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Abstract: Motivated by the relative loss estimator of the median, we propose a new class of
estimators for linear quantile models using a general relative loss function defined by the Box–Cox
transformation function. The proposed method is very flexible. It includes a traditional quantile
regression and median regression under the relative loss as special cases. Compared to the traditional
linear quantile estimator, the proposed estimator has smaller variance and hence is more efficient
in making statistical inferences. We show that, in theory, the proposed estimator is consistent and
asymptotically normal under appropriate conditions. Extensive simulation studies were conducted,
demonstrating good performance of the proposed method. An application of the proposed method
in a prostate cancer study is provided.

Keywords: Box–Cox transformation; quantile regression; relative error

1. Introduction

In contrast to the mean-based regression that mainly gives an overall quantification
for the central covariate effect, quantile regression can directly model a series of quan-
tiles (from lower to higher) of the response variable to deliver a global evaluation of the
covariate effect [1,2]. A major advantage of quantile regression is that no assumptions
about the distribution of the response are required, which makes it practical, robust and
amenable to skewed response distributions [3]. Additionally, quantile regression methods
can help to handle the cases of heteroscedasticity [4]. Nowadays, quantile regressions
have been widely used in many fields, established numerous methodologies covering
linear, nonlinear and longitudinal quantile regressions [5,6], as well as applications in
survival analysis [7]. Application studies show that quantile regression allows adjustment
for potential confounders and calculation of interaction terms and variable selection, while
being more robust to statistical outliers and yielding much more information about the
underlying associations [1,3]. However, the computation of quantile regressions is rela-
tively complex and somewhat unique, especially compared with ordinary least squares for
mean-based linear (or nonlinear) regressions. Take a 0.5 quantile estimation as an exam-
ple: the quantile regression minimizes the sum of weighted absolute residuals instead of
squared residuals [8]. One drawback of quantile regressions is that the estimation efficiency
fluctuates a lot at different quantiles and is relatively low at the tails [9]. A traditional
quantile regression is typically based on minimizing a check loss function [1], but often the
relative quantile loss could be more relevant than the check loss function and hence might
be used to gain more efficiency for inference. So far, to the best of our knowledge, there
have been no consistent studies on other type of loss functions, such as the relative error
loss for quantile regression.

In many practical applications, the magnitude of the relative error, rather than the
absolute error, is of the major concern. In general, the relative error is more relevant when
the range of predicted values is large and that of predictors is small. Narula and Wellington
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(1977) proposed an estimation approach for linear models by minimizing the sum of
relative errors [10], without any theoretical results. Khoshgoftaar et al. (1992) studied
the asymptotic properties of the estimators by minimizing both the squared relative loss
and the absolute relative loss under nonlinear regression models [11], and made a great
comparative study on them. Later, Chen et al. (2010) applied the least absolute relative
error loss [12] for the linear regression model

Y∗i = XT
i β + ε∗i ,

and proposed to estimate the model parameters by minimizing the sum of the absolute
relative error

n

∑
i=1

{∣∣∣∣∣Yi − exp(XT
i β)

Yi

∣∣∣∣∣+
∣∣∣∣∣Yi − exp(XT

i β)

exp(XT
i β)

∣∣∣∣∣
}

,

where Yi = log(Y∗i ) and they assumed log(ε∗i ) has a mean of 1. Motivated by [12], Yang and
Ye (2013) established the connection between relative error estimators and the M-estimation
under a linear model [13]. However, their works only consider the absolute relative loss,
not related to any quantile estimates of model distribution. None of these studies discussed
the way to apply the relative error for a general quantile regression.

In this article, we propose a general class of relative loss functions via a Box–Cox
transformation [14,15]. The proposed loss function includes the absolute loss and the
relative loss as special cases. We also show that the proposed loss function is convex,
scale-free and able to be elicited. We apply the proposed loss function for a linear quantile
regression [1] and prove that the estimates of the regression coefficients are consistent
and asymptotically normal. Through numerical studies on two concrete examples that
have well-derived theoretical solutions, we show that the proposed method is feasible
and verify that the numerical results have the expected theoretical properties obtained
from the theoretical study. We also apply the proposed method to a prostate cancer study,
showing that our method provides more accurate statistical inferences on quantile estimates
compared to the regular quantile regression, especially at the region of tail quantiles.

The rest of this article is organized as follows. In Section 2, we introduce the model
and propose the estimation procedure. In Section 3, we establish the consistency and
asymptotic normality for the parameter estimates under certain regularity conditions. In
Section 4, we examine the finite-sample properties using two simple simulations. An
application example is given in Section 5 with a prostate cancer study. We conclude with a
brief summary and remarks in Section 6.

2. Model and Methods

Let Yi be the response of interest and Xi be a (p + 1)-dimensional covariate with the
first element being 1. Consider a linear quantile regression model

Yi = XT
i β0(τ) + εi(τ), i = 1, . . . , n, (1)

where β0(τ) is a (p + 1)-dimensional coefficient for some τ ∈ (0, 1), and εi(τ) is a random
error with the τth quantile being equal to 0 conditional on Xi. In model (1), Yi could also be
replaced by any other reasonable monotone transformation, but considering that a linear
relationship in the transformed model may not be linear in the original scale, one may need
to transform the result back to the original measurement scale for the interpretation.

Through an exponential transformation, model (1) can be rewritten as

Ti = exp{XT
i β0(τ)}εi(τ), i = 1, . . . , n, (2)

where Ti = exp(Yi) > 0, εi(τ) = exp{εi(τ)} = exp{Yi − XT
i β0(τ)}. Denote H(·) as a

monotone function of real value, then according to the equivariance property of quantiles,
Qτ{H(εi)|Xi} = H{Qτ(εi|Xi)} holds for any random error εi. Here, Qτ(ε|X) is the τth
conditional quantile of ε given X. This characteristic enables us to consider quantile
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regressions under a proper transformation of the random error so as to enhance the
estimation efficiency.

To this end, we propose to conduct the model regression using a general class of
relative loss functions, which leads to the objective function in the form

1
n

n

∑
i=1

{
ρτ

[
Hγ

{
Ti exp(−XT

i β)
}]

+ ρτ

[
H−γ

{
Ti exp(−XT

i β)
}]}

, (3)

where ρτ(u) = u{τ − I(u < 0)} is the traditional quantile loss function and Hγ(·) takes
the Box–Cox transformation with Hγ(u) = (uγ − 1)/γ for γ 6= 0 and Hγ(u) = log(u) for
γ = 0 (see Figure 1).
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Figure 1. Plots of Hγ(x) at different values of γ.

The objective function, (3), can be further simplified as

Wn(β; γ, τ) =
1
n

n

∑
i=1

Vγ

(
exp(Yi − XT

i β)
){

τ − I(Yi < XT
i β)

}
, (4)

where Vγ(u) = (uγ − u−γ)/γ if γ 6= 0, otherwise Vγ(u) = 2 log(u) is a general relative
loss function. In particular, if γ = 0, (4) is reduced to the objective function of traditional
quantile regression, and if γ = 1 and τ = 0.5, (4) is reduced to

1
n

n

∑
i=1

{∣∣∣∣∣Ti − exp(XT
i β)

Ti

∣∣∣∣∣+
∣∣∣∣∣Ti − exp(XT

i β)

exp(XT
i β)

∣∣∣∣∣
}

,

which is exactly the objective function of the least absolute relative error in [12].
The proposed framework is very flexible—it allows us to adapt the quantile regression

to either the absolute or relative loss or somewhere in between by tuning the parameter
γ. Furthermore, the function Vγ(u) in (4) can guarantee the proposed criterion function
to be convex (see Lemma A1), scale-free, and able to be elicited (see Definition 2 in [16]).
Therefore, given γ, the minimizer of Wn(β; γ, τ) with respect to β, denoted as β̂n(γ; τ), can
be obtained conveniently using classical algorithms, such as the Nelder–Mead simplex
method recommended by Yin and Cai [17].
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3. Asymptotic Properties
3.1. Conditions and Main Results

We assumed that (Yi, Xi, εi(τ)), i = 1, . . . , n, are independent. Let Fε and Fε be the
cumulative distribution functions of ε and ε, and F(·|X) be the conditional distribution
function of ε given X. We considered a random design for X and used f (·|X) to denote the
corresponding density function that is almost definitely continuous in the neighborhood
of 1. To establish the asymptotic properties of the estimators under a certain metric, we
imposed regularity conditions as follows:

(C1) Covariate X is bounded and does not concentrate on any hyperplane of p dimensions.
(C2) For any fixed γ, it holds that E{(εγ + ε−γ)2|X} < ∞ and E[(εγ + ε−γ){τ −

I(ε < 1)}|X] = 0.
(C3) If β(γ; τ) = β(γ∗; τ) for any fixed τ, then γ(τ) = γ∗(τ).
(C4) D = E(XXT) is a positive definite.

Condition (C1) is regular, and condition (C2) ensures the consistency and asymptotic
normality, which can be treated as a generalized version of the zero mean and zero median
assumptions for the least square estimation and least absolute deviation regression methods,
respectively. Condition (C3) guarantees the identifiability of the adaptive parameter and
regression parameters. Condition (C4) is to ensure the asymptotic normality of the estimates
of the regression coefficients, similar to the finite second moment condition for the least
square estimator in linear regressions.

Theorem 1. Under conditions (C1)–(C4), for any τ ∈ (0, 1) and any finite γ ∈ [0, Γ], Γ is a
constant

‖β̂n(γ; τ)− β0(τ)‖ → 0

in probability as n→ ∞, where ‖ · ‖ indicates the Euclidean norm.

Proof of Theorem 1. By the results of Lemma A1 in Appendix A, we know that Wn(β; γ, τ)
is a convex function with respect to β. According to the Convexity Lemma [18], it holds
that

sup
β∈B
|Wn(β; γ, τ)− E{Wn(β; γ, τ)}| → 0 (5)

with the probability as n→ +∞ and the function E{Wn(β; γ, τ)} is necessarily convex on
B. Through an algebraic calculation, we obtain

E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)}

=
1
n

n

∑
i=1

E
{

ρτ

(Tγ
i exp(−γXT

i β)− 1
γ

)
+ ρτ

(T−γ
i exp(γXT

i β)− 1
−γ

)
−ρτ

( εγ − 1
γ

)
− ρτ

( ε−γ − 1
−γ

)}
=

1
n

n

∑
i=1

E
[
ρτ

(Tγ
i exp(−γXT

i β)− 1
γ

)
− ρτ

( ε
γ
i − 1

γ

)]
+

1
n

n

∑
i=1

E
[
ρτ

(T−γ
i exp(γXT

i β)− 1
−γ

)
− ρτ

( ε
−γ
i − 1
−γ

)]
. (6)

According to the Knight’s identity [19], it holds that

ρτ(u− v)− ρτ(u) = −v{τ − I(u < 0)}+
∫ v

0
{I(u ≤ s)− I(u ≤ 0)}ds,
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Then, by using the Knight’s identity we obtain

ρτ

(Tγ
i exp(−γXT

i β)− 1
γ

)
− ρτ

( ε
γ
i − 1

γ

)
=

ε
γ
i [exp{−γXT

i (β− β0(τ))} − 1]
γ

{τ − I(εi < 1)}

+
∫ ε

γ
i [1−exp{−γXT

i (β−β0(τ))}]/γ

0

{
I(Hγ(εi) ≤ s)− I(Hγ(εi) ≤ 0)

}
ds,

and similarly we obtain

ρτ

(T−γ
i exp(γXT

i β)− 1
−γ

)
− ρτ

( ε
−γ
i − 1
−γ

)
=

ε
−γ
i [exp{γXT

i (β− β0(τ))} − 1]
−γ

{τ − I(εi < 1)}

+
∫ ε
−γ
i [1−exp(γXT

i {β−β0(τ)})]/(−γ)

0

{
I(H−γ(εi) ≤ s)− I(H−γ(εi) ≤ 0)

}
ds.

Therefore,

E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)}

=
1
n

n

∑
i=1

{
E
[
−

ε
γ
i + ε

−γ
i

γ
{τ − I(εi < 1)}

(
exp{γXT

i (β− β0(τ))} − 1
)]

+E
[ ε

γ
i

γ
{τ − I(εi < 1)}

(
exp{γXT

i (β− β0(τ))}+ exp{−γXT
i (β− β0(τ))} − 2

)]
(7)

+E
[ ∫ ε

γ
i [1−exp{−γXT

i (β−β0(τ))}]/γ

0

{
I(Hγ(εi) ≤ s)− I(Hγ(εi) ≤ 0)

}
ds

+
∫ ε
−γ
i [1−exp{γXT

i (β−β0(τ))}]/(−γ)

0

{
I(H−γ(εi) ≤ s)− I(H−γ(εi) ≤ 0)

}
ds
]}

.

The first term in the summand of right-hand side is equal to 0 by condition (C2). By
condition (C2) and the fact that

2E{εγ I(εγ ≥ 1)|X} > E{(εγ + ε−γ)I(εγ ≥ 1)|X}

=
τ

1− τ
E{(εγ + ε−γ)I(εγ < 1)|X} (8)

>
2τ

1− τ
E{εγ I(εγ < 1)|X},

which implies E{εγ[τ − I(ε < 1)]|X} > 0. We know the second term in (7) is non-negative.
The third term in (7) is equivalent to

n

∑
i=1

E
[ ∫ [1−exp{−γXT

i (β−β0(τ))}]/γ

0
ε

γ
i
{

I(εγ
i ≤ (1− γs)−1)− I(εγ

i ≤ 1)
}

ds (9)

+
∫ [1−exp{γXT

i (β−β0(τ))}]/(−γ)

0
ε
−γ
i
{

I(εγ
i ≤ 1 + γs)− I(εγ

i ≤ 1)
}

ds
]
.

As the upper limits of both [1− exp{−γXT
i (β − β0(τ))}]/γ and [1− exp{γXT

i (β −
β0(τ))}]/(−γ) always have same signs, plus the fact that the integrated functions I(εγ

i ≤
(1 − γs)−1) − I(εγ

i ≤ 1) and I(εγ
i ≤ 1 + γs) − I(εγ

i ≤ 1) are all monotone functions
with respect to s and the signs of the integrated functions are also consistent with those
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of the upper limits of the integrations, we know that (9) is also non-negative. Thus,
E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)} = 0 ensures

E
{

εγ[τ − I(ε < 1)]
(

exp{γXT
i (β− β0(τ))}+ exp{−γXT

i (β− β0(τ))} − 2
)}

= 0.

As β = β0(τ) is the unique minimizer of exp{γXT
i (β − β0(τ))} + exp{−γXT

i (β −
β0(τ))} − 2, it follows from conditions (C1), (C3) and E{εγ[τ − I(ε < 1)]|X} > 0 that
β = β0(τ) is the unique minimizer of E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)}.

When Q(β; γ, τ) = E{Wn(β; γ, τ)}, then for every δ > 0, η > 0, such that Q(β; γ, τ) >
Q(β0(τ); γ, τ) + η for ‖β − β0(τ)‖ ≥ δ. For any δ > 0 and a constant D > 0, suppose
the minimizer of Wn(β; γ, τ), i.e. β̂n(γ; τ), is achieved in {β : δ ≤ ‖β− β0‖ ≤ D} ⊂ B.
Following (5), we know that Wn(β̂n(γ; τ); γ, τ)→ Q(β̂n(γ; τ); γ, τ) in probability as n→
∞, and Q(β̂n(γ; τ); γ, τ) > Q(β0(τ); γ, τ) + η. So limn→∞ inf‖β−β0(τ)‖≥δ Wn(β; γ, τ) ≥
Q(β̂n(γ; τ); γ, τ) > Q(β0(τ); γ, τ) + η holds in probability for any constant δ > 0. This
is contradictory to (5). Hence, the minimum of Wn(β; γ, τ) can only be achieved in ‖β−
β0(τ)‖ < δ. By the randomness of δ, we know β̂n(γ; τ) → β0(τ) in probability as n →
∞.

Theorem 2. Under conditions (C1)–(C4), for any τ ∈ (0, 1) and any finite γ ∈ [0, Γ],

√
n{β̂n(γ; τ)− β0(τ)}

d→ N
(

0, [γ{Jγ(τ) + fε(1)}]−2B(γ; τ)D−1
)

,

where Jγ(τ) = E[εγ{τ − I(ε < 1)}|X], B(γ; τ) = E
[
(εγ + ε−γ){τ − I(ε < 1)}|X

]2 and
D = E(XXT). In particular, if ε follows a symmetric distribution with the symmetrical axis ε = 1,
then B(γ; τ = 1/2) = E

{
(εγ + ε−γ)2|X

}
/4.

Proof of Theorem 2. To prove the asymptotic normality, we approximate E{Wn(β; γ, τ)
−Wn(β0(τ); γ, τ)} for every β in a neighborhood of β0(τ) first. By the proof in Theorem 1,
we know

E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)} = 1
n

n

∑
i=1

E{Gi(β)}+ 1
n

n

∑
i=1

E{Ri(β)},

where Gi(β) = γ−1ε
γ
i {τ − I(εi < 1)}

(
exp{γXT

i (β − β0(τ))} + exp{−γXT
i (β − β0(τ))}

− 2
)

and

Ri(β) =
∫ ε

γ
i [1−exp{−γXT

i (β−β0(τ))}]/γ

0

{
I(Hγ(εi) ≤ s)− I(Hγ(εi) ≤ 0)

}
ds

+
∫ ε
−γ
i [1−exp{γXT

i (β−β0(τ))}]/(−γ)

0

{
I(H−γ(εi) ≤ s)− I(H−γ(εi) ≤ 0)

}
ds.

The item E{Gi(β)} can be expanded near β0(τ) as

γE
[
ε

γ
i {τ − I(εi < 1)}

]
(β− β0(τ))

TE(XiXT
i )(β− β0(τ)) + O(‖β− β0(τ)‖3).
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Note that the item E{Ri(β)} equals

EX

[ ∫ [1−exp{−γXT
i (β−β0(τ))}]/γ

0

{ ∫ (1−γs)−1

0
x fε(x)dx−

∫ 1

0
x fε(x)dx

}
ds
]

+ EX

[ ∫ [1−exp{γXT
i (β−β0(τ))}]/(−γ)

0

{ ∫ 1+γs

0
x−1 fε(x)dx−

∫ 1

0
x−1 fε(x)dx

}
ds
]

= EX

[ ∫ [1−exp{−γXT
i (β−β0(τ))}]/γ

0

{
γ fε(1)s + O(s2)

}
ds
]

+ EX

[ ∫ [1−exp{γXT
i (β−β0(τ))}]/(−γ)

0

{
γ fε(1)s + O(s2)

}
ds
]

= EX

(
γ fε(1)

2

[
1− exp{−γXT

i (β− β0(τ))}
]2

γ2

)

+ EX

(
γ fε(1)

2

[
1− exp{γXT

i (β− β0(τ))}
]2

γ2

)
+ O(‖β− β0(τ)‖4)

=
fε(1)
2γ

[
2γ2(β− β0(τ))

TE(XiXT
i )(β− β0(τ))

]
+ O(‖β− β0(τ)‖4)

= γ fε(1)(β− β0(τ))
TE(XiXT

i )(β− β0(τ)) + O(‖β− β0(τ)‖4).

Thus,

E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)}
= {γJγ(τ) + γ fε(1)}(β− β0(τ))

T D(β− β0(τ)) + O(‖β− β0(τ)‖3),

where Jγ(τ) = E
[
ε

γ
i {τ − I(εi < 1)}|Xi

]
and D = E(XiXT

i ).
Let Vn = n−1 ∑n

i=1(ε
γ
i + ε

−γ
i ){τ − I(εi < 1)}Xi. Observe that

Wn(β; γ, τ)−Wn(β0(τ); γ, τ)− E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)}

=− 1
n

n

∑
i=1

{
ε

γ
i + ε

−γ
i

γ
{τ − I(εi < 1)}

(
exp{γXT

i (β− β0(τ))} − 1
)}

(10)

+
1
n

n

∑
i=1

[Gi(β)− E{Gi(β)}] + 1
n

n

∑
i=1

[Ri(β)− E{Ri(β)}] + O(‖β− β0(τ)‖3),

we next claim that

sup
‖β−β0(τ)‖≤Cn−1/2

∣∣Wn(β; γ, τ)−Wn(β0(τ); γ, τ) + VT
n (β− β0(τ))

− E{Wn(β; γ, τ)−Wn(β0(τ); γ, τ)}
∣∣→ 0 (11)

in probability as n→ ∞. Let θ =
√

n(β− β0(τ)), then the above equation is equivalent to

sup
‖θ‖≤C

∣∣Wn(β0(τ) + θ/
√

n; γ, τ)−Wn(β0(τ); γ, τ) + n−1/2VT
n θ

− E{Wn(β0(τ) + θ/
√

n; γ, τ)−Wn(β0(τ); γ, τ)}
∣∣→ 0. (12)

Similar to the proof of Lemma B.4. in [20], using the arguments of VC-subgraph
classes we can show

sup
‖β−β0(τ)‖≤Cn−1/2

∣∣∣ 1
n

n

∑
i=1

[Gi(β)− E{Gi(β)}] + 1
n

n

∑
i=1

[Ri(β)− E{Ri(β)}]
∣∣∣→ 0

with probability as n → ∞. Then, according to (10) and the Taylor expansion in the first
term, (11) holds.
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Let Wn(θ; τ) = −VT
n θ/
√

n+ n−1{γJγ(τ) + γ fε(1)}θT Dθ, then Wn(θ; τ) is convex and
thus has a unique minimizer θ =

√
n{γJγ(τ) + γ fε(1)}−1D−1Vn. By (12), we know that

Wn(β0(τ) + θ/
√

n; γ, τ) −Wn(β0(τ); γ, τ) → Wn(θ; τ) uniformly holds over ‖θ‖ ≤ C.

Thus, θ̂ = arg min Wn(β0(τ) + θ/
√

n; γ, τ)
d→ arg min Wn(θ; τ), that is,

√
n(β̂(γ; τ)− β0(τ))

d→
√

n{γJγ(τ) + γ fε(1)}−1D−1Vn.

Hence,
√

n(β̂(γ; τ)− β0(τ))
d→ N

(
0, {γJγ(τ) + γ fε(1)}−2B(γ; τ)D−1

)
, where B(γ; τ)

= E
[
(εγ + ε−γ){τ − I(ε < 1)}|X

]2 and D = E(XXT).

3.2. Adaptive Criteria for Choosing γ

The loss function defined in (4) provides a flexible framework that allows us to conduct
a quantile regression adaptively to practical scenario. However, how to choose the tuning
parameter γ for the proposed loss function adaptively to real data is a challenging but
important problem. Reasonable criteria for choosing the tuning parameter need to be
explored, so with that we could select the optimal γ based on the criterion using data-
driven techniques.

In this article, we investigate two criteria as follows:

(i) Criterion (I) selects the γ(τ) that minimizes the objective function Wn(β, γ; τ) for
γ ∈ [0, Γ] at each given τ;

(ii) Criterion (II) selects the γ(τ) that minimizes the variance of β̂n(γ; τ) at each given τ.

According to Lemma A1, we conclude that γ(τ) = arg minγ∈[0,Γ] Wn(β, γ; τ) ≡ 0.
That is, the proposed quantile regression approach is equivalent to the traditional quantile
regression under criterion (I). Thus, the optimal γ(τ) selected by criterion (I) provides the
best model fitting at each quantile in the sense of regular quantile regression. Criterion (II)
selects γ(τ), which reshapes the distribution of residuals for obtaining the best estimation
efficiency. The optimal γ(τ) selected by criterion (II) is denoted as γ∗(τ). According to
the derived asymptotic covariance matrix in Theorem 2, we know that the value of γ∗

depends on τ as well as the distribution of ε. For a fixed τ and a specified distribution of ε,
minimizing the variance of β̂n(γ; τ) is equivalent to maximizing {Jγ(τ) + fε(1)}2/B(γ; τ),
and thus

γ∗(τ) = arg max
γ∈[0,Γ]

{Jγ(τ) + fε(1)}2/B(γ; τ).

In the sequel, we mainly discuss the performance of criterion (II).

Remark 1. To estimate the asymptotic variance for a given γ, we recommend to use the wild
bootstrap technique. Define

W∗n (β; γ, τ) =
1
n

n

∑
i=1

wi

[
Vγ{exp(Yi − XT

i β)}{τ − I(Yi < XT
i β)}

]
, (13)

where {w1, . . . , wn} is a sequence of i.i.d nonnegative random variables with both mean and variance
equal to 1. Let β̂∗n(γ; τ) = arg minβ W∗n (β; γ, τ)|γ, and then the distribution of

√
n{β̂n(γ; τ)−

β0(τ)} can be approximated by the resampling distribution of
√

n{β̂∗n(γ; τ)− β̂n(γ; τ)}, where
β̂n(γ; τ) is the minimizer of (4). The standard error of β̂n(γ; τ) can be approximately estimated by
the empirical standard error of {β̂∗(m)

n (γ; τ) : m = 1, . . . , M}.

Remark 2. People can also define other criteria, such as selecting γ∗(τ) by minimizing the
summation of the standardized Wn(β, γ; τ) and the standardized variance of β̂n(γ; τ), we denote
this criterion as (III), then the selected γ(τ) shall be between 0 and γ∗(τ). In practice, it is hard to
assess whether a criterion is better than another one. The criterion that fits practical needs is the best.
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To illustrate the feasibility of criterion (II) and show the existence of optimal γ(τ), we
next give two concrete examples with specified quantiles and distributions of ε.

Example 1. Assume that εi follows the standard log-normal distribution and is independent of Xi,
i.e., εi ∼ N(0, 1), then γ∗(τ) = 1.12, 1.13, 1.14 for τ = 0.25, 0.5, 0.75, respectively.

First, note that

B(γ; τ) = E
[
(εγ + ε−γ)/γ{τ − I(ε < 1)}

]2
= (τ − 1)2E{(εγ + ε−γ)2/γ2 I(ε < 1)}+ τ2E{(εγ + ε−γ)2/γ2 I(ε ≥ 1)}.

By the definition,

E(ε2γ I(ε < 1)) =
exp(2γ2)√

2π

∫ 0

−∞
exp

{
−(x− 2γ)2/2

}
dx = exp(2γ2)Φ(−2γ),

E(ε−2γ I(ε < 1)) =
exp(2γ2)√

2π

∫ 0

−∞
exp

{
−(x + 2γ)2/2

}
dx = exp(2γ2)Φ(2γ),

hence, B(γ; τ) = {τ2 + (1− τ)2}{exp(2γ2) + 2}/γ2. We can derive

E{εγ(τ − I(ε < 1))}

=
1√
2π

∫ +∞

−∞
exp(γx)(τ − I(x < 0)) exp(−x2/2)dx

=
1√
2π

{
(τ − 1)

∫ 0

−∞
exp(γx) exp(−x2/2)dx + τ

∫ +∞

0
exp(γx) exp(−x2/2)dx

}
= exp(γ2/2){(τ − 1)Φ(−γ) + τ(1−Φ(−γ))}
= exp(γ2/2){τ −Φ(−γ)}.

Thus, we have

{Jγ(τ) + fε(1)}−2B(γ; τ) =
{τ2 + (1− τ)2}{exp(2γ2) + 2}

γ2
[

exp(γ2/2){τ −Φ(−γ)}+ fε(1)
]2 .

There is no closed form solution for minimizing {Jγ(τ) + fε(1)}−2B(γ; τ), but through a
numerical procedure, we find that {Jγ(τ) + fε(1)}2/B(γ; τ) reaches the maximum at 1.12, 1.13,
and 1.14, see Figure 2, for τ = 0.25, 0.5, 0.75, respectively.

0.5 1.0 1.5 2.0

0.
1

0.
2

0.
3

0.
4

γ

 

τ = 0.25
τ = 0.5
τ = 0.75

0.5 1.0 1.5 2.0

0.
5

1.
0

1.
5

2.
0

γ

 

τ = 0.25
τ = 0.5
τ = 0.75

Figure 2. The left and right panels show the plot of
{

γJγ(0.5) + γ fε(1)
}2/B(γ; τ) versus γ in

Examples 1 and 2, respectively.
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Example 2. If εi ∼ Unif(−1, 1), then γ∗(τ) ≡ Γ for any τ ∈ (0, 1). In particular, γ∗(τ) ≡ 2 if
we set Γ = 2.

First, by E{(εγ + ε−γ)2 I(ε < 1)} = E{(εγ + ε−γ)2 I(ε ≥ 1)} = 2 + {exp(2γ) −
exp(−2γ)}/(4γ), we know that B(γ; τ) = {τ2 + (1− τ)2}

[
{exp(2γ)− exp(−2γ)}/(4γ) +

2
]
/γ2. It further leads to

E{εγ(τ − I(ε < 1))} =
1
2

∫ 1

−1
exp(γx){τ − I(x < 0)}dx

=
1

2γ

{
(τ − 1)

∫ 0

−1
exp(γx)d(γx) + τ

∫ 1

0
exp(γx)d(γx)

}
= {τ exp(γ) + (1− τ) exp(−γ)− 1}/(2γ),

and then we have

{Jγ(τ) + fε(1)}−2B(γ; τ)

=
{τ2 + (1− τ)2}{8γ + exp(2γ)− exp(−2γ)}

γ
[
{τ exp(γ) + (1− τ) exp(−γ)− 1}+ 2γ fε(1)

]2
As is shown in Figure 2, {Jγ(τ) + fε(1)}2/B(γ; τ) reaches the maximum at Γ.

4. Simulation Study

For numerical implementation of the proposed method, we first obtained β̂n(γ; τ) by
minimizing (4) for each fixed γ ∈ [0, Γ] using the Nelder–Mead simplex algorithm, and
then tuned and selected γ(τ) based on a criterion. We finally obtained the adapted value
γ̂(τ) and the corresponding coefficient β̂n(γ̂; τ). To verify the theoretical properties of the
proposed method, we conducted simulation studies under two simple scenarios with finite
samples to illustrate the proposed method.

Scenario 1. We considered a simple univariate ,case,

Yi = α + βXi + εi, i = 1, . . . , n,

where α = 0, β = 1, Xi follows the standard normal distribution, and εi = ε∗i −Φ−1(τ),
with ε∗i following the standard normal distribution and Φ−1(τ) indicating the τ-quantile
of the standard normal distribution. We set the sample size n = 200, 400 and the number
of replications as 500.

For Scenario 1, β0 is of one dimension. So, we can plot the 3-dimensional surface of
Wn(β, γ; τ = 0.5), see Figure 3, which shows that Wn(β, γ; τ) is local convex with respect
to both γ and β. As illustrated previously in Example 1, if ε follows the standard normal
distribution, the true value of γ∗(τ) in theory is around 1.08 by criterion (II). Table 1
summarizes the simulation results at different quantiles with various adaptive criteria.
The results show that the estimated regression coefficients have small biases, and the
biases demonstrate a clear trend of asymptotic consistency for all settings. According to
the results in Table 1 and the box-plots in Figures 4 and 5, we also see that the adaptive
parameter γ̂(0.5) selected by criteria (I) and (II) converge to 0.0, 1.13 and 0.8, respectively.
The values of γ(τ) by criterion (I) are all equal to 0, indicating the estimates by criterion
(I) are equivalent to that by the traditional quantile regression. Compared to the estimate
by traditional quantile regression, the proposed estimate under the adaptive criterion
(II) enhances the estimation efficiency of coefficients by 5∼20%. Additionally, from the
histogram in Figure 6 and the quantile–quantile (Q–Q) plot [21,22] in Figure 7, we see that
the empirical distribution of the estimators follows a clear normal distribution.
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Figure 3. 3D surface of the objective function Wn(β; γ, τ = 0.5).

Table 1. Simulation results under Scenario 1.

β0 = 1 γ

Criterion n τ Est. SD SE CP% Est. SD

I 200 0.25 0.995 0.067 0.069 94.8 0.000 0.000
0.50 1.003 0.060 0.063 95.2 0.000 0.000
0.75 1.001 0.073 0.070 93.0 0.000 0.000

400 0.25 0.998 0.047 0.049 94.4 0.000 0.000
0.50 0.999 0.044 0.044 93.0 0.000 0.000
0.75 1.000 0.048 0.049 93.4 0.000 0.000

II 200 0.25 0.999 0.056 0.052 93.8 1.048 0.321
0.50 1.002 0.057 0.050 93.6 1.070 0.339
0.75 1.000 0.060 0.051 92.6 1.068 0.339

400 0.25 1.002 0.041 0.039 94.0 1.126 0.246
0.50 1.000 0.041 0.038 94.8 1.136 0.261
0.75 0.999 0.042 0.039 93.5 1.137 0.242

III 200 0.25 0.996 0.051 0.054 96.2 0.781 0.234
0.50 0.998 0.056 0.051 91.4 0.722 0.266
0.75 0.999 0.061 0.054 90.8 0.760 0.248

400 0.25 0.996 0.039 0.040 94.0 0.773 0.205
0.50 1.001 0.038 0.037 94.8 0.713 0.216
0.75 1.002 0.042 0.038 92.4 0.761 0.206

NOTE: Est., the empirical mean of the estimated coefficients; SD, the sample standard deviation of the estimated
coefficients; SE, the empirical mean of standard errors based on the bootstrap method; CP, the coverage probability
of the 95% confidence intervals.
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Scenario 2. We considered the same model and settings as in Scenario 1, except
that the error follows a uniform distribution, and εi = ε∗i − Qε∗(τ), where ε∗i follows
Uniform(−1, 1), and Qε∗(τ) = 2τ − 1.

The simulation results are presented in Table 2. It is shown that under criterion (I) that
the estimated values of γ∗(τ) are all equal to 0 as well, and the corresponding estimated
coefficients at different quantiles have small biases and reasonable coverage probabilities.
Under the adaptive criterion (II), the estimated values of γ∗(τ) tend to converge to Γ = 2.
In addition, the regression coefficients are all estimated accurately. Overall, the simulation
results in Table 2 match well with the theoretical properties in Example 2 in Section 4.
Specifically, the estimation efficiency of coefficients using the proposed method with
criterion (II) increases by 60∼100% over the traditional quantile regression.
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Box−plots of β̂(γ): τ = 0.5
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Box−plots of β̂(γ): τ = 0.75
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Figure 4. Box-plots of β̂n(γ; τ) at different values of γ and τ = 0.25, 0.50, 0.75 under Scenario 1 with
criterion (II). The solid lines with blue color indicate the point-wise upper and lower bounds of the
95% confidence interval for β0(τ) at different γ, respectively.
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Figure 5. Boxplots of the values of β̂n(γ; τ) and γ̂(τ) under Scenario 1 with three criteria, respectively.
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Figure 6. Histograms of β̂n(γ; τ)’s at different values of γ and τ = 0.25, 0.50, 0.75 with n = 400
under Scenario 1.
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Figure 7. Q–Q plots of β̂n(γ; τ)’s at different values of γ and τ = 0.25, 0.50, 0.75 with n = 400 under
Scenario 1.
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Table 2. Simulation results under Scenario 2.

β0 = 1 γ

Criteria n τ Est. SD SE CP% Est. SD

I 200 0.25 1.005 0.062 0.063 95.0 0.000 0.000
0.50 1.005 0.072 0.073 95.0 0.000 0.000
0.75 0.997 0.066 0.063 93.4 0.000 0.000

400 0.25 1.000 0.043 0.043 94.8 0.000 0.000
0.50 0.999 0.052 0.052 94.4 0.000 0.000
0.75 0.999 0.043 0.045 95.2 0.000 0.000

II 200 0.25 0.998 0.038 0.039 94.0 1.927 0.250
0.50 0.999 0.037 0.038 95.2 1.996 0.081
0.75 1.001 0.038 0.040 92.8 1.924 0.257

400 0.25 1.001 0.027 0.026 95.8 1.940 0.221
0.50 0.999 0.026 0.026 95.0 1.998 0.036
0.75 1.000 0.027 0.029 94.0 1.942 0.201

NOTE: Est., the empirical mean of the estimated coefficients; SD, the sample standard deviation of the estimated
coefficients; SE, the empirical mean of the estimated standard errors based on the bootstrap method; CP, the
coverage probability of the 95% confidence intervals.

5. Application

We applied the proposed method to a prostate cancer study [23], where the prostate
cancer data contain the medical records of 97 male patients who received a radical prostate-
ctomy. The description of data is summarized in Table 3.

Table 3. Summary of prostate cancer data.

Components Total Components Total

cancer volume (cc) PSA (ng./mL.)
mean (SD) 7.0 (7.9) mean (SD) 23.74 (40.8)
median 4.25 median 13.35
range 45.39 range 265.2

prostate weight (gm.) capsular penetration (cm.)
mean (SD) 45.5 (45.6) mean (SD) 2.36 (3.72)
median 37.45 median 0.45
range 438.5 range 18.0

Age (year) Gleason score –no.(%)
mean (SD) 63.9 (7.45) = 6 35 (36)
median 65.00 = 7 56 (58)
range 38.00 = 8 1 (1)

= 9 5 (5)

BPHA (cm2) Percentage of Gleason
mean (SD) 2.64 (2.94) scores 4 or 5 –no.(%)
median 1.35 [0, 20] 61 (63)
range 9.99 (20, 60] 24 (25)

SVI -no. (%) (60, 100] 12 (12)
+ 21 (22)
− 76 (78)

NOTE: ‘SVI’, seminal vesicle invasion; ‘BPHA’, benign prostatic hyperplasia amount.

The response variable of interest is the level of prostate antigen (PSA), and there are eight
predictor variables, including the log of cancer volume, the log of prostate weight, age, the log
of the amount of benign prostatic hyperplasia, seminal vesicle invasion, the log of capsular
penetration, Gleason score and the percentage of Gleason scores of 4 or 5. The research goal is
to study the covariate effects of the predictor variables at the level of prostate antigen.
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We considered a linear quantile model for the association between prostate antigen
and the predictor variables. For convenience, we first standardized the predictors as well
as the dependent variables, and then included the intercept in the model. We took 200
bootstrap samples for the variance estimation of coefficients, and selected the adaptive
parameter using criterion (II). We obtained the estimate γ̂(τ) = 2.0 for all grid points τ ∈
{0.1, 0.2, . . . , 0.8, 0.9}. Then, we further acquired the estimated regression coefficients with
95% Confidence Intervals (CIs) at the 0.25, 0.50 and 0.75 quantiles, which are summarized in
Table 4, where the results are also compared to those of the traditional quantile regression.
As is shown in the table, there is not much difference between the estimated coefficients by
the traditional quantile regression and the proposed method with criterion (II). However,
referring to the values of the ‘CI ratio’ (‘CI Ratio’ is defined as the ratio of the length of
95% CI by traditional QR over that by the proposed method using criterion (II)), we can
see overall that the lengths of 95% CIs by the proposed method are significantly smaller
than that by a traditional quantile regression. Figure 8 presents the estimated curves of
coefficients with 95% confidence bands. The figure shows that the proposed method with
criterion (II) provides smoother estimates and more stable and narrower confidence bands
compared to those by a regular quantile regression, especially at the region of tail quantiles.
From the results in both Table 4 and Figure 8, we concluded that the cancer volume, the
prostate weight, and the seminal vesicle invasion are significantly associated with the level
of prostate antigen, which is as expected since a high level of prostate antigen is generally
regarded as strong evidence of prostate cancer. While the effects of the amount of benign
prostatic hyperplasia, capsular penetration, Gleason score and the percentage of Gleason
scores of 4 or 5 at the level of prostate antigen are statistically insignificant.

Table 4. The estimated covariate effects with 95% CIs for the prostate cancer study.

Traditional QR (Criterion (I)) Criterion (II)

Coeff. β̂(τ) Est. 95% CI Est. 95% CI CI Ratio

τ = 0.25

Intercept −0.354 (−0.513, −0.167) −0.217 (−0.333, −0.102) 1.498
Volume 0.696 (0.486, 0.864) 0.611 (0.450, 0.772) 1.174
Weight 0.282 (0.135, 0.473) 0.238 (0.101, 0.374) 1.238
Age −0.033 (−0.203, 0.150) −0.147 (−0.272, −0.023) 1.418
Hyperplasia 0.130 (0.007, 0.435) 0.102 (−0.039, 0.244) 1.512
Seminal 0.275 (0.087, 0.408) 0.248 (0.113, 0.383) 1.189
Capsular −0.259 (−0.504, −0.090) −0.150 (−0.324, 0.024) 1.190
Gleason −0.022 (−0.189, 0.152) 0.039 (−0.137, 0.215) 0.969
Percentage 0.246 (−0.091, 0.480) 0.128 (−0.048, 0.305) 1.618

τ = 0.5

Intercept −0.057 (−0.185, 0.071) 0.009 (−0.090, 0.109) 1.286
Volume 0.544 (0.363, 0.725) 0.601 (0.459, 0.742) 1.279
Weight 0.239 (0.059, 0.419) 0.220 (0.091, 0.349) 1.395
Age −0.173 (−0.307, −0.039) −0.116 (−0.222, −0.010) 1.264
Hyperplasia 0.201 (0.042, 0.360) 0.112 (−0.004, 0.228) 1.371
Seminal 0.287 (0.087, 0.487) 0.240 (0.095, 0.386) 1.375
Capsular −0.159 (−0.343, 0.026) −0.111 (−0.274, 0.052) 1.132
Gleason 0.127 (−0.050, 0.304) 0.071 (−0.087, 0.230) 1.117
Percentage 0.099 (−0.050, 0.248) 0.084 (−0.081, 0.248) 0.906

τ = 0.75

Intercept 0.378 (0.312, 0.514) 0.253 (0.143, 0.363) 0.918
Volume 0.570 (0.348, 0.752) 0.592 (0.452, 0.733) 1.438
Weight 0.136 (−0.067, 0.342) 0.199 (0.058, 0.339) 1.456
Age −0.135 (−0.305, 0.035) −0.121 (−0.241, −0.002) 1.423
Hyperplasia 0.155 (−0.021, 0.333) 0.087 (−0.048, 0.222) 1.311
Seminal 0.334 (0.198, 0.439) 0.261 (0.186, 0.405) 1.100
Capsular −0.089 (−0.383, 0.065) −0.070 (−0.227, 0.088) 1.422
Gleason −0.061 (−0.210, 0.143) −0.019 (−0.161, 0.123) 1.243
Percentage 0.170 (−0.016, 0.226) 0.125 (−0.059, 0.308) 0.659
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Figure 8. The estimated curves of covariate effects along the quantiles for the prostate cancer study.
The solid lines present the estimated coefficients by proposed method with criterion (II), and the
dash-dot lines are by the traditional quantile regression. The shaded areas give the 95% confidence
bands of the estimated curves by proposed method with criterion (II). The 95% confidence bands of
the curves by regular quantile regression are shown between the lower and upper dash-dot lines.

6. Discussion

We propose a general class of loss functions to conduct a quantile regression, which
naturally unifies the absolute and the relative error criteria. The consistency and asymptotic
normality of the resulting estimators are established. Numerical studies demonstrate the
good performance of the proposed method using finite samples. Although our proposal
is based on a quantile regression, similar ideas can also be extended to other statistical
framework such as the M-estimator. Further research includes extending the proposed
procedure to censored data, see, e.g., [7,24,25], or longitudinal data [6,26], and even to the
case with a diverging number of parameters or ultra-high dimensionality situations [27].
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Appendix A

Lemma A1. Let Q(x, γ; ε, τ) = γ−1[exp{γ(ε − x)} − exp{−γ(ε − x)}]{τ − I(ε < x)},
where x ∈ R, τ ∈ (0, 1). Then, (i) for any fixed γ > 0, Q(x, γ; ε, τ) is a strictly convex function
with respect to x ∈ R; (ii) for any fixed x and ε, Q(x, γ; ε, τ) is monotone increasing with respect
to γ on (0, Γ). In particular, Q(x, γ; ε, τ) reaches the minimum when γ = 0.

Proof of Lemma A1. The first part of Lemma 1 follows directly from the fact that

d2Q(x, γ; ε, τ)

dx2 = γ[exp{γ(ε− x)} − exp{−γ(ε− x)}]{τ − I(ε < x)} > 0.

The second part of Lemma A1 follows from the first derivative of Q(x, γ; ε, τ) with
respect to γ. Let u = exp(ε− x). By simple derivation, we obtain

dQ(x, γ; ε, τ)

dγ
=

τ − I(u < 1)
γ2

{
uγ(γ ln(u)− 1) + u−γ(γ ln(u) + 1)

}
=

τ − I(u < 1)
γ2

{
(γ ln(u)− 1)u2γ + (γ ln(u) + 1)

uγ

}

=


τ − 1

γ2
(γ ln(u)− 1)u2γ + (γ ln(u) + 1)

uγ
, if 0 < u < 1,

τ

γ2
(γ ln(u)− 1)u2γ + (γ ln(u) + 1)

uγ
, if u ≥ 1.

If 0 < u < 1, then γ ln(u) − 1 < −1, u2γ < 1, and γ ln(u) + 1 < 1. Thus,

(γ ln(u) − 1)u2γ + (γ ln(u) + 1) < 0 and then τ−1
γ2

(γ ln(u)−1)u2γ+(γ ln(u)+1)
uγ > 0. Using

a similar argument, we can also show τ
γ2

(γ ln(u)−1)u2γ+(γ ln(u)+1)
uγ > 0. Hence, Q(x, γ; ε, τ)

is monotone increasing with respect to γ. In particular, by L’Hôpital’s rule

lim
γ→0

Q(x, γ; ε, τ) = 2(ε− x){τ − I(ε < x)} = Q(x, γ; ε, τ)|γ=0.

This completes the proof of Lemma 1.
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