

f

(
θ0
′F + G′ f0 − θ0F′ − G f0

′ + γG
)
+ βG = 0 (19)

subject to the linearized conditions

F(0) = 0, F′(0) = AF′′ (0), G(0) = BG′(0)
F′(∞)→ 0, G(∞)→ 0

(20)

Since most of the linearized conditions (Equation (20)) are equal to zero, it is essential
for F′(∞)→ 0 to relax and be replaced with F′′ (0) = 1 to produce a realizable range of
eigenvalues. Thus, to attain the unknown eigenvalues γ which act as the indicator to
ascertain the stability of the flow, the bvp4c solver is utilized. The flow is contemplated to
be stable when γ > 0, and vice versa.

4. Result and Discussions

The solutions for Equations (6) and (7) conditioned to Equation (8) are numerically
enumerated by employing the bvp4c solver in Matlab software. The suitable preliminary
guesses, preferable boundary layer thickness and various values of parameters need to be
selected and well-adjusted in the coding function of the solver to compute the most precise
results. Stretching (λ > 0) and shrinking (λ < 0) surfaces are considered in this study. The
Prandtl number and nanoparticle volume fraction for alumina are specified to be fixed
throughout this study as Pr = 6.2 and φs1 = 0.01, respectively, while the other parameters,
such as velocity A and thermal B slips, nanoparticle volume fraction for copper φs2, heat
generation β and suction S, are set to be varied in order to study their impacts with regard
to the boundary layer flow and heat transfer.

For verification purposes, the results presented in this study are contrasted with
the past results revealed by Ghosh and Mukhopadhyay [49], Hafidzuddin et al. [57] and
Waini et al. [16]. The numerical values of f ′′ (0) and −θ′(0) are computed and compared
in Table 3 for the case of viscous fluid (φs1 = φs2 = 0) and shrinking surface (λ = −1)
with S = 3 and Pr = 0.7. We observe that the present and previous results are found to be
in a reasonable correlation. Thus, we guarantee that the technique, as well as the results
provided in this present study, are valid and acceptable.
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Table 3. Tabulation of f ′′ (0) and −θ′(0) for viscous fluid (φs1 = φs2 = 0) when Pr = 0.7, S = 3 and
A = B = β = 0 for the shrinking surface (λ = −1) case.

f”(0) −θ
′
(0)

First Solution Second
Solution First Solution Second

Solution

Ghosh and
Mukhopadhyay [49] 2.39082 −0.97223 1.7712 0.84832

Hafidzuddin et al. [57] 2.3908 −0.9722 1.7712 0.8483

Waini et al. [16] 2.390814 −0.972247 1.771237 0.848316

Present Results 2.390813634 −0.972128868 1.771237307 0.847748272

The non-unique or the dual solutions of Equations (6) and (7) are perceived to exist in
this study for certain values of parameters, as can be observed in Figures 2–9 for the plots
of skin friction coefficient Re1/2

x C f and the local Nusselt number Re−1/2
x Nux, and also in

Figures 10–17 for the plots of velocity and temperature profiles. The plots of the skin friction
coefficient Re1/2

x C f and local Nusselt number Re−1/2
x Nux against the stretching/shrinking

parameter λ, with varied values of velocity slip parameter A (= 0.2, 0.4, 0.6) when
S = 2.4, φs2 = 0.01, B = 0.2 and β = 0.02, are exhibited in Figures 2 and 3. It is discovered
from the figures that the presence of dual solutions is visible for A = 0.2, 0.4, 0.6 when
λc1 = −1.4419, λc2 = −1.7322, λc3 = −2.0362 respectively. This also indicates that the
bifurcation point of the boundary layer only appears at the shrinking surface (λ < 0) region
and the surges of velocity slip parameter A delay the bifurcation of the boundary layer.
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In Figure 2, the skin friction coefficient Re1/2
x C f is noted to be in a decreasing trend as

the velocity slip parameter A escalates for the first solution in a certain range
(−1.4419 ≤ λ < 0) in the shrinking surface (λ < 0) region, but the opposite trend oc-
curs when approaching the stretching surface (λ > 0) region and onwards. However, for
the local Nusselt number Re−1/2

x Nux, it is noticed from Figure 3 that the enhancement
in the value of the velocity slip parameter A promotes the increment in the local Nusselt
number Re−1/2

x Nux for the first solution, but when approaching the stretching surface
(λ > 0) region, the opposite trend occurs. Meanwhile, for the second solution of the skin
friction coefficient Re1/2

x C f and the local Nusselt number Re−1/2
x Nux, a similar trend is also

noticed to occur like the first solution, but a change of trend happens within a certain range
of shrinking surface (λ < 0) region and the stretching surface region (λ > 0) onwards,
unlike in the first solution. The skin friction coefficient Re1/2

x C f is also perceived to increase
as the value of the stretching/shrinking parameter λ diminishes, while the obverse occurs
for the local Nusselt number Re−1/2

x Nux for both the first and second solutions.
The effects of the thermal slip and heat generation parameters only impact the local

Nusselt number Re−1/2
x Nux. The plot of the local Nusselt number Re−1/2

x Nux against the
stretching/shrinking parameter λ for varied values of thermal slip B (= 0.2, 0.22, 0.23)
and heat generation β (= 0.02, 0.2, 0.3) when S = 2.4, φs2 = 0.01 and A = 0.2 is displayed
in Figures 4 and 5. Dual solutions are observed to exist, starting at almost the same critical
values for the varied values of both the thermal slip B and heat generation β parameters,
which are λc = −1.4419. The existence of the thermal slip B and heat generation β
parameters causes the local Nusselt number Re−1/2

x Nux to decrease, but it is seen to increase
as the stretching/shrinking parameter rises λ for both the first and second solutions.

Moreover, for the influence of copper volume fraction φs2 (= 0.001, 0.005, 0.01) over
the skin friction coefficient Re1/2

x C f , and the local Nusselt number Re−1/2
x Nux against the

stretching/shrinking parameter λ when S = 2.4, A = B = 0.2, β = 0.02, is shown in
Figures 6 and 7, and the same against the suction parameter S when λ = −1, A = B = 0.2,
β = 0.02 is shown in Figures 8 and 9. It is noted that in Figures 6 and 7, the existence of
dual solutions is visible for φs2 (= 0.001, 0.005, 0.01) when λc1 = −1.3686, λc2 = −1.4016,
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λc3 = −1.4419, which indicates that the bifurcation point of the boundary layer eventuates
at the shrinking surface (λ < 0) region and the presence of the copper volume fraction
delays the bifurcation of the boundary layer.

The upsurge in the copper volume fraction parameter φs2 leads to the increase in the
skin friction coefficient Re1/2

x C f at the shrinking surface (λ < 0) region for the first solution,
but leads to a reduction for the second solution. We also notice a change in the trend of the
skin friction coefficient Re1/2

x C f for the first solution towards the copper volume fraction
parameter φs2 when λ > 0. Meanwhile, the plot of the local Nusselt number Re−1/2

x Nux is
observed to rise when there is an upsurge in the copper volume fraction parameter φs2 for
the first and second solutions. The plots of the skin friction coefficient Re1/2

x C f and local
Nusselt number Re−1/2

x Nux are noticed to increase and decrease, respectively, when the
stretching/shrinking parameter λ decreases for both solutions.

In Figures 8 and 9, dual solutions are perceived to exist for φs2 (= 0.001, 0.005, 0.01)
when Sc1 = 2.0775, Sc2 = 2.0551, Sc3 = 2.0290, which indicates that only certain appro-
priate values of suction are required to achieve dual solutions for the shrinking surface.
In these figures, the increases in copper volume fraction φs2 and suction S parameters
augment the skin friction coefficient Re1/2

x C f for the first solution but reduce the skin
friction coefficient Re1/2

x C f for the second solution. Concurrently, the local Nusselt number
Re−1/2

x Nux is noted to augment when the copper volume fraction φs2 and suction S pa-
rameters increase for both of the solutions. From all of the figures (Figures 2–9), we noted
that the plots of the skin friction coefficient and the local Nusselt number against both the
stretching/shrinking and the suction parameters are all moving towards the left side of the
domain, either up or down on the left side, to achieve the critical point.

The velocity f ′(η) and temperature θ(η) profiles are also provided as in Figures 10–17.
The increment of velocity slip A (= 0.2, 0.4, 0.6) and suction S (= 2.2, 2.3, 2.4) parameters
causes the velocity profile f ′(η) to increase for the first solution, but it reduces for the second
solution and for both solutions of the temperature profile θ(η) as depicted in Figure 10,
Figure 11, Figure 12, Figure 13, separately. For the first realizable solution, physically,
the presence of velocity slip at the boundary of the shrinking surface reduces the flow
resistance which causes more flow to slip through the surface and increase the flow velocity,
thus a high degree of velocity slip is required to speed up the flow velocity and vice versa.
For the copper volume fraction parameter φs2 (= 0.001, 0.005, 0.01), the upsurge in value
amplifies both the velocity f ′(η) and temperature θ(η) profiles for both of the solutions, as
exemplified in Figures 14 and 15, but in the velocity profile f ′(η) for the second solution,
dissimilar behavior is noticed at a certain range. In Figures 16 and 17, the influences of
the thermal slip parameter B (= 0.2, 0.4, 0.6) and heat generation β (= 0.02, 0.04, 0.06)
parameter over the temperature profile θ(η) are portrayed. Since these parameters do not
affect the velocity profile f ′(η), it is only necessary to provide the temperature profile θ(η)
in this present study. The temperature profile θ(η) is noticed to increase when the thermal
slip parameter B decreases and when the heat generation parameter β increases. The
appropriate amounts of thermal slip and heat generation parameters need to be controlled
to obtain the required heat transfer performance, as both parameters produce a different
impact that could offset each other.

As dual solutions exist, it is essential to execute the stability analysis of the flow.
The stability analysis is conducted as has been discussed in the previous section. The
computations of the lowest eigenvalues γ for A = 0.2 and A = 0.6 for different λ when
S = 2.4, φs2 = 0.01, B = 0.2 and β = 0.02 are tabulated in Table 4. It is realized that the first
solution gives the positive value of eigenvalues γ1, meanwhile the second solution gives
the negative value of eigenvalues γ2. As according to Merkin [55] and Weidman et al. [56],
the positive eigenvalues γ1 imply that the flow is real and stable due to the initial decay
of disturbance as the time passes, and the negative eigenvalues γ2 imply that the flow is
unreal and unstable due to the initial growth of disturbance. It is also noticeable from the
table that as the value of λ→ λc, the value of γ→ 0 . So, as supported by the statement
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above, it can be affirmed that the flow is stable for the first solution whilst it is unstable for
the second solution.

Table 4. The least eigenvalues for preferred values of A and λ as S = 2.4, φs2 = 0.01, B = 0.2 and
β = 0.02.

A λ
Least Eigenvalues

First Solution (γ1) Second Solution (γ2)

0.2
−1.44 0.08790 −0.08778
−1.441 0.06126 −0.06120
−1.4419 0.01326 −0.01326

0.6
−2.03 0.13447 −0.13450
−2.036 0.02518 −0.02518
−2.0362 0.00711 −0.00713

5. Conclusions

The slip flow of a hybrid nanofluid over a permeable exponentially stretching/shrinking
sheet with the existence of heat generation has been numerically scrutinized by using the
bvp4c solver. The present findings can be summarized as follows:

1. Dual solutions are achievable at the shrinking surface region as well as with the
appropriate amount of suction, and only the first solution is stable.

2. The increment of the velocity slip parameter depreciates the skin friction coefficient
but enhances the local Nusselt number in the shrinking surface region (first solution).

3. The skin friction coefficient is intensified (first solution) when the values of the copper
volume fraction and suction parameters increase in the shrinking surface region.

4. The local Nusselt number is augmented (first and second solutions) when the copper
volume fraction and suction parameters increase, but is diminished (first and second
solutions) as the thermal slip and heat generation parameters increase.

5. The rise in the stretching/shrinking parameter reduces the skin friction coefficient
but augments the local Nusselt number.

6. The augmentation of the velocity slip, suction and copper volume fraction parameters
augments the velocity profile (first solution).

7. The temperature profile can be enhanced (first and second solutions) with the en-
hancement of the copper volume fraction and heat generation parameters, but can
be diminished (first and second solutions) with the increment of the velocity and
thermal slips and suction parameters.
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Nomenclature
u, v elements of velocity in x and y directions, respectively
uw surface velocity
vw wall mass transfer velocity
L characteristic length
λ stretching/shrinking parameter
T fluid temperature
Tw varying temperature of the surface
T∞ reference temperature
q heat generation rate constant
A1 velocity slip factor
B1 thermal slip factor
ρ f fluid density
ρhn f fluid density for hybrid nanofluid(
ρCp

)
f heat capacity for fluid(

ρCp
)

hn f heat capacity for hybrid nanofluid
µ f dynamics viscosity for fluid
µhn f dynamics viscosity for hybrid nanofluid
k f thermal conductivity for fluid
khn f thermal conductivity for hybrid nanofluid
φs1, φs2 nanoparticles volume fraction for alumina and copper, respectively
f dimensionless velocity
θ dimensionless temperature
Pr Prandtl number
β heat generation parameter
A dimensionless velocity slip parameter
B dimensionless thermal slip parameter
S wall mass transfer parameter
C f local skin friction coefficient
Nux local Nusselt number
Rex local Reynolds number
t time (s)
τ dimensionless time variable
γ eigenvalue
γ1, γ2 least eigenvalue for first and second solutions, respectively
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