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Abstract: This paper studies the displacement and efficiency of a Purcell’s three-link microswimmer
in low Reynolds number regime, capable of moving by the implementation of a motion primitive or
gait. An optimization is accomplished attending to the geometry of the swimmer and the motion
primitives, considering the shape of the gait and its amplitude. The objective is to find the geometry
of the swimmer, amplitude and shape of the gaits which make optimal the displacement and
efficiency, in both an individual way and combined (the last case will be referred to as multiobjective
optimization). Three traditional gaits are compared with two primitives proposed by the authors and
other three gaits recently defined in the literature. Results demonstrate that the highest displacement
is obtained by the Tam and Hosoi optimal velocity gait, which also achieves the best efficiency in
terms of energy consumption. The rectilinear and Tam and Hosoi optimal efficiency gaits are the
second optimum primitives. Regarding the multiobjective optimization and considering the two
criteria with the same weight, the optimum gaits turn out to be the rectilinear and Tam and Hosoi
optimal efficiency gaits. Thus, the conclusions of this study can help designers to select, on the one
hand, the best swimmer geometry for a desired motion primitive and, on the other, the optimal
method of motion for trajectory tracking for such a kind of Purcell’s swimmers depending on the
desired control objective.

Keywords: low Reynolds number; non-reciprocal motion; displacement; efficiency; optimal; design;
multiobjective optimization; gaits; Purcell’s microswimmer

1. Introduction

Advances in micro- and nanotechnology have promoted the manufacturing of new
miniature biomimetic artificial devices inspired by biological systems. New applica-
tions emerge due to their ability to access to small spaces at the microscale, such as
perform medical procedures in a minimally invasive way, deliver drugs with high preci-
sion, and sensing towards diagnosis and monitoring [1–4]. In this sense, understanding
hydrodynamics at the microscale is crucial, which implies navigating in low Reynolds
number (Re) regime where viscous forces predominate over inertial ones. In this regime,
the study of microswimmer dynamics acquires an important role on understanding the
motion and finding new ways to propel these swimmers.

Mainly, two ways of propulsion at low Re regime can be distinguished [5]. On the
one hand, the movement can be obtained by performing a unidirectional body motion,
deployed by a rotating corkscrew and based on the movement of prokaryotic cells or
bacteria [6]. On the other hand, flexible flagellums of eucaryotic cells have inspired the
movement through planar waveforms, leading to the study of different waveforms for
propulsion [7–10] and design of prototypes [11,12]. In this respect, Purcell introduced
the so-called Purcell’s three-link swimmer [5], composed of three links attached by one
degree-of-freedom joints and defined as the simplest swimmer that could implement a gait
or motion primitive within a low Re flow and manage to move a certain distance. It must
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be said that there are other types of Purcell’s swimmers depending on the number of links
that they are made of (widely called N-link swimmers) [13,14].

Concerning the Purcell’s three-link swimmer, several authors already studied its
dynamics comparing the displacement obtained through the implementation of traditional
primitives and estimating a coefficient of efficiency based on the energy consumption of
the joints [15]. Other works study the dynamics of a 3D model and provide new gaits [16],
while others analyze the dynamics of the generalized case of N-link and try to approximate
it to a sperm cell swimmer [13]. Regarding the motion primitives, methods for designing
new motion primitives have been reported in [14,17–19], providing the definition and
implementation of different gaits, while other works analyze the symmetries of the Purcell’s
three-link swimmers and their effect on generating gaits with particular symmetries in
order to achieve a desired net motion [20]. These symmetries allowed to define other stroke
sequences, represented as a Fourier Series, which provide optimal efficiency and velocity
of the swimmer [21]. Finally, the controllability of the Purcell’s swimmers was studied
in [13,14,16,22] and experimental trajectory tracking was addressed in [18,23]. Although
considerable work has been done in this field, the defined gaits have not been compared
among them, nor any study involving the displacement and efficiency has been carried out
with all the motion primitives. In addition, the parameters that influence the movement of
Purcell’s swimmer have barely been analyzed.

This work aims to solve these research gaps offering a novel comparative study
between gaits in terms of displacement and efficiency towards doing optimal both the
geometric design and the trajectory tracking in future works.

This work aims to solve this research gaps offering a novel comparative study be-
tween gaits with the objective of optimizing the displacement and efficiency towards the
implementation of an optimal trajectory tracking and the design of a prototype in future
works. The study focuses on three aspects: the shape and amplitude of the motion primi-
tives, and the swimmer geometry. With the purpose of analyzing the performance from
different viewpoints, displacement and efficiency of the Purcell’s three-link microswimmer
are reported here in two different ways, namely separately and altogether, this last case
by a multiobjective optimization. Regarding the motion primitives, this work proposes
two new gaits and compares them with three traditional ones, already studied in the
references [13–16,18,20], and other three gaits defined by other authors [19,21]. The results
of this study will provide the optimal primitive along with its best amplitude and geometry
of the swimmer for achieving optimal displacement, optimal efficiency and minimizing
a multiobjective function. A preliminary work can be found in [24], where the displace-
ment and efficiency were calculated for different primitives, amplitudes and geometries,
although these variables were not analyzed together.

The document is organized as follows. Section 2 recalls the environment properties and
the hydrodynamics related to low Re regime, based on the Navier–Stokes equations, as well
as the basis of the resistive force theory (RFT). Section 3 addresses the dynamics of Purcell’s
three-link swimmers and introduces the gaits analyzed in this work. The optimization of
displacement and efficiency is carried out in Section 4, where the two criteria are calculated
depending on the shape of the gait, its amplitude, and the geometry of the swimmer.
The main conclusions of this work are drawn in Section 5.

2. Background

This section describes the hydrodynamics in the microscale and the estimation of drag
forces for the Purcell’s swimmer.

2.1. Environment Properties

Prior to the study of the movement of Purcell’s three-link swimmer, some hydrody-
namics concepts are introduced to understand the movement at the microscale.
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A moving fluid is characterized by Re, which determines the influence of viscous and
inertial forces through the expression:

Re =
vlρ
µ

(1)

where v and l are the maximum velocity and a characteristic dimension of the flow, respec-
tively, and ρ and µ are the density and the dynamic viscosity of the fluid, respectively. This
expression is appropriate for a Newtonian fluid, which dynamic viscosity is constant for
every conditions.

Due to the dimensions of ducts and objects, the microscale is characterized by a low
Re regime, which is called slow viscous flow and implies that the viscous forces are dominant
while inertial forces are negligible [25].

On another note, the Navier–Stokes equations are essential for studying the hydrody-
namics in a fluid. The expression for a Newtonian and incompressible fluid is [25,26]:

ρ
Dv
Dt

= ρ

(
∂v
∂t

+ v · ∇v
)
= −∇p + µ∇2v + ρf (2)

where D/Dt is the material derivative, defined as ( ∂
∂t + v · ∇). The term ρ Dv

Dt represents
the inertia effects, ∇p is the pressure gradient present in the fluid, µ∇2v represents the
diffusion and internal forces, and f denotes other external forces.

As stated before, in low Re regime the inertial forces are negligible, and the Navier–Stokes
equations transform into the Stokes equations [25]:

µ∇2v + ρf = ∇p (3)

On the other hand, the law of conservation of mass can be applied to any stationary vo-
lume element within a flowing fluid [25], resulting in the equation of continuity ∂ρ

∂t = −∇(ρv).
For an incompressible fluid, the equation can be simplified to ∇v = 0, where ∇v is the
net rate of flux. This simplification along with the Stokes equations establish the creeping
motion equations for low Re regime [25]. If Re is small, it is permissible to say that there are
no external forces applied to the swimmer and the fluid surrounding it. Thus, the external
forces term of Stokes equations can be omitted, and the equations adopt the quasi-static
form:

µ∇2v = ∇p (4)

∇v = 0

The first consequence of low Re regime governed by the Stokes equations is the
reversibility of a flow: fluid particles follow the same trajectories as a moving body within
the fluid, which implies that a swimmer moving to a position and then returning by
reversing the same sequence of shapes does not produce net displacement of the swimmer.
This was first introduced by Purcell through the ‘scallop theorem’ [5], and consequently,
a non-reciprocal motion has to be performed. The difference between reciprocal and
non-reciprocal motion applied to a Purcell’s three-link swimmer is illustrated in Figure 1.
The selection of an optimal non-reciprocal sequence is crucial for the Purcell’s three-link
swimmer in the environment under study, as it has been proved that the net displacement
only depends on the geometrical sequence of shape [27].
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Figure 1. Types of movement of a Purcell’s three-link swimmer: (a) reciprocal (b) non-reciprocal.

2.2. Drag Forces by Resistive Force Theory

In addition to the non-reciprocal motion, a moving body within a fluid needs to com-
pensate the reactions opposing the direction of movement to generate a net displacement.
These reactions are drag forces and appear longitudinal and tangentially to the direction of
displacement [28].

The estimation of drag forces in low Re regime was studied by several authors, leading
to the definition of theories and methods that apply different conditions to the object under
study (see e.g., [29] and references therein). The main theories applied to the Purcell’s
swimmer are RFT and the slender body theory (SBT). The choice of one or the other is
explained hereunder.

First, RFT estimates the drag forces acting on a slender body proportionally to its
instantaneous velocity relative to the fluid and the drag coefficients, which are strictly
defined by the geometry of the body and the viscosity of the fluid [28,30]. Conversely, SBT
approximates the effects of a solid within a flow by a distribution of singularities, taking
advantage of the slenderness of the body [31–36]. RFT and SBT were compared in [37]
and the conclusions pointed out that the results obtained by RFT are consistent with those
obtained by SBT in the case that no cell body is attached to the end of the body or if it is
of small diameter (hence, it does not affect to the results). This conclusion leads to the
application of RFT in the present work, as it is sufficient and generates consistent results,
also avoiding the computational efforts of executing SBT analysis. The fundamentals of
RFT are introduced hereunder.

Consider an infinitesimal element of length ds belonging to a slender body in an
incompressible and low Re fluid. RFT establishes that the tangential and normal reactions
of the fluid depend on the drag coefficients (ct and cn, respectively), on the velocity of the
object in the direction of X or Y axis (ẋ or ẏ), and on the inclination angle of ds with respect
to the horizontal (θi). Three situations may be differentiated here: the body moves in the X
axis, in the Y axis, and a combination of velocities in both axis.

The reactions applied to the infinitesimal element when the body is moving with a ve-
locity ẋ are illustrated in Figure 2a, being d ft,x and d fn,x the tangential and normal reactions
of the fluid. A similar situation is found when the body moves in the Y axis (Figure 2b).
Depending on the direction of the swimmer velocity, the forces of the infinitesimal element
are given by [28]:

Velocity in X axis

{
d fn,x(s) = cn ẋ sin(θi)ds

d ft,x(s) = ct ẋ cos(θi)ds
(5)

Velocity in Y axis

{
d fn,y(s) = cnẏ cos(θi)ds

d ft,y(s) = ctẏ sin(θi)ds
(6)

When the motion is produced by a combination of velocities in X and Y directions
(Figure 2c), the total forces acting normally and tangentially to the infinitesimal element are:

Combination of velocities

{
d fn(s) = d fn,y(s)− d fn,x(s) = cn(ẏ cos(θi)− ẋ sin(θi))ds

d ft(s) = d ft,y(s) + d ft,x(s) = ct(ẏ sin(θi) + ẋ cos(θi))ds
(7)
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Details are given in [38]. The resultant forward thrust in X and Y directions is given by:

dfx(s) = (d fn(s) sin(θi)− d ft(s) cos(θi))i (8)

dfy(s) = (−d fn(s) cos(θi)− d ft(s) sin(θi))j

being i and j unit vectors in X and Y directions, respectively. The total drag force dF(s)
applied to an infinitesimal element is the sum of forces dfx(s) and dfy(s). The torque
exerted due to the calculated reactions, denoted as dm, can be estimated through the cross
product of r(s) and dF(s), being r(s) the position of the infinitesimal element from the
origin. In accordance with the above equations, the element ds can only exert a positive
forward thrust if ẏ > ẋ tan(θi) and cn > ct [38].

The drag force and torque applied to a complete segment can be estimated by inte-
grating the force and torque applied to ds through the total length of the segment (li):

Fi =
∫ li

0
dFi(s)ds =

∫ li

0
(dfx,i(s) + dfy,i(s))ds (9)

mi =
∫ li

0
r(s)× dFi(s)ds

Y

X

ds

θi

dfn,x

vxsin(θi)
vx

dft,x

vxcos(θi)

(a)

ds

vy

dft,y

dfn,y

θi

vysin(θi)

vycos(θi)

(b)

dfn

dft
dfx

dfy

θi

ds

(c)
Figure 2. Fluid reactions applied to an infinitesimal element, defined by RFT: (a) motion in X axis (b)
motion in Y axis (c) total drag forces.

3. Purcell’s Three-Link Swimmer

In this section, the geometry and dynamics of the Purcell’s three-link swimmer are
introduced, as well as the motion primitives.

3.1. Geometry

The Purcell’s three-link swimmer consists of three links connected by one degree-of-
freedom joints. In this work, the links are supposed cylindrical although another geometry
can be considered. The assessment of the swimmer’s dynamics developed in this section
takes as a reference the scheme shown in Figure 3.

The lengths of the links are l0, l1 and l2, while the rotary joints are designated as j1 and
j2. The lateral links are supposed of equal length (l1 = l2) and a ratio is defined to relate
the lengths of the links (η = l0/l, being l the total length of the swimmer). Regarding the
angular positions of the links, θi represents the angular position of the ith link with respect
to X axis of the global reference frame. The rotation of the lateral links is determined by a
motion primitive or gait, which defines the angles φ1 and φ2 with respect to the body-fixed
reference frame (x, y). The relations between the angular position and the gait angles
are θ1 = φ1 − θ0; and θ2 = φ2 + θ0. The position of the center of ith link is defined as
Xi = (xi yi θi)

T .
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Figure 3. General scheme of the Purcell’s three-link swimmer.

3.2. Dynamics

Next, the displacement of the central (or base) link of Purcell’s three-link swimmer
will be estimated. First, the planar and angular position of the three links must be analyzed.
The movement of links l1 and l2 with respect to the central link is completely defined by
angles φ1 and φ2, while the position of the base link with respect to the global reference
frame is unknown, designated as X0 = (x0 y0 θ0)

T .
The position of the lateral links with respect to the central link can be easily estimated

as follows:

X1 = X0 +
l0
2

− cos(θ0)
− sin(θ0)

0

+
l1
2

− cos(φ1 − θ0)
sin(φ1 − θ0)

0

+

 0
0

180− φ1

 (10)

X2 = X0 +
l0
2

cos(θ0)
sin(θ0)

0

+
l2
2

cos(φ2 + θ0)
sin(φ2 + θ0)

0

+

 0
0
φ2


The position can be derived and an expression is obtained, associating the linear and

angular velocities of the links (Ẋi = (ẋi ẏi θ̇i)
T), the linear and angular velocities of the

central link (Ẋ0= (ẋ0 ẏ0 θ̇0)
T), and the angular velocities of the lateral links with respect

to the body-fixed reference frame (Φ̇ = (φ̇1 φ̇2)
T). This relation can be written in matrix

form, achieving the following expression [15,17,20]:

Ẋi = Ti(X0, Φ)Ẋ0 + Ei(X0, Φ)Φ̇ (11)

Matrices Ti and Ei are given in the reference [17] and depend on the link whose velocity is
being calculated. The total drag forces and torque applied to the ith link can be calculated
through RFT [15], considering cni = 2cti = 4πµ/ log(li/ai), being ai the radius of the ith
link. The following matrix expression is achieved:

Fi = −Ri(X0, Φ)Ẋi (12)

Ri(X0, Φ) = ctili

 1 + sin2(θi) − cos(θi) sin(θi) 0
− cos(θi) sin(θi) 1 + cos2(θi) 0

0 0 1
6 l2

i

 (13)

where Fi = ( fix fiy mi)
T and Ri is called the resistance tensor. The total drag forces

acting on the swimmer’s body (denoted as Fb = ( fbx fby mb)
T) are the summation of

the forces applied to each link, and the total torque can be estimated by:

Fb =
2

∑
i=0

TT
i Fi = −

2

∑
i=0

TT
i Ri(TiẊ0 + EiΦ̇) (14)

mb =
2

∑
i=0

(mi + ((rj − ri)× fi) · k) (15)
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where rj and ri are the positions of the jth joint and the ith link with respect to the global
reference frame, respectively; fi = ( fix fiy) and k is a unit vector in Z direction. According
to a Stokes’ flow, a quasi-static motion is assumed; thus, the swimmer is in static equilibrium
and the total drag forces and torques acting on the swimmer’s body are Fb = 0 [15,17,20].
Substituting into (14) results in:

Ẋ0 = −∑2
i=0 TT

i RiEi

∑2
i=0 TT

i RiTi
Φ̇ (16)

To solve the differential Equation (16) and estimate the position of the central link,
the Runge–Kutta method is applied. The results obtained are plotted in Figure 4, which
match those presented in [13,39].

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4. Normalized displacement of the central link (l0) and left joint (j1) of the Purcell’s three-link
swimmer in X and Y axis, implementing a square gait with π/3 as its amplitude, η = 1/2, l0 = 2
and l = 4. The results match those presented in [13,39].

3.3. Motion Primitives

As a consequence of the reversibility of the flow in low Re regime, a non-reciprocal
motion must be performed towards a net displacement of the swimmer, which can be
fulfilled by the application of a motion primitive or gait. As above-mentioned, a gait
determines the movement of links l1 and l2 through the angles φ1 and φ2. The definition of
a gait has been considered to be as follows:

φ1 = εs1; φ2 = εs2 (17)

where s1 and s2 are the angles with unitary amplitude, and ε is the gait amplitude.
The shape of a motion primitive determines the displacement reached by the Purcell’s
swimmer, so the analysis of different gaits plays a key role to be able to choose the most ap-
propriate.

The gaits analyzed in this work are shown in Figure 5 and have been selected following
the criteria found in the literature. The square gait is the most common primitive [13–15,20,21],
followed up by a figure–eight shape (called rectilinear henceforth) [16,18,20] and circu-
lar [15]. The gaits in the second row of Figure 5 have been defined in [19,21] as optimal
gaits, while the remaining motion primitives are proposed by the authors and were defined
by inspiration from the others, and whose definition can be found in Appendix A.

These gaits are divided into two types: consecutive (Figure 5a,b) and simultaneous
(the rest). The consecutive gaits are characterized by an alternate movement of the links,
i.e., only one link is moving at once. On the other hand, the simultaneous gaits are defined
by links constantly moving.
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Figure 5. Different gaits applied to the Purcell’s swimmer, with unitary amplitude: (a) square
(b) rectilinear (c) circular (d) Alouges optimal gait from [19] (e) optimal efficiency gait from [21]
(f) optimal velocity gait from [21] (g) diamond gait (h) petal gait. The coloured circular mark
represents the initial point of the gait.

Despite every gait has two versions depending on the direction followed by the angles
(clockwise or counterclockwise), it has been proved that the net displacement does not
depend on the direction of the gait. In fact, the displacements achieved are identical in
magnitude but opposite in sign. It is important to remark that motion primitives in Figure 5
only produce net movement in X axis, thus, displacement in this direction will be studied
further on.

4. Optimization of Displacement and Efficiency According to the Shape and
Amplitude of the Gaits and the Geometry of the Swimmer

This section presents the results of a comparative study in which the variables to
optimize are the displacement of the swimmer, solving the differential Equation (16),
and the energy consumption of the joints through a coefficient of efficiency (defined further
on). The latter has been considered in this work since the implementation of a gait may
achieve the highest displacement while increases the energy consumption, and this must
be taken into consideration, especially for trajectory tracking.

The parameters that may affect the displacement of the swimmer are the gait ampli-
tude (ε), the relation between lengths of the links (η), the total length of the swimmer (l),
the radius of the links (a), the gait period (Tg), and the viscosity of the fluid (µ). The dis-
placement varying these parameters is plotted in Figure 6. As a resume, the radius, the gait
period and the viscosity do not influence the displacement (Figure 6d–f), considering the
range of values of the figure, which have been chosen as the most suitable ones in the scale
where the swimmer would navigate. On the other hand, the displacement and the total
length of the swimmer have a proportional relation (Figure 6c), which implies that the
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longer the swimmer, the higher the achieved displacement. Finally, the gait amplitude
and the relation between lengths of the links have a major impact on the displacement,
and thus, have been considered in the comparative study along with the shape of the gait.
The gait amplitude is within the range [0, π] due to physical restrictions and to extend the
limits considered in [24].

0 0.5 1 1.5 2 2.5 3
-0.15

-0.1

-0.05

0

0.05

0.1

(a)

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

(b)

0 2 4 6 8 10
0

0.1

0.2

0.3

(c)

0 0.2 0.4 0.6 0.8 1
0.01

0.015

0.02

0.025

0.03

(d)

1 2 3 4 5 6 7 8 9 10
0.01

0.015

0.02

0.025

0.03

0.035

(e)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.01

0.015

0.02

0.025

0.03

(f)

Figure 6. Displacement of the Purcell’s three-link swimmer depending on several parameters which
may influence its movement: (a) amplitude of the gait (ε) (b) relation between lengths of the links
(η = l0/l) (c) radius of the links (a) (d) total length of the swimmer (l) (e) gait period (Tg) (f) viscosity
of the fluid (µ).

The results included in the following subsections have been obtained with MATLAB®

and were calculated considering a millimeter size of the robot (l = 1 mm). The radius of
the links is also assumed small (a = 0.25 mm), and the fluid in which the swimmer would
navigate is a silicone oil characterized by a viscosity µ = 0.0964 kg/(m·s), meeting the
requisites of low Re regime and selected for future in-lab experiments.

4.1. Optimal Displacement

The first parameter to be analyzed is the displacement of the swimmer. The calcu-
lations have been carried out varying both the gait amplitude and the relation between
lengths of the links, obtaining a data array that can be plotted in 3D as shown in Figure 7a.
From these data, the maximum values of displacement can be extracted, which are tabu-
lated in Table 1 in order of decreasing displacement. For additional information and to
resume the results, the data from Table 1 is also displayed in Figure 7b.
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(a)

1 1.5 2 2.5 3
0.2

0.25

0.3

0.35

0.4

(b)
Figure 7. Results for optimal displacement: (a) 3D plot of displacement applying the square gait to the Purcell’s three-link
swimmer, (b) maximum values of displacement with their corresponding gait amplitude (ε) and relation between lengths of
the links (η).

As it can be extracted from the results, the maximum displacement is achieved for
values of 1.4 rad < ε < 2.1 rad and 0.2 < η < 0.4. However, there is a maximum
out of these limits, corresponding to the Alouges optimal gait from [19], which reaches
the maximum value of displacement for ε = π rad. It should be evaluated if this gait
amplitude is possible to be implemented or, due to physical restrictions, such amplitude is
not suitable and must be neglected. This gait does not present any other optimal points
in the range under study, so the unique optimal displacement corresponds to this point.
The amplitude limits should be taken into account to select the most appropriate primitive,
as all the analyzed gaits exhibit similar results and achieve the maximum displacement for
amplitudes higher than 1.57 rad.

On the other hand, Table 1 provides the Tam and Hosoi optimal velocity gait from [21]
as the optimal one taking into account the displacement, as the Purcell’s swimmer can reach
a distance of 81.5 µm through the implementation of this gait. The next three gaits in Table 1
present similar displacements around 60 and 65 µm. These primitives are rectilinear, petal
and Tam and Hosoi optimal efficiency gait from [21], in order of decreasing displacement.
The worst primitive in this case is the square one, providing a displacement of 47 µm. As it
can be observed, the first gait reaches two times the displacement of the square gait.

Table 1. Optimal values of gait amplitude (ε) and relation between lengths of the links (η) for
maximum displacement. The data are sorted in order of decreasing displacement.

Gait ∆x0,max · 10−2 (mm) ε η

Tam Hosoi optimal velocity gait 8.15 2.09 0.3239
Rectilinear 6.43 1.78 0.3239
Petal 6.35 1.87 0.3239
Tam Hosoi optimal efficiency gait 6.04 1.78 0.2331
Diamond 5.73 2.03 0.2533
Alouges optimal gait 5.47 π 0.3239
Circular 5.39 1.71 0.2230
Square 4.70 1.39 0.2230

4.2. Optimal Efficiency

Once the displacement has been calculated, the energy consumption of the joints must
be taken into consideration to develop a suitable optimization study, as the Purcell’s swim-
mer may achieve the highest displacement while increases the energy consumption. This is
highly important for trajectory tracking and for the choice of the best non-reciprocal motion.
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A useful criterion to evaluate the energy consumption versus the displacement
achieved is a coefficient of efficiency, which can be estimated for a Purcell’s three-link
swimmer as [15,21,31,39]:

ξ =
ctl ¯̇x2

0
P

(18)

being ¯̇x0 the average velocity of the center of link l0, and P the average mechanical power
deployed by the joints, calculated through P = −∑2

i=0 FT
i Ẋi [15].

As performed in the previous subsection, the efficiency is calculated varying both the
gait amplitude and the relation between lengths of the links. As it can be observed from
Figure 6a, the majority of the gaits reaches the highest displacement at a turning point and,
from then on, the displacement decreases while the gait amplitude rises. In this work, only
positive displacements in X axis are considered, so the values of efficiency that correspond
to negative displacement will be neglected.

From the data array obtained, the maximum values of efficiency can be extracted,
which are tabulated in Table 2 along with their corresponding gait amplitude and relation
between lengths of the links. Additionally, Figure 8b shows the same data in a plot. As it
can be extracted from this figure, the maximum efficiency is reached for values of 1 rad
< ε < 2 rad and 0.2 < η < 0.4, which are similar to those of the maximum displacement in
the previous section.

(a)

1 1.5 2 2.5 3

0.2

0.25

0.3

0.35

0.4

(b)
Figure 8. Results for optimal efficiency: (a) 3D plot of efficiency applying the square gait to the Purcell’s three-link swimmer,
(b) maximum values of efficiency with their corresponding gait amplitude (ε) and relation between lengths of the links (η).

Table 2. Optimal values of gait amplitude (ε) and relation between lengths of the links (η) for
maximum efficiency. The data are sorted in order of decreasing efficiency.

Gait ξmax · 10−3 ε η

Tam Hosoi optimal velocity gait 4.6 1.87 0.3542
Tam Hosoi optimal efficiency gait 3.9 1.55 0.2634
Circular 3.4 1.46 0.2432
Diamond 3.2 1.68 0.2735
Alouges optimal gait 2.8 1.55 0.1927
Petal 2.8 1.71 0.3643
Rectilinear 2.4 1.62 0.3542
Square 2.0 1.14 0.2533

Regarding the classification in Table 2, the most efficient primitive matches the one
that allows obtaining the highest displacement, i.e., the Tam and Hosoi optimal velocity
gait from [21]. The primitive is followed up by the Tam and Hosoi optimal efficiency gait,
in the second place, and the circular and diamond primitives, in third and fourth place.
The last gait is, again, the square one.
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4.3. Multiobjective Optimization

In the previous subsections, separated optimizations have been carried out considering
the displacement and the efficiency as the objectives to maximize. In order to complete
the study, these two criteria previously defined are considered at the same time through a
multiobjective optimization.

The optimization problems can be classified through the number of decision variables,
the type of decision variable, the type of objective function, and the form of the problem.
If the problem has more than one objective to be satisfied, it is called multiobjective
or multicriteria optimization problem. Within the multiobjective optimization methods,
the following classification divides the methods into five groups [40,41]:

1. Scalar methods: transform the multiobjective problem into a mono-objective problem.
2. Interactive methods: sequential processes composed of several iterations.
3. Fuzzy methods: involving fuzzy logic.
4. Multiobjective methods using metaheuristics: they are stochastic methods, designed

to solve difficult optimization problems by means of an intuitive approach.
5. Decision aid methods: based on the establishment of an orderly relationship between

the different actions or solutions.

The scalar methods will be used in this work, due to their simplicity. Moreover,
within the scalar methods, the weighted-sum-of-objective-functions method will be ac-
complished, in which each criterion or subfunction is associated with a weight and, then,
the main objective function is defined as a weighted sum of the objective subfunctions [40].
Usually, the optimization method includes a minimization of the objective function. For that
purpose, the new objective function must be defined as follows:

minimize G(x) =
k

∑
i=1

ωigi(x) ,
k

∑
i=1

ωi = 1 | ωi > 0 (19)

where ωi are the weights associated with each criterion gi and k is the number of objectives.
In this case, the subfunctions gi are the displacement and efficiency relative errors with
respect to their maximum values, defined as:

g1(X0, Φ) = xerror(X0, Φ) =
∆xmax − ∆xi

∆xmax
(20)

g2(X0, Φ) = ξerror(X0, Φ) =
ξmax − ξi

ξmax
(21)

Combining the above equations and considering ω2 = 1−ω1, the objective function
(19) is:

minimize G(X0, Φ) = ω1g1(X0, Φ) + ω2g2(X0, Φ)

= ω1
∆xmax − ∆xi

∆xmax
+ (1−ω1)

ξmax − ξi
ξmax

(22)

The last step consists of defining the weight ω1. The optimization can be carried out
with the aim of finding the optimal values for the weights, but in this case, both criteria
g1 and g2 wish to have the same importance in the multiobjective optimization. Thus,
the weights are chosen as ω1 = ω2 = 0.5.

As in the previous analyses, a data array is obtained (plotted in 3D in Figure 9a) and
the minimum value of the function can be extracted. Table 3 summarizes the minimum
values of G(s) along with their corresponding gait amplitude and relation between lengths
of the links, being the data sorted in order of increasing function value. The results are also
shown graphically in Figure 9b.

The results in Figure 9b show that the primitives are optimal in the range 1.2 rad
< ε < 2 rad and 0.2 < η < 0.4, similar to the previous criteria of displacement and
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efficiency. Moreover, considering the results in Table 3, the rectilinear gait is the optimum
one, followed up by the Tam and Hosoi optimal efficiency gait in [21], petal gait and Tam
and Hosoi optimal velocity gait. The order of the primitives differs from that in previous
criteria, as now the Tam and Hosoi optimal velocity gait is not the optimal primitive and
the worst primitive is the Alouges optimal gait in [19].

(a)

1 1.2 1.4 1.6 1.8 2
0.2

0.25

0.3

0.35

0.4

(b)
Figure 9. Results from optimal objective function: (a) 3D plot of the objective function applying the square gait, (b) minimum
values of the objective function with their corresponding gait amplitude (ε) and relation between lengths of the links (η).

Table 3. Optimal values of gait amplitude (ε) and relation between lengths of the links (η) for
minimum values of the objective function. The data are sorted in order of increasing function value.

Gait Gmin ε η

Rectilinear 0.0254 1.68 0.3441
Tam Hosoi optimal efficiency gait 0.0281 1.65 0.2533
Petal 0.0296 1.78 03441
Tam Hosoi optimal velocity gait 0.0300 1.93 0.3441
Circular 0.0314 1.59 0.2331
Diamond 0.0378 1.84 0.2634
Square 0.0454 1.27 0.2432
Alouges optimal gait 0.2167 1.78 0.2129

5. Conclusions

This paper has studied the displacement and efficiency of Purcell’s three-link mi-
croswimmer in low Reynolds number regime extending the comparative study carried
out in [24]. The optimization study has been accomplished attending to the geometry
of the swimmer and the motion primitives, focusing on two aspects: the shape of the
gait and its amplitude. For this aim, two new gaits have been designed, simulated and
compared to three traditional primitives and other three optimal primitives already studied
in the references.

Three procedures have been carried out. In the first two of them, the displacement and
efficiency have been maximized, while a multiobjective optimization has been performed
considering the two previous criteria in terms of error. Common to all the procedures,
the data have been estimated varying the amplitude and geometry at the same time.

The results demonstrated that both the maximum displacement and efficiency are
achieved for values of gait amplitude between 1 and 2 rad, and relation between lengths of
the links (η = l0/l) between 0.2 and 0.4. The same occurs with the multiobjective optimiza-
tion.

In terms of maximum displacement, the best primitive is the Tam and Hosoi optimal
velocity gait in [21], followed by the rectilinear and petal gaits, being the petal primitive
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proposed by the authors. With respect to the maximum efficiency, the Tam and Hosoi
optimal velocity gait is also the best one, while the Tam and Hosoi optimal efficiency gait
in [21] and the circular one are in third and fourth place. Regarding assigning the same
weight to both criteria, the rectilinear gait gives the optimum results, followed by the Tam
and Hosoi optimal efficiency gait and the petal gait.

As a conclusion, the results of this study can be useful for selecting the optimal method
of motion, with respect to the type of gait, its amplitude and even the swimmer geometry,
depending on the desired control objective in trajectory tracking.

Our future works will focus on: (1) designing the optimal control for trajectory
tracking of a Purcell’s three-link swimmer, (2) designing and testing experimentally a
Purcell’s swimmer prototype, and (3) studying its controllability.
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Appendix A

In this appendix, the definition of the new gaits proposed in this work is provided.
These primitives are diamond and petal.
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The unscaled angles s1 and s2 for these primitives in their clockwise version are
defined as piecewise functions by the following equations:

Diamond : s1(t) =



1− 1
t1

t, t ∈ (0, t1]

−1
t2 − t1

(t− t1), t ∈ (t1, t2]

−1 +
1

t3 − t2
(t− t2), t ∈ (t2, t3]

1
Tf − t3

(t− t3), t ∈ (t3, Tf ]

, (A1)

s2(t) =



−1
t1

t, t ∈ (0, t1]

−1 +
1

t2 − t1
(t− t1), t ∈ (t1, t2]

1
t3 − t2

(t− t2), t ∈ (t2, t3]

1− 1
Tf − t3

(t− t3), t ∈ (t3, Tf ]

(A2)

Petal : s1(t) =



0, t ∈ (0, t1]

−0.5 + 0.5 sin

(
4π

Tf
(t− t1) +

π

2

)
, t ∈ (t1, t2]

−0.5 +
0.5

t3 − t2
(t− t2), t ∈ (t2, t3]

0, t ∈ (t3, t4]

0.5 + 0.5 sin

(
4π

Tf
(t− t4)−

π

2

)
, t ∈ (t4, t5]

0.5− 0.5
Tf − t5

(t− t5), t ∈ (t5, Tf ]

, (A3)

s2(t) =



−0.5
t1

t, t ∈ (0, t1]

−0.5 + 0.5 cos

(
4π

Tf
(t− t1) +

π

2

)
, t ∈ (t1, t2]

0, t ∈ (t2, t3]

0.5
t4 − t3

(t− t3), t ∈ (t3, t4]

0.5 + 0.5 cos

(
4π

Tf
(t− t4)−

π

2

)
, t ∈ (t4, t5]

0, t ∈ (t5, Tf ]

(A4)

where Tf is the final time of simulation and the segments are considered of equal duration.
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