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Abstract: The initial boundary-value problem associated to a semilinear wave equation with time-
dependent boundary values was approximated by using the method of lines. Time integration is
achieved by means of an explicit time method obtained from an arbitrarily high-order splitting
scheme. We propose a technique to incorporate the boundary values that is more accurate than the
one obtained in the standard way, which is clearly seen in the numerical experiments. We prove the
consistency and convergence, with the same order of the splitting method, of the full discretization
carried out with this technique. Although we performed mathematical analysis under the hypothesis
that the source term was Lipschitz-continuous, numerical experiments show that this technique
works in more general cases.
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1. Introduction

We consider full discretizations by means of the method of lines of a semilinear second
order in time-evolutionary problems with time-dependent boundary values. For this,
we first discretize in space by means of finite differences, obtaining a system of ordinary
differential equations.

For time integration, we rewrite the semidiscrete system as a first-order system in
time and apply an arbitrary splitting scheme. Useful descriptions of splitting methods
can be found in review articles [1–3]. Splitting schemes are especially useful in the field
of geometric integration. In fact, splitting integrators preserve the structural properties
of the original problem flow for as long as the flow of intermediate problems does. The
good performance of geometric integrators in the long-term integration of systems of
Hamiltonian ODEs is well-demonstrated in [4,5].

In this paper, we thus obtain a time integrator that is explicit and has the advantage
of being cheap to implement, but with the disadvantage that its stability interval is finite.
However, for these second-order in-time evolutionary problems, the stability condition is
acceptable, and the step size in time and space may be taken to be of a similar size. It is
also possible to use implicit methods, (see, for example, [6]), where Gautschi methods are
studied avoiding the order-reduction phenomenon that appears with these methods.

The way in which a splitting method works requires three steps [3]: first, by choosing
how to split the problem into several simpler intermediate problems, integrating each
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intermediate problem either exactly or approximately, and lastly composing the solu-
tion of the intermediate problems to obtain an approximation of a certain order of the
original problem.

Denoting by h the step size in space and by k the step size in time, and separating
the problem, we integrate into two intermediate problems with exact flows given by Φ[1]

h,t

and Φ[2]
h,t. We consider a general splitting integrator with m stages and coefficients aj, bj,

j = 1, . . . , m,

Ψh,k = Φ[2]
h,bmkΦ[1]

h,amk . . . Φ[1]
h,a2kΦ[2]

h,b1kΦ[1]
h,a1k. (1)

In the case of the standard method of lines, each must be integrated in time (either
exactly or numerically using a sufficiently accurate quadrature formula); however, for this,
the term due to the space discretization of the nonvanishing boundary values must be
addressed in the same way as the source term is. Since each stage of the splitting method
applied to the spatial discretization is exactly integrated, we deduced that the optimal
order was achieved, at least for a fixed thickness of the spatial discretization.

We propose in this paper a technique to cheaply and effectively incorporate the
boundary values to the time integration carried out by the splitting method. This technique
is consistent with these values being used to approximate the spatial differential operator
on the boundary. We prove consistency and convergence with optimal order of the full
discretization obtained with our technique under the hypothesis that the nonlinear term of
the original second order in time problem was Lipschitz-continuous; however, numerical
experiments showed that this hypothesis is not necessary in practice. Moreover, numerical
experiments clarified the superiority of this technique compared to the use of the standard
line method, with minor errors refining the discretization in both space and time.

Throughout this paper, several constants that are independent of the time step of the
time integration could be likewise denoted (usually with the letter C, and possibly with
some subscript).

The paper is organized as follows. The studied problem and spatial discretization
are introduced in Section 2. Section 3 is devoted to the standard method of lines, time
discretization being performed with a splitting method. In Section 4, we explain the
alternative method that we propose to incorporate boundary values when implementing
the splitting method. Numerical experiments that clearly show the better accuracy of
the proposed method versus the standard method of lines are carried out in Section 5.
Mathematical analysis of the convergence is developed in Section 6, where consistency is
proved, and in Section 7, where convergence is stated along a brief review of the needed
linear stability.

2. Preliminaries
2.1. Partial Differential Equation

Let X and Y be Hilbert spaces, D(A) ⊂ X a dense subspace, and A : D(A) ⊂ X → X,
B : D(A) ⊂ X → Y two closed linear operators. We consider the abstract second-order in
time semilinear equation given by

u′′(t) = Au(t) + f (t, u(t)), t ∈ [0, T],
u(0) = u0,

u′(0) = v0,
Bu(t) = g(t),

(2)

where source term f : [0, T]× D(A)→ X is a smooth function that is generally nonlinear.
In practice, data f and g, solution u, and operators A and B are defined on a domain
Ω ⊂ Rn, and they could depend on spatial variables. We did not make this dependence
explicit in the abstract formulation (2) in order to simplify the notation.

We make the following hypotheses on operators A and B:
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(A1) Operator B is onto.
(A2) Ker(B) = D(A0) is a dense subspace of X and A0 = A|D(A0)

is a negative definite
self-adjoint operator. We denote S0 = (−A0)

1/2.
(A3) Steady-state problem

Ax = 0,

Bx = v ∈ Y,

possesses a unique solution denoted by x = K(0)v, and there exists a constant C, such
that linear operator K(0) : Y → D(A) satisfies

‖K(0)v‖X ≤ C‖v‖Y.

(A4) Solution u in (2) satisfies u(t) ∈ D(A) for t ∈ [0, T] and is smooth enough in time.
(A5) Source term f (t, u) is a Lipschitz-continuous function with respect to variable u.

Remark 1. Because of Hypotheses (A2) and (A3), we deduce that linear problem

u′′(t) = Au(t) + f (t), t ∈ [0, T],
u(0) = u0,

u′(0) = v0,
Bu(t) = g(t),

is well-posed; see [7,8]. Moreover, Hypothesis (A2) may be generalized to the case of A being a
cosine operator [9,10].

2.2. Spatial Discretization

Our first step to discretize (2) by means of the method of lines is spatial discretization.
Let h ∈ (0, h0] be a parameter that is used to measure the thickness of spatial discretization.
We assumed that Xh is a family of finite-dimensional spaces that approximate X. The
discrete norm in Xh is denoted by ‖ · ‖h. Moreover, there is a subspace Xh,0 ⊂ Xh where
the elements of D(A0) are well-approximated by using Ph : D(A) ⊂ X → Xh,0, that is, we
assumed that Phu is the best approximation when u ∈ D(A0). The boundary values are
discretized by means of the linear operator Qh : Y → Xh,b, where Xh = Xh,0 ⊕ Xh,b.

Operator A is approximated by using operators Ah : Xh → Xh,0 and Ah,0 = Ah|Xh,0 . When
u ∈ D(A),

Ah(Phu + QhBu) = Ah,0Phu + AhQhBu ≈ Ph Au. (3)

In practice, if we look for solution u ∈ D(A) of steady-state problem

Au = F,

Bu = g,

where F ∈ X and g ∈ Y, we cannot obtain Phu. Instead, we can compute Rhu satisfying

Ah(Rhu + Qhg) = Ah,0Rhu + AhQhg = PhF. (4)

In order to discretize the source term, we suppose that function f can be defined in
space Xh,0. That is, we can consider f : [0, T]× Xh,0 → Xh,0, and

Ph f (t, u) = f (t, Phu),

for each u ∈ X and t ∈ [0, T].
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With this spatial discretization, we obtain semidiscrete ordinary differential system

u′′h (t) = Ah,0uh(t) + AhQhg(t) + f (t, uh(t)),

uh(0) = Phu0, (5)

u′h(0) = Phv0.

We make the following hypotheses:

(H1) There exists a constant C independent of h, such that, for u ∈ D(A) and small
enough h,

‖Phu‖h ≤ C‖u‖.

(H2) Operator Ah,0 is symmetric and negative definite. Let Sh,0 be the symmetric and
positive definite operator, such that S2

h,0 = −Ah,0. We also assumed that Ah,0 and Sh,0
were invertible and their inverses were uniformly bounded on h.

(H3) There exists a subspace Z ⊂ D(A) with norm ‖ · ‖Z, such that

‖Ah,0(Rh − Ph)u‖h ≤ εh‖u‖Z,

for each u ∈ Z, where we suppose that εh → 0 when h→ 0.
(H4) f : [0, T]× Xh,0 → Xh,0 is Lipschitz-continuous.

With these hypotheses, we can prove that the solution of (5) is a good approximation
of the one of (2).

Theorem 1. We assumed Hypotheses (A1–A5) and (H1–H4), that g ∈ C1([0, T], Y), f ∈ C([0, T]×
Xh,0, Xh,0) and u ∈ C([0, T], Z). Then, spatial error eh(t) = Phu(t)− uh(t) satisfies

‖eh(t)‖Eh = ‖[Phu(t)− uh(t), Phu′(t)− u′h(t)]
T‖Eh

=
(
‖Sh,0(Phu(t)− uh(t))‖2

h + ‖Phu′(t)− u′h(t)‖
2
h

)1/2
≤ Cεh,

where C only depends on T, u, u′ and Lipschitz constant L.

Proof. Applying Ph to (2), considering (4), and making the difference with (5),

Phu′′(t)− u′′h (t) = Ah,0(Phu(t)− uh(t)) + f (t, Phu(t))− f (t, uh(t))
−Ah,0(Phu(t)− Rhu(t)),

Phu(0)− uh(0) = 0,
Phu′(0)− u′h(0) = 0.

 (6)

Rewriting (6) as a first-order in-time problem,[
Phu(t)− uh(t)

Phu′(t)− u′h(t)

]′
=

[
0 Ih

Ah,0 0

][
Phu(t)− uh(t)

Phu′(t)− u′h(t)

]
+

[
0
f (t, Phu(t))− f (t, uh(t))− Ah,0(Phu(t)− Rhu(t))

]
,[

Phu(0)− uh(0)
Phu′(0)− u′h(0)

]
=

[
0
0

]
.

Using that

exp
(

t
[

0 Ih
Ah,0 0

])
=

[
cos(tSh,0) S−1

h,0 sin(tSh,0)

− sin(tSh,0) cos(tSh,0)

]
,
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the variation of the constant formula and the vanishing initial conditions, we deduce that[
Phu(t)− uh(t)

Phu′(t)− u′h(t)

]
=

∫ t

0

[
S−1

h,0 sin((t− s)Sh,0)( f (s, Phu(s))− f (s, uh(s))− Ah,0(Phu(s)− Rhu(s)))
cos((t− s)Sh,0)( f (s, Phu(s))− f (s, uh(s))− Ah,0(Phu(s)− Rhu(s)))

]
ds.

Now, using (H2–H4), and that u ∈ C([0, T], Z), we have

‖Phu(t)− uh(t)‖Eh = ‖Sh,0(Phu(t)− uh(t))‖2
h + ‖Phu′(t)− u′h(t)‖

2
h

≤ 2L
∫ t

0
‖Phu(s)− uh(s)‖hds + 2Tεh max

t∈[0,T]
‖u(t)‖Z.

Applying the Gronwall lemma, we obtain for t ∈ [0, T],

‖Phu(t)− uh(t)‖Eh ≤ max
t∈[0,T]

‖u(t)‖Z2Te2LTεh.

Therefore, we can obtain a good approximation of the solution of (2) by considering
the solution of (5) with a small enough value of h. Next, we use a time integrator to achieve
full discretization. For this, we consider a splitting scheme. In the next two sections, we
study two different ways of incorporating the boundary values with the full discretization.

3. Full Discretization: Standard Method of Lines

First, we rewrite (5) as a first-order differential problem. We denote
uh(t) = [u1,h(t), u2,h(t)] = [uh(t), u′h(t)] and obtain system[

u1,h
u2,h

]′
=

[
0 Ih

Ah,0 0

][
u1,h
u2,h

]
+

[
0

AhQhg(t)

]
+

[
0

f (t, u1,h)

]
,[

u1,h(0)
u2,h(0)

]
=

[
Phu0
Phv0

]
,

(7)

of which the exact flow is denoted by uh(t) = Φh,tuh(0).
Second, we apply to (7) a splitting scheme in the usual way. We then choose a split of

(7) in two intermediate problems. The first is[
z1,h
z2,h

]′
=

[
0 Ih
0 0

][
z1,h
z2,h

]
, (8)

of which the exact flow is denoted by zh(t) = ΦIh
h,tzh(0), and the second is

[
z̃1,h
z̃2,h

]′
=

[
0 0

Ah,0 0

][
z̃1,h
z̃2,h

]
+

[
0

AhQhg(t)

]
+

[
0

f (t, z̃1,h)

]
, (9)

of which the exact flow is denoted by z̃h(t) = ΦAh,0+g+ f
h,t z̃h(0).

Let k > 0 be a time step; we consider tn = nk, n ≥ 1, and uh,n = [u1,h,n, u2,h,n]
T ≈

[u1,h(tn), u2,h(tn)] = uh(tn). We now consider a general splitting integrator with m stages
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and coefficients aj, bj, j = 1, . . . , m. This splitting scheme composes the flows of intermedi-
ate problems to obtain order p as follows:

z̃0,h,n = uh,n,

z̃j,h,n = ΦAh,0+g+ f
h,bjk

ΦIh
h,ajk

z̃j−1,h,n, j = 1, . . . , m, (10)

uh,n+1 = z̃m,h,n,

where z̃j,h,n = [z̃1,j,h,n, z̃2,j,h,n]
T .

To more explicitly write the j-stage in (10), we first consider initial-value problem

z′1,j,h,n(s) = z2,j−1,h,n(s), s ∈ [0, ajk],

z′2,j,h,n(s) = 0,

z1,j,h,n(0) = z̃1,j−1,h,n(bj−1k),

z2,j,h,n(0) = z̃2,j−1,h,n(bj−1k),

and, by advancing a step ajk in time,

z1,j,h,n(ajk) = z̃1,j−1,h,n(bj−1k) + ajkz̃2,j−1,h,n(bj−1k),

z2,j,h,n(ajk) = z̃2,j−1,h,n(bj−1k).

Second, we consider

z̃′1,j,h,n(s) = 0, s ∈ [0, bjk],

z̃′2,j,h,n(s) = Ah,0z̃1,j,h,n(s) + AhQhg(tn + k
j−1

∑
i=1

bi + s) + f (tn + k
j−1

∑
i=1

bi + s, z̃1,j,h,n(s)),

z̃1,j,h,n(0) = z1,j,h,n(ajk),

z̃2,j,h,n(0) = z2,j,h,n(ajk),

and we advance a step bjk in time,

z̃1,j,h,n(bjk) = z1,j,h,n(ajk),

z̃2,j,h,n(bjk) = z2,j,h,n(ajk) + bjkAh,0z1,j,h,n(ajk) + AhQh

∫ bjk

0
g(tn + k

j−1

∑
i=1

bi + τ)dτ

+
∫ bjk

0
f (tn + k

j−1

∑
i=1

bi + τ, z1,j,h,n(ajk))dτ. (11)

With this full discretization, we obtain order p in time since this is the order of the
splitting method that we use, and the flows of the intermediate problems are exactly
calculated when both integrals must be exactly calculated. In any case, we can always use
a quadrature rule with the same accuracy as that of the splitting method. Convergence
must be obtained in the discrete energy norm, and a suitable stability hypothesis is needed,
similarly to the case of the discretization studied in the next section.

4. Full Discretization: An Alternative Way to Incorporate Boundary Values

The standard method of lines studied in Section 3 seems to be optimal, especially
when integrals in (11) are exactly calculated. However, the two integrals had very different
origins, since one of them came from the source term and the other one from the boundary
value. Furthermore, the integral that came from the discretization of the boundary values
in (11) can be arbitrarily large when spatial discretization is refined. This is because
operator Ah arises from the approximation at the boundary of differential operator A,
which is unbounded.
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We now introduce full discretization that more suitably incorporates the boundary
values, as we show in the numerical experiments in Section 5. For this purpose, we need a
more consistent notation with the fact that we discretize an initial boundary value problem
(cf. [11]).

Suppose that xh ∈ Xh,0, vh ∈ Xh,b and we want to calculate Ah,0xh + Ahvh. Then,
we denote

Bhxh = vh,

and

Ahxh = Ah,0xh + AhBhxh = Ah,0xh + Ahvh.

In this way, semidiscrete Problem (5) can be rewritten as

u′′h = Ahuh + f (t, uh),

uh(0) = Phu0, (12)

u′h(0) = Phv0,

Bhuh(t) = Qhg(t),

which is more similar to the original problem.
With this notation, we rewrite Problem (12) as first-order differential system[

u1,h
u2,h

]′
=

[
0 Ih

Ah 0

][
u1,h
u2,h

]
+

[
0

f (t, u1,h)

]
,[

u1,h(0)
u2,h(0)

]
=

[
Phu0
Phv0

]
,

Bhu1,h(t) = Qhg(t),

(13)

of which the exact flow is given by uh(t) = Φh,tuh(0), as in Section 3.
For time discretization, we consider the same splitting scheme as that in Section 3, and

the challenge is to obtain a suitable way with which to incorporate the boundary values.
For this, we split Problem (13) into two intermediate problems; the first is[

v1,h
v2,h

]′
=

[
0 Ih
0 0

][
v1,h
v2,h

]
, (14)

of which the exact flow is given by vh(t) = ΦIh
h,tvh(0), and the second is

[
w1,h
w2,h

]′
=

[
0 0

Ah 0

][
w1,h
w2,h

]
+

[
0

f (t, w1,h)

]
, (15)

of which the exact flow is wh(t) = ΦAh+ f
h,t wh(0), where the value of Bhw1,h(0), necessary to

compute Ahw1,h(0) = Ah,0w1,h(0) + Bhw1,h(0), must be chosen every time that this second
intermediate problem is used in the final scheme.

We supposed that we computed uh,n = [u1,h,n, u2,h,n]
T ≈ [u1,h(tn), u2,h(tn)] = uh(tn).

As in Section 3, we use a general splitting method with m stages, with coefficients aj, bj,
j = 1, . . . , m. Therefore,

w0,h,n = uh,n,

wj,h,n = ΦAh+ f
h,bjk

ΦIh
h,ajk

wj−1,h,n, j = 1, . . . , m, (16)

uh,n+1 = wm,h,n,

where wj,h,n = [w1,j,h,n, w2,j,h,n]
T .
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To more explicitly write the j-stage in (16), we first consider initial-value problem

v′1,j,h,n(s) = v2,j−1,h,n(s), s ∈ [0, ajk],
v′2,j,h,n(s) = 0,

v1,j,h,n(0) = w1,j−1,h,n(bj−1k),
v2,j,h,n(0) = w2,j−1,h,n(bj−1k),

of which the solution at s = ajk is

v1,j,h,n(ajk) = w1,j−1,h,n(bj−1k) + ajkw2,j−1,h,n(bj−1k),
v2,j,h,n(ajk) = w2,j−1,h,n(bj−1k),

(17)

and we assign boundary value

Bhv1,j,h,n(ajk) = Qhg(tn + k
j

∑
i=1

ai). (18)

Then,

w′1,j,h,n(s) = 0, s ∈ [0, bjk],

w′2,j,h,n(s) = Ahw1,j,h,n(s) + f (tn + k
j−1

∑
i=1

bi + s, w1,j,h,n(s)),

w1,j,h,n(0) = v1,j,h,n(ajk),
w2,j,h,n(0) = v2,j,h,n(ajk),

where using (18), we can calculate

Ahw1,j,h,n(s) = Ah,0w1,j,h,n(s) + AhBhw1,j,h,n(s)

= Ah,0w1,j,h,n(s) + AhBhv1,j,h,n(ajk)

= Ah,0w1,j,h,n(s) + AhQhg(tn + k
j

∑
i=1

ai),

and we deduce that its solution at s = bjk is

w1,j,h,n(bjk) = v1,j,h,n(ajk),

w2,j,h,n(bjk) = v2,j,h,n(ajk) + bjkAh,0v1,j,h,n(ajk) + bjkAhQhg(tn + k
j

∑
i=1

ai) (19)

+
∫ bjk

0
f (tn + k

j−1

∑
i=1

bi + τ, v1,j,h,n(ajk))dτ.

Remark 2. If we compare Formulas (11) and (19), the only difference is the treatment of the
boundary values. The two ways of dealing with the boundary are

EX(g) =
∫ bjk

0
g(tn + k

j−1

∑
i=1

bi + τ)dτ,

B(g) = bjk g(tn + k
j

∑
i=1

ai),

for the standard method of lines and for the one that we propose, respectively.



Mathematics 2021, 9, 1113 9 of 24

Obviously, the second option is much simpler since the first option may even require to
numerically evaluate the integral. We see in the numerical experiments in the next section that the
second option also allows for obtaining much more precise results.

We prove in Sections 6 and 7 that, if the full discretization described in this section is
used to approximate Problem (12), then the method is convergent, and the optimal order p
of the splitting method is achieved.

5. Numerical Experiments

For the numerical experiments in this section, we consider splitting integrators of
m stages, with coefficients aj, bj, j = 1, . . . , m, and bm = 0, which are particular cases of
the symmetric ones [3]. More specifically, we use the Strang method with order p = 2,
and coefficients a1 = a2 = 0.5 and b1 = 1 and two other methods that are particular cases
of symmetric-splitting methods, whose coefficients are given in the following way: Let
l ∈ N be an even number; then, we consider a method with m = l + 1 stages satisfying
al/2+1 = 1− 2(a1 + . . .+ al/2), bl/2 = 1/2− (b1 + . . .+ al/2−1), al+2−i = ai and bl+1−i = bi,
for i = 1, . . . , l/2. (Note that our parameter l is called m in [3]).

For l = 6, we consider method ΨS4 with order p = 4 obtained from

a1 = 0.0792036964311957, b1 = 0.209515106613362,
a2 = 0.353172906049774, b2 = −0.143851773179818,
a3 = −0.0420650803577195,

and, for l = 10, method ΨS6 with order p = 6, given by coefficients

a1 = 0.0502627644003922, b1 = 0.148816447901042,
a2 = 0.413514300428344, b2 = −0.132385865767784,
a3 = 0.0450798897943977, b3 = 0.067307604692185,
a4 = −0.188054853819569, b4 = 0.432666402578175,
a5 = 0.541960678450780.

5.1. Numerical Experiment: Test 1

We consider test problem

utt(x, t) = uxx(x, t)− sin(u) + e−µt(25(x2 + 1)− 2) + sin(e−µt(x2 + 1)),
u(x, 0) = x2 + 1,

ut(x, 0) = −µ(x2 + 1),
u(0, t) = e−µt,
u(1, t) = 2e−µt,

(20)

where x ∈ [0, 1], t ∈ [0, T], of which the exact solution is u(x, t) = e−µt(x2 + 1).
This problem can be written in abstract format (2) by taking X = L2(0, 1), D(A) = H2(0, 1),

A is the second-order derivative in the spatial variable, B is the Dirichlet trace operator,
and Y = R2. Then, D(A0) = H2(0, 1) ∩ H1

0(0, 1) and operator A0 = A|D(A0)
is self-adjoint

and definite negative.
We consider grid xj = jh, 0 ≤ j ≤ J + 1, of interval [0, 1]. We look for approximations

uj,n ≈ u(xj, tn), 0 ≤ j ≤ J + 1, 0 ≤ n ≤ N. We take Xh = RJ+2, and elements uh ∈ Xh

are denoted by uh = [u0, u1, . . . , uJ , uJ+1]
T . In this way, Xh,0 = {uh ∈ Xh such that u0 =

uJ+1 = 0} but, for the sake of simplicity, we use Xh,0 = RJ and their elements are denoted
by uh = [u1, . . . , uJ ]

T . Moreover, Xh,b = {uh ∈ Xh such that u1 = . . . = uJ = 0}.
Operator Ph : D(A) → Xh,0 is given by Phu = [u(x1), . . . , u(xJ)]

T , and operator
Qh : Y → Xh,b is given by Qh(u0, uJ+1) = (u0, 0, . . . , 0, uJ+1). Operator Ah arises from the
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approximation of the second-order derivative in space by using central finite differences,
that is,

Ah =
1
h2


1 −2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2 1

.

Now, by using the previous notation, we can write

Ah,0 =
1
h2


−2 1

1 −2 1
. . . . . . . . .

1 −2 1
1 −2

, (21)

which is a symmetric and definite negative operator on Xh,0.
Hypothesis (H3) can be verified in the standard way by using Taylor series for the

local truncation error, with εh = O(h2) and Z = C2(0, 1). Taking into account that the exact
solution of (20) is a second-order polynomial in variable x, there is no spatial error, and we
can focus on the error due to time discretization.

In this problem, for f (t, u) = − sin(u) + e−µt(µ2(x2 + 1)− 2) + sin(e−µt(x2 + 1)), we
exactly compute

∫ k
0 f (tn + τ, z̃1,h(

k
2 ))dτ

EX( f ) = −k sin(z̃1,h(
k
2
)) + (e−µtn − e−µ(tn+k))(µ2(x2

j + 1)− 2)/µ

+(sinint(e−µtn(x2
j + 1))− sinint(e−µ(tn+k)(x2

j + 1)))/µ,

where 1 ≤ j ≤ J.
For the three symmetric-splitting methods, we compare the errors in the energy norm

for the choice of boundary B(g) and for the EX(g) option in Remark 2, for values 1, 3, and
5 of µ. As Figure 1 shows, in all cases, option B(g) (solid line) obtained smaller errors
than EX(g) did (dashed line). Moreover, the difference was more noticeable for ΨS4 and
ΨS6. Dependence on the size of boundary function g was also observed; for example, the
difference between errors of B(g) and EX(g) was larger for µ = 1 than that for values
µ = 3 and µ = 5, where the values taken by g were smaller.

In addition, as shown in Figure 1 the slopes of the lines were 2 (Strang), 4 (ΨS4) and
6 (ΨS6), which coincides with the expected optimal order of the three methods.

5.2. Numerical Experiment: Test 2

We consider test problem

utt(x, t) = uxx(x, t)− sin(u) + e−t2
((−2 + 4t2)(x2 + 1)− 2) + sin(e−t2

(x2 + 1)),
u(x, 0) = x2 + 1,

ut(x, 0) = 0,
u(0, t) = e−t2

,
u(1, t) = 2e−t2

,

(22)

where x ∈ [0, 1], t ∈ [0, T], of which the exact solution is u(x, t) = e−t2
(x2 + 1). In

this problem, a primitive of function f (t, u) = − sin(u) + e−t2
((−2 + 4t2)(x2 + 1)− 2) +

sin(e−t2
(x2 + 1)) cannot be exactly expressed using elementary functions, so we used a

quadrature formula of appropriate order. In the calculations to obtain the data in Figure 2
we used the 3-point Gaussian quadrature of order 6, denoted by G3(g). Errors are compared
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for Strang’s method (black), ΨS4 (red), and ΨS6 (blue), and for options B(g) (solid line)
and G3(g) (dashed line). The slopes of the lines indicate order 2 for Strang’s method,
order 4 for ΨS4, and order 6 for ΨS6. Errors are always smaller for option B(g) than those
for option G3(g). Moreover, this difference was more pronounced as the order of the
method increased.

Figure 1. Error, in logarithmic scale, for the energy norm of the solution of Test 1, with µ = 1,
µ = 3 and µ = 5, N = 100, final time T = 1 and EX( f ), for Strang’s method (black), ΨS4 (red) and
ΨS6 (blue).

Figure 2. Error in logarithmic scale of energy norm for Test 2, for several options of symmetric-
splitting methods, with N = 100 for final time T = 1 and G3(f).

5.3. Numerical Experiment: Test 3

Now, we study the behavior of the error of both methods when spatial discretization
is refined. The source term of semidiscrete Problem (5) grows when h → 0 due to the
boundary. However, it is expected that this growth has no influence when it is treated as
part of the discretization of operator A at the boundary, as in the method we propose in
Section 4.
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For this, we consider test problem

utt(x, t) = uxx(x, t)− sin(u) + sin(e−t+x),
u(x, 0) = ex,

ut(x, 0) = −ex,
u(0, t) = e−t,
u(1, t) = e−t+1,

(23)

where x ∈ [0, 1], t ∈ [0, T], of which the exact solution is u(x, t) = e−t+x.
In this experiment, spatial error dominates, and we expected to observe order 2 of

spatial discretization. Figure 3 shows errors for the splitting using B(g) in continuous line
and EX(g) in dashed line, in red for ΨS4 and in blue ΨS6. The values of h = k = 1/N
were used for N = 25, 50, 100, 200. In this way, we remained in the stability interval
of both methods. In the two methods with B(g), order 2 of spatial discretization was
observed; when using the EX(g) option, the errors were larger, and order 2 was lost when
h decreased.

Figure 3. Error in energy norm for Test 3, N = 25, 50, 100, 200 and h = k = 1/N.

5.4. Numerical Experiment: Test 4

Although theoretical results were shown for the case where f was Lipschitz-continuous,
we see in a couple of examples that it also works if f is locally Lipschitz-continuous. We
now consider test problem

utt(x, t) = uxx(x, t) + u2(x, t) + e−t(x2 − 1)− e−2t(x2 + 1)2,
u(x, 0) = x2 + 1,

ut(x, 0) = −(x2 + 1),
u(0, t) = e−t,
u(1, t) = 2e−t,

where x ∈ [0, 1], t ∈ [0, T], of which the exact solution is u(x, t) = e−t(x2 + 1).
Table 1 shows the time errors for the three symmetric-splitting methods with h = 1/100

for final time T = 1. The evolution of log2(error(k)/error(k/2)) is displayed in Table 2.
Orders 2, 4, and 6 are shown for Strang’s method, ΨS4, and ΨS6, respectively. The little loss
of order in the lower-right corner was due to the influence of rounding errors.
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Table 1. Time error for three symmetric-splitting methods with h = 1/100 for final time T = 1.

h = 1/100 k = 1/100 k = 1/200 k = 1/400

Strang 4.8394× 10−4 1.0727× 10−4 2.6416× 10−5

ΨS4 3.0924× 10−5 1.6787× 10−6 1.0135× 10−7

ΨS6 3.5808× 10−10 5.5734× 10−12 9.6204× 10−14

Table 2. Evolution of log2(error(k)/error(k/2)) for three symmetric-splitting methods with h = 1/100.

h = 1/100 k = 1/100 k = 1/200

Strang 2.1737 2.0217
ΨS4 4.2034 4.0499
ΨS6 6.0056 5.8563

5.5. Numerical Experiment: Test 5

Lastly, we consider an example in two spatial dimensions, and in the locally Lipschitz
= continuous case. The test problem is

utt(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + u2(x, y, t) + e−t(x2 + y2 − 3)− e−2t(x2 + y2 + 1)2,
u(x, y, 0) = x2 + y2 + 1,

ut(x, y, 0) = −(x2 + y2 + 1),
u(0, y, t) = e−t(y2 + 1),
u(1, y, t) = e−t(y2 + 2),
u(x, 0, t) = e−t(x2 + 1),
u(x, 1, t) = e−t(x2 + 2),

for values x ∈ [0, 1], y ∈ [0, 1], t ∈ [0, T], of which the exact solution is u(x, t) = e−t(x2 + y2 + 1).
This problem can be written in the abstract format (2). For this, we denote

Ω = (0, 1)× (0, 1) and Γ is the boundary of Ω. We take X = L2(Ω), D(A) = H2(Ω);
A is the Laplacian operator in the spatial variables x and y, B is the Dirichlet trace operator
on Γ and Y = h1/2(Γ). Then, D(A0) = H2(Ω) ∩ H1

0(Ω) and operator A0 = A|D(A0)
is

self-adjoint and definite negative.
We consider grid (xj, yl) = (jh, lh), 0 ≤ j, l ≤ J + 1, of Ω. We look for approxi-

mations uj,l,n ≈ u(xj, yl , tn), 0 ≤ j, l ≤ J + 1, 0 ≤ n ≤ N. We take Xh = RJ+2 × RJ+2,
and elements uh ∈ Xh are denoted by uh = [u0,1, u0,2, . . . , uJ+1,J , uJ+1,J+1]

T . In this way,
Xh,0 = {uh ∈ Xh such that u0,l = uJ+1,l = uj,0 = uj,J+1 = 0}; however , for the sake of simplic-
ity, we use Xh,0 = RJ ×RJ, and their elements are denoted by uh = [u1,1, u1,2, . . . , uJ,J−1, uJ,J]

T.
Subspace Xh,b is similarly defined.

Operator Ph : D(A)→ Xh,0 is given by

Phu = [u(x1, y1), u(x1, y2), . . . , u(xJ , yJ−1), u(xJ , yJ)]
T ,

and Ah arises from the approximation of the Laplacian operator by using central finite
differences in each spatial direction, that is, considering second-order spatial discretization

Ah,0 =
1
h2


BJ IJ
IJ BJ IJ

. . . . . . . . .
IJ BJ IJ

IJ BJ

, (24)
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where IJ is the identity matrix, and

BJ =


−4 1

1 −4 1
. . . . . . . . .

1 −4 1
1 −4

.

Taking into account that the exact solution is a second-order polynomial in variables
x, y, there is no spatial error; then, we can again focus on the error due to time discretization.

Table 3 shows the time errors for the three symmetric-splitting methods, with h =
1/100 and for final time T = 1. The missing value for the Strang method and k = 1/100 was
due to the instability of the numerical solution in this case; see Section 7.1. The evolution of
log2(error(k)/error(k/2)) is displayed in Table 4. Orders 2, 4, and 6 are shown for Strang’s
method, ΨS4 and ΨS6, respectively.

Table 3. Time error for three symmetric-splitting methods with h = 1/100 for final time T = 1.

h = 1/100 k = 1/100 k = 1/200 k = 1/400

Strang – 1.3639× 10−4 3.3576× 10−5

ΨS4 1.3720× 10−6 7.9938× 10−8 4.9125× 10−9

ΨS6 5.2613× 10−8 7.6468× 10−10 1.1734× 10−11

Table 4. Evolution of log2(error(k)/error(k/2)) for three symmetric-splitting methods with h = 1/100.

h = 1/100 k = 1/100 k = 1/200

Strang – 2.0222
ΨS4 4.1012 4.0244
ΨS6 6.1044 6.0261

6. Consistency Correctly Incorporating Boundary Values

Here, we deduce consistency in the energy norm of the implementation of a splitting
method with the boundary values that we chose in Section 4.

As a first step in the proof of consistency, we introduce ordinary differential system u1,h
u2,h
u3,h

′ =

 0 Ih 0
Ah,0 0 Ah

0 0 0

 u1,h
u2,h
u3,h

+

 0
f (t, u1,h)
Qhg′(t)

,

 u1,h(0)
u2,h(0)
u3,h(0)

 =

 Phu0
Phv0

Qhg(0)

.

(25)

We have

u′3,h(t) = Qhg′(t),

u3,h(0) = Qhg(0).

and, therefore,

u3,h(t) = Qhg(t). (26)

Then, for the first two components of (25), we deduce that

u′1,h(t) = u2,h(t),

u′2,h(t) = Ah,0u1,h(t) + AhQhg(t) + f (t, u1,h)(t),
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which is the same problem as (7) (and as (12) with the notation of Section 4). We also
deduce that

u1,h(t) = uh(t), u2,h(t) = u′h(t), (27)

being uh(t) the solution of (5).
We split (25) into two intermediate problems that are similar to the ones used in Section 4,

and we applied to it the same splitting method. The solution of (25) was approximated with
order p of the splitting method. This particularly is true for the two first components that
match those of the solution of (12). Therefore, to prove consistency, it suffices to see that the
obtained approximations for the first two components are the same as those described in
Section 4 with the choice of boundary values made in (18).

We choose the following split of Problem (25). The first intermediate problem is v1,h
v2,h
v3,h

′ =

 0 Ih 0
0 0 0
0 0 0

 v1,h
v2,h
v3,h

+

 0
0

Qhg′(t)

, (28)

of which the exact flow is denoted as vh(t) = Φ[1]
h,tvh(0), and the second is

 w1,h
w2,h
w3,h

′ =

 0 0 0
Ah,0 0 Ah

0 0 0

 w1,h
w2,h
w3,h

+

 0
f (t, w1,h)

0

. (29)

of which the exact flow is denoted as wh(t) = Φ[2]
h,twh(0).

Assuming that approximation uh,n = [u1,h,n, u2,h,n, u3,h,n]
T ≈ [u1,h(tn), u2,h(tn), u3,h(tn)]T

is already calculated and, as in previous sections, we apply a general splitting of order p,

w0,h,n = uh,n,

wj,h,n = Φ[2]
h,bjk

Φ[1]
h,ajk

wj−1,h,n, j = 1, . . . , m, (30)

uh,n+1 = wm,h,n,

where wj,h,n = [w1,j,h,n, w2,j,h,n, w3,j,h,n]
T .

The performance of a time step k > 0 is as follows. For each j = 1, . . . , m, the first
problem to be solved is

v′1,j,h,n(s) = v2,1,h,n(s), s ∈ [0, ajk],

v′2,j,h,n(s) = 0,

v′3,j,h,n(s) = Qhg′(tn + k
j−1

∑
l=1

al + s),

v1,j,h,n(0) = w1,j−1,h,n(bj−1k),

v2,j,h,n(0) = w2,j−1,h,n(bj−1k),

v3,j,h,n(0) = w3,j−1,h,n(bj−1k) = Qhg(tn + k
j−1

∑
l=1

al),

whose solution at s = ajk is

v1,j,h,n(ajk) = w1,j−1,h,n(bj−1k) + ajkw2,j−1,h,n(bj−1k),
v2,j,h,n(ajk) = w2,j−1,h,n(bj−1k),

v3,j,h,n(ajk) = Qhg(tn + k
j

∑
l=1

al).
(31)
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Since the third component of (31) provides the boundary value (18), the first and second
components of (31) are the same as (17). Then, the second problem is

w′1,j,h,n(s) = 0, s ∈ [0, bjk],

w′2,j,h,n(s) = Ah,0w1,j,h,n + Ahw3,j,h,n + f (tn + k
j−1

∑
l=1

bl + s, w1,j,h,n(s)),

w′3,j,h,n(s) = 0,

w1,j,h,n(0) = v1,j,h,n(ajk),

w2,j,h,n(0) = v2,j,h,n(ajk),

w3,j,h,n(0) = v3,j,h,n(ajk),

whose solution at s = bjk is

w1,j,h,n(bjk) = v1,j,h,n(ajk),

w2,j,h,n(bjk) = v2,j,h,n(ajk) + bjkAh,0v1,j,h,n(ajk) + bjkAhQhg(tn + k
j

∑
l=1

al)

+
∫ bjk

0
f (tn + k

j−1

∑
l=1

blτ, v1,j,h,n(ajk))dτ,

w3,j,h,n(bjk) = Qhg(tn + k
j

∑
l=1

al).

(32)

The first two components of (32) are the same as those of (19).

Remark 3. Although the splitting approximation (30) provides the same approximation as (16)
through its first two components, it is not convenient to use it in practice. It is more useful to use the
implementation of Section 4, which can be carried out with minimal modifications to the standard
method of lines.

Now, we consider uh(t) = [u1,h(t), u2,h(t), u3,h(t)]
T , the solution of (25). We can easily

deduce that

ũh(t) = [ũ1,h(t), ũ2,h(t), ũ3,h(t)]
T = [Sh,0u1,h(t), u2,h(t), u3,h(t)]

T

is the solution of ordinary differential system ũ1,h
ũ2,h
ũ3,h

′ =

 0 Sh,0 0
−Sh,0 0 Ah

0 0 0

 ũ1,h
ũ2,h
ũ3,h

+

 0
f (t, S−1

h,0 ũ1,h)

Qhg′(t)

,

 ũ1,h(0)
ũ2,h(0)
ũ3,h(0)

 =

 Sh,0Phu0
Phv0

Qhg(0)

.

(33)

We deduce that ũ3,h(t) = Qhg(t), and that[
ũ1,h(t)
ũ2,h(t)

]′
=

[
0 Sh,0
−Sh,0 0

][
ũ1,h(t)
ũ2,h(t)

]
+

[
0

AhQhg(t) + f (t, S−1
h,0 u1,h(t)),

]
.

Therefore, the solution of Problem (33) is the appropriate one to calculate the energy
norm of the solution of (25). Now, we see that approximating the solution of Problem (33)
by means of a splitting method is equivalent to applying the same change of variables to
(30), as is stated in (37).
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The first intermediate problem is ṽ1,h
ṽ2,h
ṽ3,h

′ =

 0 Sh,0 0
0 0 0
0 0 0

 ṽ1,h
ṽ2,h
ṽ3,h

+

 0
0

Qhg′(t)

, (34)

of which the exact flow is denoted as ṽh(t) = Φ̃[1]
t ṽh(0) and the second intermediate problem w̃1,h

w̃2,h
w̃3,h

′ =

 0 0 0
−Sh,0 0 Ah

0 0 0

 w̃1,h
w̃2,h
w̃3,h

+

 0
f (t, S−1

h,0 w̃1,h)

0

. (35)

of which the exact flow is denoted as w̃h(t) = Φ̃[2]
t w̃h(0).

As in the previous sections, we use a general splitting method with m stages and order
p, with coefficients aj, bj, j = 1, . . . , m. Therefore,

w̃0,h,n = ũh,n,

w̃j,h,n = Φ̃[2]
h,bjk

Φ̃[1]
h,ajk

w̃j−1,h,n, j = 1, . . . , m, (36)

ũh,n+1 = w̃m,h,n,

where w̃j,h,n = [w̃1,j,h,n, w̃2,j,h,n, w̃3,j,h,n]
T .

We now prove that

ũh,n = [ũ1,h,n, ũ2,h,n, ũ3,h,n]
T = [Sh,0u1,h,n, u2,h,n, u3,h,n]

T , (37)

where uh,n = [u1,h,n, u2,h,n, u3,h,n]
T is the solution of the splitting given by (30).

For j = 1, . . . , m, the following problems are solved.

ṽ′1,j,h,n(s) = Sh,0ṽ2,j,h,n(s), s ∈ [0, ajk],
ṽ′2,j,h,n(s) = 0,

ṽ′3,j,h,n(s) = Qhg′(tn + k
j−1

∑
l=1

al + s),

ṽ1,j,h,n(0) = w̃1,j−1,h,n(bj−1k) = w1,j−1,h,n(bj−1k),
ṽ2,j,h,n(0) = w̃2,j−1,h,n(bj−1k) = w2,j−1,h,n(bj−1k),

ṽ3,j,h,n(0) = w̃3,j−1,h,n(bj−1k) = Qhg(tn + k
j−1

∑
l=1

al) = w3,j−1,h,n(bj−1k),

whose solution at s = ajk is

ṽ1,j,h,n(ajk) = Sh,0w1,j−1,h,n(bj−1k) + ajkSh,0w2,j−1,h,n(bj−1k) = Sh,0v1,j,h,n(ajk),
ṽ2,j,h,n(ajk) = w2,j−1,h,n(bj−1k) = v2,j,h,n(ajk),

ṽ3,j,h,n(ajk) = Qhg(tn + k
j

∑
l=1

al) = v3,j,h,n(ajk).
(38)
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Then, in s ∈ [0, bjk], we solve system

w̃′1,j,h,n(s) = 0,

w̃′2,j,h,n(s) = −Sh,0w̃1,j,h,n + Ahw̃3,j,h,n + f (tn + k
j−1

∑
l=1

bl + s, S−1
h,0 w̃1,j,h,n(s)),

w̃′3,j,h,n(s) = 0,

w̃1,j,h,n(0) = ṽ1,j,h,n(ajk) = Sh,0v1,j,h,n(ajk),
w̃2,j,h,n(0) = ṽ2,j,h,n(ajk) = v2,j,h,n(ajk),

w̃3,j,h,n(0) = ṽ3,j,h,n(ajk) = Qhg(tn + k
j

∑
l=1

al) = v3,j,h,n(ajk),

(39)

whose solution at s = bjk is

w̃1,j,h,n(bjk) = ṽ1,j,h,n(ajk) = Sh,0v1,j,h,n(ajk) = Sh,0w1,j,h,n(bjk),

w̃2,j,h,n(bjk) = ṽ2,j,h,n(ajk) + bjk(−Sh,0ṽ1,j,h,n(ajk) + AhQhg(tn + k
j

∑
l=1

al))

+
∫ bjk

0
f (tn + k

j−1

∑
l=1

bl + τ, S−1
h,0 ṽ1,j,h,n(ajk))dτ,

= v2,j,h,n(a1k) + bjk(Ah,0v1,j,h,n(ajk) + AhQhg(tn + k
j

∑
l=1

al))

+
∫ bjk

0
f (tn + k

j−1

∑
l=1

bl + τ, v1,j,h,n(ajk))dτ,

= w2,j,h,n(bjk)

w̃3,j,h,n(bjk) = Qhg(tn + k
j

∑
l=1

al) = w3,j,h,n(bjk),

(40)

and we obtain (37).

Theorem 2. We assume that the time discretization of (12) is obtained by means of a splitting
method of order p, applied as described in Formulas (16)–(17), with the choice of intermediate
boundary values (18). Let uh(tn) = [u1,h(tn), u2,h(tn)]T be the value at tn of the solution of (13),
and let uh,n = [u1,h,n, u2,h,n]

T be its approximation obtained with the splitting method (16) by
taking a step of size k starting from the exact value uh(tn−1) = [u1,h(tn−1), u2,h(tn−1)]

T .
Then, local error ρh,n = uh(tn)− uh,n satisfies

‖ρh,n‖Eh = ‖uh(tn)− uh,n‖Eh

=
(
‖Sh,0(u1,h(tn)− u1,h,n)‖2

h + ‖u2,h(tn)− u2,h,n‖2
h

)1/2
= O(kp+1).

Proof.

‖ρh,n‖Eh = ‖uh(tn)− uh,n‖Eh

=
(
‖Sh,0(u1,h(tn)− u1,h,n)‖2

h + ‖u2,h(tn)− u2,h,n‖2
h

)1/2

≤
(
‖Sh,0(u1,h(tn)− u1,h,n)‖2

h + ‖u2,h(tn)− u2,h,n‖2
h + ‖u3,h(tn)− u3,h,n‖2

h

)1/2

=
(
‖ũ1,h(tn)− ũ1,h,n‖2

h + ‖ũ2,h(tn)− ũ2,h,n‖2
h + ‖ũ3,h(tn)− ũ3,h,n‖2

h

)1/2

= ‖ũh(tn)− ũh,n‖Eh = O(kp+1),

where ũh,n = [ũ1,h,n, ũ2,h,n, ũ3,h,n]
T is the approximation obtained at t = tn with the splitting

method (36) by taking a step of size k starting from the exact value at tn−1 of the solution of
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(33) ũh(tn−1) = [ũ1,h(tn−1), ũ2,h(tn−1), ũ3,h(tn−1)]
T . Therefore, the result is a consequence

that p is the order of the splitting method.

7. Stability and Convergence
7.1. Stability

To achieve convergence in energy norm, we need time discretization to be stable. In
our case, it is sufficient to have linear stability. That is, it is enough that time discretization
with the splitting method is stable for fully homogeneous linear problem

u′′h (t) = Ah,0uh(t),

uh(0) = Phu0, (41)

u′h(0) = Phv0,

corresponding to the space discretization of (2) with vanishing boundary values and
source term.

To test linear stability, we first apply the splitting method to the harmonic oscillator
y′′ + λ2y = 0, λ > 0. We denote [p, q]T = [λy, y′]T and we consider the standard splitting[

p
q

]′
=

{[
0 λ
0 0

]
+

[
0 0
−λ 0

]}[
p
q

]
(42)

If we now apply a splitting method with a time step k > 0, we obtain numerical
method [

pn+1
qn+1

]
= R(ω)

[
pn
qn

]
where ω = kλ > 0.

Matrix R, of which the elements are polynomials in the ω variable, is called the stability
matrix and is given by

R(ω) =

[
R11(ω) R12(ω)

R21(ω) R22(ω)

]
,

an it can be computed as

R(ω) =
m

∏
j=1

[
1 0

−bjω 1

][
1 ajω

0 1

]
=

m

∏
j=1

Rj(ω), (43)

where the product of matrices must be calculated in the correct order.
To obtain stability for the harmonic oscillator, the boundedness of the powers of

stability matrix (43) is required. For this, the following definition of “stability interval” is
very useful (cf. [12,13]).

Definition 1. The stability interval of a method with stability matrix R(ω) is [0, ω∗) if ω∗ is the
supremum of values ω ≥ 0, such that, for all ω ∈ [0, ω∗),

ρ(R(ω)) ≤ 1,

and R(ω) is simple when ρ(R(ω)) = 1, where ρ(R(ω)) is the spectral radius of R(ω).

In this way, we have linear stability for test Problem (42) when kλ < ω∗. The larger
the value of ω∗ is, the less restrictive the stability condition is.
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Remark 4. In order to calculate the ω∗ value of the stability interval for the methods used in
the numerical experiments, Strang, ΨS4 and ΨS6, we follow the same technique as in [14,15].
Taking into account that det(R(ω)) = 1 from (43) and, for the three methods, R11(ω) = R22(ω),
the eigenvalues of R(ω) are the solutions of λ2 − 2R11(ω)λ + 1 = 0. Then, to obtain the stability
interval, it is enough to study the greatest real value ω∗, such that R11(ω)2 − 1 ≤ 0 for all
ω ∈ [0, ω∗]. The value of ω∗ for the Strang method is 2, for ΨS4 is 6.31 and for ΨS6 is 3.44.

Regarding Problem (41), linear stability in the energy norm states that the powers
of matrix

R(kSh,0) =

[
R11(kSh,0) R12(kSh,0)

R21(kSh,0) R22(kSh,0)

]
,

are bounded in the matrix norm induced by the discrete norm in Xh,0, that is, if T > 0
is fixed,

‖Rn(kSh,0)‖h ≤ C, (44)

where C is a constant independent of h, n and k when nk ≤ T.
Therefore, we need that k|λh,0| < ω∗ for all λh,0 ∈ ρ(Sh,0). Taking into account that

Sh,0 is symmetric and positive definite, any of its eigenvalues are positive; therefore, it is
enough that

kλ∗h,0 < ω∗ (45)

is satisfied, where λ∗h,0 is the largest eigenvalue of Sh,0.

Remark 5. We can now deduce the ratio between parameters k and h that must be satisfied to have
stability in the energy norm for the numerical experiments in Section 5.

The eigenvalues of the tridiagonal matrix diag(1,−2, 1), which appears in the matrix (21)
used in tests from 1 to 4, are given by −2 + 2 cos(jπ/(J + 1)), j = 1, 2, . . . , J, and they all belong
to the interval (−4, 0) (see for example [16,17]). We conclude that the largest eigenvalue of Sh,0

satisfies λ∗h,0 <
2
h

and, to achieve stability, it suffices that

2k
h

< ω∗ ⇔ k
h
<

ω∗

2
. (46)

Similarly, for the two-dimensional problem in Test 5, the eigenvalues of the block tridiagonal
matrix appearing in (24) are included in interval (−8, 0), which means that, in this case, the largest

eigenvalue of Sh,0 satisfies λ∗h,0 <
2
√

2
h

and, to achieve stability, it suffices that

2
√

2k
h

< ω∗ ⇔ k
h
<

ω∗

2
√

2
. (47)

Stability conditions (46) and (47) for the three splitting methods considered in the numerical
experiments of Section 5 are given in Table 5. The missing value for the Strang method for
h = 1/100 and k = 1/100 in Table 3 is due to the instability of the numerical solution because the
stability condition was not fulfilled.

Table 5. Stability ratios (46) and (47) for the three splitting methods considered in the numerical experiments.

Strang ΨS4 ΨS6

1D 1 3.16 1.72
2D 0.71 2.23 1.22
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7.2. Convergence

We now study the convergence of the full discretization of Section 4.

Theorem 3. Assume that the time discretization of (12) is obtained by means of a splitting
method of order p, applied as described in Formulas (16)–(17), with the choice of intermediate
boundary values (18). Let uh(tn) = [u1,h(tn), u2,h(tn)]T be the value at tn of solution of (13),
and let uh,n = [u1,h,n, u2,h,n]

T be its approximation obtained with the splitting method (16).
Assume also that (45) and the linear stability condition (44) are satisfied. Then, global error
eh,n = uh(tn)− uh,n satisfies

‖eh,n‖Eh = ‖uh(tn)− uh,n‖Eh

=
(
‖Sh,0(u1,h(tn)− u1,h,n)‖2

h + ‖u2,h(tn)− u2,h,n‖2
h

)1/2
= O(kp),

Proof. Let ũh(t) = [ũ1,h(t), ũ2,h(t)]T be the first two components of (33). We showed in
Section 6 that ũh(t) = [Sh,0u1,h(t), u2,h(t)]T .

On the other hand, let ũh,n = [ũ1,h,n, ũ2,h,n]
T be the first two components of (36). We also

showed in Section 6 that ũh,n = [Sh,0u1,h,n, u2,h,n]
T. Therefore, we can obtain ũh,n from

Section 4, using Equations (17) and (19). For this, we make ṽj,h,n = [Sh,0v1,j,h,n, v2,j,h,n]
T,

w̃j,h,n = [Sh,0w1,j,h,n, w2,j,h,n]
T, j = 1, . . . , m, and we deduce that

ṽj,h,n =

[
ṽ1,j,h,n
ṽ2,j,h,n

]
=

[
Ih ajkSh,0
0 Ih

][
w̃1,j−1,h,n
w̃2,j−1,h,n

]
= Mj(kSh,0)w̃j−1,h,n.

Then,

w̃j,h,n =

[
w̃1,j,h,n
w̃2,j,h,n

]
=

[
Ih 0

−bjkSh,0 Ih

][
ṽ1,j,h,n
ṽ2,j,h,n

]

+

 0

Qhg(tn +
j

∑
r=1

ark)

+

 0∫ bjk

0
f (tn +

j−1

∑
r=1

brk + τ, S−1
h,0 ṽ1,j,h,ndτ)


=

[
Ih 0

−bjkSh,0 Ih

][
Ih ajkSh,0
0 Ih

][
w̃1,j−1,h,n
w̃2,j−1,h,n

]

+

 0

Qhg(tn +
j

∑
r=1

ark)

+

 0∫ bjk

0
f (tn +

j−1

∑
r=1

brk + τ, S−1
h,0 ṽ1,j,h,ndτ)


= Rj(kSh,0)w̃j,h,n

+

 0

Qhg(tn +
j

∑
r=1

ark)

+

 0∫ bjk

0
f (tn +

j−1

∑
r=1

brk + τ, S−1
h,0 ṽ1,j,h,ndτ)

.
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By using recursive reasoning,

w̃j,h,n =
j

∏
l=1

Rl(kSh,0)w̃0,h,n

+
j

∑
s=1

j

∏
l=s+1

Rl(kSh,0)

 0

Qhg(tn +
s

∑
r=1

ark)



+
j

∑
s=1

j

∏
l=s+1

Rl(kSh,0)

 0∫ bsk

0
f (tn +

s−1

∑
r=1

brk + τ, S−1
h,0 ṽ1,s,h,n)dτ

.

We now define w̃0,h,n = ũh(tn), and

w̃j,h,n =
j

∏
l=1

Rl(kSh,0)w̃0,h,n

+
j

∑
s=1

j

∏
l=s+1

Rl(kSh,0)

 0

Qhg(tn +
s

∑
r=1

ark)



+
j

∑
s=1

j

∏
l=s+1

Rl(kSh,0)

 0∫ bsk

0
f (tn +

s−1

∑
r=1

brk + τ, S−1
h,0 ṽ1,s,h,n)dτ


and, subtracting

w̃j,h,n − w̃j,h,n =
j

∏
l=1

Rl(kSh,0)(w̃0,h,n − w̃0,h,n) + Fn,j

where

Fn,j = ∑
j
s=1 ∏

j
l=s+1 Rl(kSh,0)

 0∫ bsk

0
[ f (tn +

s−1

∑
r=1

brk + τ, S−1
h,0 ṽ1,s,h,n)− f (tn +

s−1

∑
r=1

brk + τ, S−1
h,0 ṽ1,s,h,n)]dτ


= Rj(kSh,0)Fn,j−1 +

 0∫ bjk

0
[ f (tn +

j

∑
r=1

brk + τ, S−1
h,0 ṽ1,j,h,n)− f (tn +

j

∑
r=1

brk + τ, S−1
h,0 ṽ1,j,h,n)]dτ

.

To use an inductive reasoning, we first consider

Fn,1 =

 0∫ b1k

0
[ f (tn + τ, S−1

h,0 ṽ1,1,h,n)− f (tn + τ, S−1
h,0 ṽ1,1,h,n)]dτ


and, taking norm,

‖Fn,1‖h ≤ |b1|k|L‖S−1
h,0‖h‖M1(kSh,0)‖h‖w̃0,h,n − w̃0,h,n‖h

= kC1,1‖w̃0,h,n − w̃0,h,n‖h,

where, if (45) is satisfied and taking into account Hypothesis (H2), constant C1,1 is indepen-
dent on h, k, and n.

On the other hand,

w̃1,h,n − w̃1,h,n = R1(kSh,0)(w̃0,h,n − w̃0,h,n) + Fn,1
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and, taking again norm

‖w̃1,h,n − w̃1,h,n‖h ≤ ‖R1(kSh,0)‖h‖w̃0,h,n − w̃0,h,n‖h + ‖Fn,1‖h

≤ (‖R1(kSh,0)‖h + kC1,1)‖‖w̃0,h,n − w̃0,h,n‖h

= C1,2‖w̃0,h,n − w̃0,h,n‖h,

where constant C1,2 is also independent on k, n, and h because of (45) and Hypothesis (H2).
Now, we use inductive reasoning, assuming that

‖Fn,j−1‖h ≤ kCj−1,1‖w̃0,h,n − w̃0,h,n‖h,

and,

‖w̃j−1,h,n − w̃j−1,h,n‖h ≤ Cj−1,2‖w̃0,h,n − w̃0,h,n‖h

where constants Cj−1,1 and Cj−1,2 are independent on k, n, and h when (45) is satisfied.
Then,

‖Fn,j‖h ≤ ‖Rj(kSh,0)‖h‖Fn,j−1‖h + |bj|kL‖S−1
h,0‖h‖Mj(kSh,0)‖h‖w̃j−1,h,n − w̃j−1,h,n‖h

≤ ‖Rj(kSh,0)‖hkCj−1,1‖w̃0,h,n − w̃0,h,n‖h

+|bj|kL‖S−1
h,0‖h‖Mj(kSh,0)‖hCj−1,2‖w̃0,h,n − w̃0,h,n‖h

= kCj,1‖w̃0,h,n − w̃0,h,n‖h

and

‖w̃j,h,n − w̃j,h,n‖h ≤ ‖
j

∏
l=1

Rl(kSh,0)‖h‖w̃0,h,n − w̃0,h,n‖h + ‖Fn,j‖h

≤ ‖
j

∏
l=1

Rl(kSh,0)‖h‖w̃0,h,n − w̃0,h,n‖h + kCj,1‖w̃0,h,n − w̃0,h,n‖h

= Cj,2‖w̃0,h,n − w̃0,h,n‖h.

Lastly, we prove convergence taking into account that w̃0,h,n−1 = ũh,n−1, w̃0,h,n−1 =
ũh(tn−1), w̃m,h,n−1 = ũh,n, w̃m,h,n−1 = ũh,n. Moreover, we denote Fn,m = Fn and Cm,1 = C1.

The global error is given by

ẽh,n =

[
ẽ1,h,n
ẽ2,h,n

]
=

[
ũ1,h(tn)
ũ2,h(tn)

]
−
[

ũ1,h,n
ũ2,h,n

]
=

[
ũ1,h(tn)
ũ2,h(tn)

]
−
[

ũ1,h,n
ũ2,h,n

]
+

[
ũ1,h,n
ũ2,h,n

]
−
[

ũ1,h,n
ũ2,h,n

]
= æ̃h,n + R(kSh,0)ẽh,n−1 + Fn

where ρ̃h,n is the semidiscrete local error at t = tn.
Therefore, we deduce that

ẽh,n =
n

∑
j=1

Rn−j(kSh,0)æ̃h,j +
n

∑
j=1

Rn−j(kSh,0)Fj.

Taking norms and using stability Hypothesis (44)
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‖ẽh,n‖h ≤
n

∑
j=1
‖Rn−j(kSh,0)‖h‖æ̃h,j‖h +

n

∑
j=1
‖Rn−j(kSh,0)‖h‖Fj‖h

≤ C
n

∑
j=1
‖ρ̃h,j‖h + C

n

∑
j=1
‖Fj‖h

≤ C1kp + C2

n

∑
j=1

k‖ẽh,j−1‖h

= C1kp + C2

n−1

∑
j=0

k‖ẽh,j‖h.

The proof of convergence is achieved by using the discrete Gronwall lemma.
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