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Abstract: Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by SARS-CoV-2.
It appeared in China in late 2019 and rapidly spread to most countries of the world. Cancer patients
infected with SARS-CoV-2 are at higher risk of developing severe infection and death. This risk
increases further in the presence of lymphopenia affecting the lymphocytes count. Here, we develop a
delayed within-host SARS-CoV-2/cancer model. The model describes the occurrence of SARS-CoV-2
infection in cancer patients and its effect on the functionality of immune responses. The model
considers the time delays that affect the growth rates of healthy epithelial cells and cancer cells.
We provide a detailed analysis of the model by proving the nonnegativity and boundedness of the
solutions, finding steady states, and showing the global stability of the different steady states. We
perform numerical simulations to highlight some important observations. The results indicate that
increasing the time delay in the growth rate of cancer cells reduced the size of tumors and decreased
the likelihood of deterioration in the condition of SARS-CoV-2/cancer patients. On the other hand,
lymphopenia increased the concentrations of SARS-CoV-2 particles and cancer cells, which worsened
the condition of the patient.

Keywords: cancer; SARS-CoV-2; delays; CTLs; antibodies; global stability

1. Introduction

Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). It is one of the worst epidemics that
we have witnessed in the modern era. It has changed our social, economic, and health lives
since its first appearance in China in late 2019. It is highly contagious and has affected
millions of people around the world [1,2]. According to the World Health Organization
(WHO) report of 7 February 2021 [3], the total number of confirmed cases reached over
105 million, and the total number of deaths reached over 2 million. The highest numbers of
cases were reported in the United States of America, Brazil, France, the United Kingdom of
Great Britain and Northern Ireland, and the Russian Federation [3].

There are more than 60 COVID-19 vaccine candidates in clinical development and
over 70 in pre-clinical development [4]. Two COVID-19 vaccines were authorized by the
U.S. Food and Drug Administration (FDA) for emergency use: the Pfizer-BioNTech COVID-
19 vaccine and Moderna COVID-19 vaccine [5]. Pfizer was authorized on 11 December
2020 for use in individuals 16 years of age and older [5]. Moderna was authorized on
18 December 2020 for use in individuals 18 years of age and older [5]. In addition to
vaccination, it is essential to understand the biology of COVID-19 to develop effective
treatments for patients who have already become infected [6].
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SARS-CoV-2 is a member of the family Coronaviridae, which also includes SARS-CoV
that appeared in 2002 and the Middle East respiratory syndrome coronavirus (MERS-CoV)
that appeared in 2012 [7,8]. It is a single-stranded positive-sense RNA virus [9]. It enters
human cells through the angiotensin-converting enzyme 2 (ACE2) receptor [10]. ACE2
is expressed in many organs, including the heart, kidney, pancreas, and gastrointestinal
tract [2,11,12].

However, it is mainly expressed in alveolar epithelial type 2 cells of the lungs; therefore,
they are the principal target for SARS-CoV-2 [2]. The most common symptoms of SARS-
CoV-2 infection are fatigue, cough, fever, headache, sore throat, myalgia, shortness of
breath, anosmia, and diarrhea [2,13,14]. Patients can also encounter lung alterations and
reduced circulating lymphocytes (lymphopenia) and platelet counts [2]. In most cases,
infected people show only mild symptoms [13]. However, about 20% of the patients worsen
to pneumonia, multiorgan failure, thrombotic events, and death [11,13,15].

The severe symptoms of SARS-CoV-2 infection are generally detected in patients
of older age and with comorbidities, such as obesity, diabetes, hypertension, coronary
heart disease, chronic obstructive pulmonary disease, chronic kidney disease, and can-
cer [2,12,16,17]. Cancer patients are considered at increased risk of death and severe disease
due to SARS-CoV-2 infection [18,19]. This risk is higher in lymphopenia, which is one of
the most common features of cancer patients with SARS-CoV-2 infection [13,20]. Thus, the
presence of lymphopenia can help to identify patients at risk of serious complications of
SARS-CoV-2 infection [21].

Mathematical modelling has been utilized to help understand the dynamics of many
viral infections [22–25]. Models of SARS-CoV-2 can be used to understand the pathogenesis
of the virus, design effective treatments, reduce its impact, and make good decisions [26,27].
Many mathematical models have been developed at the epidemiological level for COVID-
19 [7,28–33]. These models discuss the transmission of SARS-CoV-2 and predict the best
strategies to reduce the spread of the disease between people [6,34]. However, they do not
consider the within-host dynamics of SARS-CoV-2 infection that determine the different
outcomes of the disease (severe or non-severe) [6].

On the other hand, very few models have been developed at the within-host level
for COVID-19 [34]. These models aim to understand the spread of the virus within
the body of the host and its interactions with the immune system [6,34]. For example,
Almocera et al. [35] considered a model that depicts the interaction between SARS-CoV-2
and effector T cells. They performed stability and bifurcation analysis to help understand
how the virus can overcome the immune response and cause infection [35].

Pinky and Dobrovolny [36] utilized a model to examine SARS-CoV-2 coinfections with
many common respiratory viruses, such as influenza A virus (IAV) and human rhinovirus
(hRV). They found that SARS-CoV-2 had a lower growth rate than these viruses. Accord-
ingly, SARS-CoV-2 infection will be suppressed if infections occur simultaneously [36].
However, coinfection can occur if the second infection is initiated after SARS-CoV-2 infec-
tion [36]. Hernandez-Vargas and Velasco-Hernandez [34] proposed a model to investigate
the dynamics of SARS-CoV-2 in infected patients. They evaluated model parameters by
fitting with data presented by Wölfel et al. [37]. Li et al. [38] used chest radiograph score
data to estimate the parameters of their model and the basic reproductive number.

The above within-host models were built using ordinary differential equations (ODEs).
However, ODEs do not take into account the time delays accompanying many biological
processes [39]. A small number of studies have been done to examine the impact of
COVID-19 viral infection on cancer at the cellular level [10]. This has raised the need for
understanding the dynamics of SARS-CoV-2 in cancer patients and the role of immune
responses in this situation. Mathematical modelling is one of the strongest tools that can
support scientific studies and clinical trials.

Therefore, in this paper, we develop a within-host SARS-CoV-2/cancer model. The
model focuses on (i) exploring the interactions between six compartments, which are
nutrients, healthy epithelial cells, cancer cells, SARS-CoV-2, cancer-specific CTLs, and
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virus-specific antibodies; (ii) investigating the effect of time delays on the growth rates
of healthy cells and cancer cells; and (iii) examining the effect of lymphopenia on the
activation rates of CTLs and antibodies.

The paper is organized as follows. Section 2 presents the model under consideration
and defines the meanings of the different parameters and rates. Section 3 establishes the
well-posedness of the model. In addition, it lists all possible steady states and the associated
existence conditions. Section 4 proves the global stability of the steady states computed
in Section 3. Section 5 displays some numerical simulations and outlines some important
observations. The results and future works are presented in Section 6.

2. The Proposed Model

The model developed in this work was inspired by the oncolytic virotherapy models
investigated in [23,40]. These models depict the cancer cell killing effect of the oncolytic
M1 virus when the virus infects cancer cells. Here, we reformulate the models to measure
the effect of SARS-CoV-2 infection in cancer patients, where SARS-CoV-2 infects healthy
epithelial cells. Hence, our model takes the form:

dA(t)
dt

= ϑ− κA(t)− η1 A(t)N(t)− η2 A(t)C(t),

dN(t)
dt

= σ1η1e−b1τ1 A(t− τ1)N(t− τ1)− η3N(t)V(t)− (κ + κ1)N(t),

dC(t)
dt

= σ2η2e−b2τ2 A(t− τ2)C(t− τ2)− η4C(t)W(t)− (κ + κ2)C(t),

dV(t)
dt

= σ3η3N(t)V(t)− η5V(t)Z(t)− (κ + κ3)V(t),

dW(t)
dt

= σ4η4(1− ρ1)C(t)W(t)− (κ + κ4)W(t),

dZ(t)
dt

= σ5η5(1− ρ2)V(t)Z(t)− (κ + κ5)Z(t),

(1)

where A(t), N(t), C(t), V(t), W(t), and Z(t) represent the concentrations of nutrient,
healthy epithelial cells, cancer cells, SARS-CoV-2 particles, cancer-specific CTLs, and virus-
specific antibodies at time t, respectively.

The nutrient is produced at a constant rate ϑ and decays at rate κA. The healthy cells
consume nutrients at rate η1 AN, grow at rate σ1η1e−b1τ1 A(t− τ1)N(t− τ1), and die at a
natural death rate κ1N. The cancer cells consume nutrients at rate η2 AC, grow at rate
σ2η2e−b2τ2 A(t− τ2)C(t− τ2), and die at rate κ2C. The delay τ1 > 0 is the time needed for
nutrients to contribute to the biomass of healthy cells, while τ2 > 0 is the time needed for
nutrients to contribute to the biomass of cancer cells [40]. e−b1τ1 and e−b2τ2 are the survival
probabilities of healthy and cancer cells during the delay period, respectively.

SARS-CoV-2 particles infect healthy cells at rate η3NV, proliferate at rate σ3η3NV, and
die at rate κ3V. CTLs kill cancer cells at rate η4CW, decay at rate κ4W, and are stimulated
by cancer cells at rate σ4η4(1− ρ1)CW. Antibodies neutralize virus particles at rate η5VZ,
die at rate κ5Z, and are produced by B cells at rate σ5η5(1− ρ2)VZ. The parameter ρ1
measures the impact of lymphopenia on the activation rate of the CTL immune response,
where 0 ≤ ρ1 < 1. Furthermore, the parameter ρ2 measures the impact of lymphopenia
on the production rate of antibodies, where 0 ≤ ρ2 < 1. For simplicity, we will utilize the
following shortcuts in the next parts of the paper:

Θ1 ≡ κ + κ1, Θ2 ≡ κ + κ2, Θ3 ≡ κ + κ3, Θ4 ≡ κ + κ4, Θ5 ≡ κ + κ5.

3. Preliminaries

Let X = C([−τ, 0],R6
+), where τ = max{τ1, τ2}, be the Banach space of continu-

ous real-valued functions on the interval [−τ, 0] with norm ‖φ‖ = sup−τ≤ξ≤0 |φ(ξ)| for
φ ∈ C([−τ, 0],R6

+). By the standard theory of functional differential equations [41], for any
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φ ∈ C([−τ, 0],R6
+) there exists a unique solution Y(t, φ) = (A(t, φ), N(t, φ), C(t, φ), V(t, φ),

W(t, φ), Z(t, φ)) of (1), which satisfies Y0 = φ. The initial conditions are given by{
A(ξ) = φ1(ξ), N(ξ) = φ2(ξ), C(ξ) = φ3(ξ),

V(ξ) = φ4(ξ), W(ξ) = φ5(ξ), Z(ξ) = φ6(ξ), ξ ∈ [−τ, 0],
(2)

where φi(ξ) ≥ 0, i = 1, 2, . . . , 6 and (φ1(ξ), φ2(ξ), . . . , φ6(ξ)) ∈ X.

3.1. Nonnegativity and Boundedness of the Solution

In this subsection, we establish the nonnegativity and boundedness of the solutions of
model (1).

Theorem 1. All solutions of model (1) subject to condition (2) remain nonnegative and
ultimately bounded.

Proof. From the first equation of model (1), we have dA
dt |A=0 = ϑ > 0. Furthermore, for all

t ∈ [0, τ], we have

N(t) = φ2(0)e−
∫ t

0 (Θ1+η3V(l))dl + σ1η1e−b1τ1

∫ t

0
A(s− τ1)N(s− τ1)e−

∫ t
0 (Θ1+η3V(l))dlds,

C(t) = φ3(0)e−
∫ t

0 (Θ2+η4W(l))dl + σ2η2e−b2τ2

∫ t

0
A(s− τ2)C(s− τ2)e−

∫ t
0 (Θ2+η4W(l))dlds,

V(t) = φ4(0)e−
∫ t

0 (Θ3+η5Z(l)−σ3η3 N(l))dl ,

W(t) = φ5(0)e−
∫ t

0 (Θ4−σ4η4(1−ρ1)C(l))dl ,

Z(t) = φ6(0)e−
∫ t

0 (Θ5−σ5η5(1−ρ2)V(l))dl .

Using (2), we know that the solution of (1) is nonnegative for all t ≥ 0. Now, we
confirm that A(t), N(t), C(t), V(t), W(t), and Z(t) are all ultimately bounded. The first

equation of (1) yields
dA
dt
≤ ϑ − κA(t), thus limt→∞ sup A(t) ≤ π0, where π0 =

ϑ

κ
.

Next, we define

Ω(t) = e−b1τ1 A(t− τ1) + e−b2τ2 A(t− τ2) +
1
σ1

N(t) + 1
σ2

C(t) + 1
σ1σ3

V(t)
+ 1

σ2σ4(1−ρ1)
W(t) + 1

σ1σ3σ5(1−ρ2)
Z(t).

For t = 0, Ω(0) = e−b1τ1 A(−τ1) + e−b2τ2 A(−τ2) +
1
σ1

N(0) + 1
σ2

C(0) + 1
σ1σ3

V(0) +
1

σ2σ4(1−ρ1)
W(0) + 1

σ1σ3σ5(1−ρ2)
Z(0). Using the initial conditions given in (2), we obtain

Ω(0) > 0. Therefore, Ω(t) > 0 for all t ≥ 0. Differentiating Ω(t) along the solutions of (1),
we get

dΩ(t)
dt

=

(
e−b1τ1 + e−b2τ2

)
ϑ− κ

(
e−b1τ1 A(t− τ1) + e−b2τ2 A(t− τ2)

)
− Θ1

σ1
N(t)− Θ2

σ2
C(t)

− Θ3

σ1σ3
V(t)− Θ4

σ2σ4(1− ρ1)
W(t)− Θ5

σ1σ3σ5(1− ρ2)
Z(t)

− η2e−b1τ1 A(t− τ1)C(t− τ1)− η1e−b2τ2 A(t− τ2)N(t− τ2)

≤2ϑ− ϕ

[
e−b1τ1 A(t− τ1) + e−b2τ2 A(t− τ2) +

1
σ1

N(t) +
1
σ2

C(t) +
1

σ1σ3
V(t)

+
1

σ2σ4(1− ρ1)
W(t) +

1
σ1σ3σ5(1− ρ2)

Z(t)
]

=2ϑ− ϕΩ(t),
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where ϕ = min{κ, Θ1, Θ2, Θ3, Θ4, Θ5} = κ. This implies that limt→∞ sup Ω(t) ≤ 2π0.
Since A(t), N(t), C(t), V(t), W(t), and Z(t) are nonnegative, we have

lim
t→∞

sup N(t) ≤ π1, lim
t→∞

sup C(t) ≤ π2, lim
t→∞

sup V(t) ≤ π3, lim
t→∞

sup W(t) ≤ π4, lim
t→∞

sup Z(t) ≤ π5,

where π1 = 2σ1π0, π2 = 2σ2π0, π3 = 2σ1σ3π0, π4 = 2σ2σ4(1 − ρ1)π0, and π5 =
2σ1σ3σ5(1− ρ2)π0. Hence, the theorem is proved.

3.2. Steady States

In this subsection, we compute all the biologically acceptable steady states of model (1)
and determine their existence conditions.

We define the following parameters:

RN =
e−b1τ1 ϑσ1η1

κΘ1
, RC =

e−b2τ2 ϑσ2η2
κΘ2

, RNV = 1 +
η1Θ3
κσ3η3

, RCW = 1 +
η2Θ4

κσ4η4(1− ρ1)
,

R̃ = 1 +
η3Θ5

Θ1σ5η5(1− ρ2)
, ψ1 = η1Θ3 + κσ3η3, ψ2 = η2Θ4 + κσ4η4(1− ρ1),

ψ3 = η3Θ5 + Θ1σ5η5(1− ρ2).

The meaning of the threshold numbers and the usage of the above parameters are
given in the next theorem.

Theorem 2. Model (1) has ten steady states as follows:

1. The trivial steady state E0 = (A0, 0, 0, 0, 0, 0) always exists;
2. The healthy-cell steady state E1 = (A1, N1, 0, 0, 0, 0) exists ifRN > 1;
3. The cancer-cell steady state E2 = (A2, 0, C2, 0, 0, 0) exists ifRC > 1;
4. The infection cancer-immune-free steady state E3 = (A3, N3, 0, V3, 0, 0) exists ifRN > RNV ;
5. The cancer-CTL steady state E4 = (A4, 0, C4, 0, W4, 0) exists ifRC > RCW ;
6. The virus-free steady state E5 = (A5, N5, C5, 0, W5, 0) exists ifRC > RN > RCW ;
7. The immune-free steady state E6 = (A6, N6, C6, V6, 0, 0) exists ifRN > RC > RNV ;
8. The cancer-free steady state E7 = (A7, N7, 0, V7, 0, Z7) exists ifRN > R̃ and

RN > RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
;

9. The antibody-free steady state E8 = (A8, N8, C8, V8, W8, 0) exists ifRN > RCW +
η1Θ3

κσ3η3

andRC > RNV +
η2Θ4

κσ4η4(1− ρ1)
;

10. The coexistence steady state E9 = (A9, N9, C9, V9, W9, Z9) exists if R̃ >
RN
RC

, RN > R̃+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
andRN > RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

Proof. Any steady state E = (A, N, C, V, W, Z) of system (1) fulfills the following
algebraic system: 

ϑ− κA− η1 AN − η2 AC = 0,

σ1η1e−b1τ1 AN − η3NV −Θ1N = 0,

σ2η2e−b2τ2 AC− η4CW −Θ2C = 0,

σ3η3NV − η5VZ−Θ3V = 0,

σ4η4(1− ρ1)CW −Θ4W = 0,

σ5η5(1− ρ2)VZ−Θ5Z = 0.

(3)
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By solving system (3), we obtain the following steady states:

1. The trivial steady state is given by E0 = (A0, 0, 0, 0, 0, 0), where A0 =
ϑ

κ
> 0. Thus,

E0 always exists.
2. The healthy-cell steady state comes in the form E1 = (A1, N1, 0, 0, 0, 0), where

A1 =
eb1τ1 Θ1

σ1η1
, N1 =

κ

η1

(
RN − 1

)
.

As A1 > 0, the steady state E1 exists whenRN > 1. Here,RN is a threshold number
required for the persistence of healthy epithelial cells with nutrient.

3. The cancer-cell steady state is given by E2 = (A2, 0, C2, 0, 0, 0), where

A2 =
eb2τ2 Θ2

σ2η2
, C2 =

κ

η2

(
RC − 1

)
.

As A2 > 0, the steady state E2 is defined when C2 > 0, which corresponds to the
conditionRC > 1. Therefore,RC is a threshold number required for the persistence
of cancer cells with nutrient.

4. The infection steady state is given by E3 = (A3, N3, 0, V3, 0, 0), where

A3 =
ϑσ3η3

ψ1
, N3 =

Θ3

σ3η3
, V3 =

κΘ1σ3RNV
ψ1

(
RN
RNV

− 1
)

.

We note that A3 > 0, N3 > 0, and V3 > 0 if RN > RNV . Thus, the steady state

E3 exists if RN > RNV . Here,
RN
RNV

is a threshold number, which determines the

establishment of SARS-CoV-2 infection in cancer-free patient.
5. The cancer-CTL steady state has the form E4 = (A4, 0, C4, 0, W4, 0), where

A4 =
ϑσ4η4(1− ρ1)

ψ2
, C4 =

Θ4

σ4η4(1− ρ1)
, W4 =

κΘ2σ4(1− ρ1)RCW
ψ2

(
RC
RCW

− 1
)

.

We see that A4 > 0, C4 > 0, and W4 > 0 ifRC > RCW . Hence, E4 exists ifRC > RCW .

Here,
RC
RCW

is a threshold number that determines the activation of cancer-specific

CTL immune response when the healthy cells are extinct.
6. The virus-free steady state is given by E5 = (A5, N5, C5, 0, W5, 0), where

A5 = A1, N5 =
e−b1τ1 ϑσ1η1σ4η4(1− ρ1)− κΘ1σ4η4(1− ρ1)−Θ1η2Θ4

Θ1η1σ4η4(1− ρ1)
,

C5 = C4, W5 =
Θ2

η4

(
RC
RN
− 1
)

.

It is clear that A5 > 0, C5 > 0, and W5 > 0 ifRC > RN . On the other hand, we have

N5 > 0⇐⇒e−b1τ1 ϑσ1η1σ4η4(1− ρ1) > κΘ1σ4η4(1− ρ1) + Θ1η2Θ4

⇐⇒e−b1τ1 ϑσ1η1

κΘ1
> 1 +

η2Θ4

κσ4η4(1− ρ1)

⇐⇒RN > RCW .

Accordingly, E5 exists ifRC > RN > RCW .
7. The immune-free steady state has the form E6 = (A6, N6, C6, V6, 0, 0), where

A6 =
eb2τ2 Θ2

σ2η2
, N6 =

Θ3

σ3η3
, C6 =

κ

η2

(
RC −RNV

)
, V6 =

Θ1

η3

(
RN
RC
− 1
)

.
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Thus, the steady state E6 exists ifRN > RC > RNV .
8. The cancer-free steady state is given by E7 = (A7, N7, 0, V7, 0, Z7), where

A7 =
eb1τ1 ψ3

σ1η1σ5η5(1− ρ2)
, N7 =

κΘ1σ5η5(1− ρ2)

η1ψ3

(
RN − R̃

)
,

V7 =
Θ5

σ5η5(1− ρ2)
, Z7 =

κΘ1σ3η3σ5(1− ρ2)

η1ψ3

[
RN −RNV −

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)

]
.

We note that A7 > 0, N7 > 0 if RN > R̃, V7 > 0, and Z7 > 0 if RN > RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
. Thus, E7 exists ifRN > R̃ andRN > RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
.

9. The antibody-free steady state is given by E8 = (A8, N8, C8, V8, W8, 0), where

A8 =
ϑσ3η3σ4η4(1− ρ1)

η2σ3η3Θ4 + ψ1σ4η4(1− ρ1)
, N8 = N3, C8 = C4,

V8 =
e−b1τ1 ϑσ1η1σ3η3σ4η4(1− ρ1)− η1Θ1Θ3σ4η4(1− ρ1)− κΘ1σ3η3σ4η4(1− ρ1)−Θ1η2σ3η3Θ4

η3[η2σ3η3Θ4 + ψ1σ4η4(1− ρ1)]
,

W8 =
e−b2τ2 ϑσ2η2σ3η3σ4η4(1− ρ1)− η1Θ2Θ3σ4η4(1− ρ1)− κΘ2σ3η3σ4η4(1− ρ1)−Θ2η2σ3η3Θ4

η4[η2σ3η3Θ4 + ψ1σ4η4(1− ρ1)]
.

It is clear that A8 > 0, N8 > 0, and C8 > 0. On the other hand, we have

V8 > 0⇐⇒e−b1τ1 ϑσ1η1σ3η3σ4η4(1− ρ1) > η1Θ1Θ3σ4η4(1− ρ1) + κΘ1σ3η3σ4η4(1− ρ1) + Θ1η2σ3η3Θ4

⇐⇒ e−b1τ1 ϑσ1η1

κΘ1
> 1 +

η2Θ4

κσ4η4(1− ρ1)
+

η1Θ3

κσ3η3

⇐⇒RN > RCW +
η1Θ3

κσ3η3
,

and

W8 > 0⇐⇒e−b2τ2 ϑσ2η2σ3η3σ4η4(1− ρ1) > η1Θ2Θ3σ4η4(1− ρ1) + κΘ2σ3η3σ4η4(1− ρ1) + Θ2η2σ3η3Θ4

⇐⇒ e−b2τ2 ϑσ2η2

κΘ2
> 1 +

η1Θ3

κσ3η3
+

η2Θ4

κσ4η4(1− ρ1)

⇐⇒RC > RNV +
η2Θ4

κσ4η4(1− ρ1)
.

Accordingly, E8 exists ifRN > RCW +
η1Θ3

κσ3η3
andRC > RNV +

η2Θ4

κσ4η4(1− ρ1)
.

10. The coexistence steady state has the form E9 = (A9, N9, C9, V9, W9, Z9), where

A9 =
eb1τ1 ψ3

σ1η1σ5η5(1− ρ2)
,

N9 =
e−b1τ1 ϑσ1η1σ4η4σ5η5(1− ρ1)(1− ρ2)− κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)− κη3σ4η4Θ5(1− ρ1)

η1ψ3σ4η4(1− ρ1)

− Θ1η2Θ4σ5η5(1− ρ2) + η2η3Θ4Θ5

η1ψ3σ4η4(1− ρ1)
,

C9 =C4, V9 = V7, W9 =
eb1τ1−b2τ2 Θ1σ2η2

σ1η1η4

(
R̃ − RN

RC

)
,

Z9 =
e−b1τ1 ϑσ1η1σ3η3σ4η4σ5η5(1− ρ1)(1− ρ2)− κΘ1σ3η3σ4η4σ5η5(1− ρ1)(1− ρ2)

η1ψ3σ4η4η5(1− ρ1)

−
η1Θ1Θ3σ4η4σ5η5(1− ρ1)(1− ρ2) + η2σ3η2

3 Θ4Θ5 + Θ1η2σ3η3Θ4σ5η5(1− ρ2) + ψ1η3σ4η4Θ5(1− ρ1)

η1ψ3σ4η4η5(1− ρ1)
.
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It is easy to note that A9 > 0, C9 > 0, V9 > 0, and W9 > 0 if R̃ >
RN
RC

. We have

N9 > 0⇐⇒e−b1τ1 ϑσ1η1σ4η4σ5η5(1− ρ1)(1− ρ2) > κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2) + κη3σ4η4Θ5(1− ρ1)

+ Θ1η2Θ4σ5η5(1− ρ2) + η2η3Θ4Θ5

⇐⇒RN > R̃+
η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

Similarly,

Z9 > 0⇐⇒ RN > RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

Hence,E9 exists if R̃ >
RN
RC

,RN > R̃+
η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
and

RN >RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

4. Global Stability

This section is devoted to show the global stability of the steady states of model (1)
by choosing appropriate Lyapunov functions. Hereafter, the following shortcuts will
be applied: (

A(t), N(t), C(t), V(t), W(t), Z(t)
)
≡ (A, N, C, V, W, Z),

A(t− τi) ≡ Aτi , N(t− τ1) ≡ Nτ1 , C(t− τ2) ≡ Cτ2 , where i = 1, 2.

Define a function G : (0,+∞) → [0,+∞) by G(ς) = ς − 1 − ln ς, where G(ς) = 0
⇐⇒ ς = 1.

Theorem 3. The steady state E0 is globally asymptotically stable whenRN ≤ 1 andRC ≤ 1.

Proof. Choose a Lyapunov function P0 as

P0 =A0

(
A
A0
− 1− ln

A
A0

)
+

eb1τ1

σ1
N +

eb2τ2

σ2
C +

eb1τ1

σ1σ3
V +

eb2τ2

σ2σ4(1− ρ1)
W +

eb1τ1

σ1σ3σ5(1− ρ2)
Z

+ η1

∫ t

t−τ1

A(s)N(s)ds + η2

∫ t

t−τ2

A(s)C(s)ds.

Then, we obtain

dP0
dt

=

(
1− A0

A

)[
ϑ− κA− η1 AN − η2 AC

]
+

eb1τ1

σ1

[
σ1η1e−b1τ1 Aτ1 Nτ1 − η3NV −Θ1N

]
+

eb2τ2

σ2

[
σ2η2e−b2τ2 Aτ2 Cτ2 − η4CW −Θ2C

]
+

eb1τ1

σ1σ3

[
σ3η3NV − η5VZ−Θ3V

]
+

eb2τ2

σ2σ4(1− ρ1)

[
σ4η4(1− ρ1)CW −Θ4W

]
+

eb1τ1

σ1σ3σ5(1− ρ2)

[
σ5η5(1− ρ2)VZ−Θ5Z

]
+ η1

[
AN − Aτ1 Nτ1

]
+ η2

[
AC− Aτ2 Cτ2

]
=− κ(A− A0)

2

A
+

eb1τ1 Θ1
σ1

(
e−b1τ1 ϑσ1η1

κΘ1
− 1

)
N +

eb2τ2 Θ2
σ2

(
e−b2τ2 ϑσ2η2

κΘ2
− 1

)
C− eb1τ1 Θ3

σ1σ3
V

− eb2τ2 Θ4
σ2σ4(1− ρ1)

W − eb1τ1 Θ5
σ1σ3σ5(1− ρ2)

Z

=− κ(A− A0)
2

A
+

eb1τ1 Θ1
σ1

(
RN − 1

)
N +

eb2τ2 Θ2
σ2

(
RC − 1

)
C− eb1τ1 Θ3

σ1σ3
V
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− eb2τ2 Θ4
σ2σ4(1− ρ1)

W − eb1τ1 Θ5
σ1σ3σ5(1− ρ2)

Z.

We note that
dP0

dt
≤ 0 for all A, N, C, V, W, Z > 0 if RN ≤ 1 and RC ≤ 1.

dP0

dt
= 0

if A = A0 and N = C = V = W = Z = 0. Hence, the singleton {E0} is the largest

invariant subset of
{
(A, N, C, V, W, Z) | dP0

dt
= 0

}
. Depending on LaSalle’s invariance

principle [42], E0 is globally asymptotically stable (GAS) ifRN ≤ 1 andRC ≤ 1.

Theorem 4. Suppose that RN > 1 and RC ≤ RN ≤ RNV . Then, the healthy-cell steady state
E1 is GAS.

Proof. Choose a Lyapunov function P1 as

P1 =A1

(
A
A1
− 1− ln

A
A1

)
+

eb1τ1

σ1
N1

(
N
N1
− 1− ln

N
N1

)
+

eb2τ2

σ2
C +

eb1τ1

σ1σ3
V

+
eb2τ2

σ2σ4(1− ρ1)
W +

eb1τ1

σ1σ3σ5(1− ρ2)
Z + η2

∫ t

t−τ2

A(s)C(s)ds

+ η1 A1N1

∫ t

t−τ1

(
A(s)N(s)

A1N1
− 1− ln

A(s)N(s)
A1N1

)
ds.

Then, we obtain

dP1

dt
=

(
1− A1

A

)[
ϑ− κA− η1 AN − η2 AC

]
+

eb1τ1

σ1

(
1− N1

N

)[
σ1η1e−b1τ1 Aτ1 Nτ1 − η3 NV −Θ1 N

]
+

eb2τ2

σ2

[
σ2η2e−b2τ2 Aτ2 Cτ2 − η4CW −Θ2C

]
+

eb1τ1

σ1σ3

[
σ3η3 NV − η5VZ−Θ3V

]
+

eb2τ2

σ2σ4(1− ρ1)

[
σ4η4(1− ρ1)CW −Θ4W

]
+

eb1τ1

σ1σ3σ5(1− ρ2)

[
σ5η5(1− ρ2)VZ−Θ5Z

]
+ η2

[
AC− Aτ2 Cτ2

]
+ η1 A1 N1

[
AN

A1 N1
−

Aτ1 Nτ1

A1 N1
+ ln

Aτ1 Nτ1

AN

]
.

(4)

By using the steady state conditions at E1
ϑ = κA1 + η1 A1N1,

η1 A1N1 =
eb1τ1 Θ1

σ1
N1,

and using the following relation:

ln
Aτ1 Nτ1

AN
= ln

Aτ1 Nτ1

A1N
+ ln

A1

A
,
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the derivative of P1 in (4) is converted to

dP1

dt
=

(
1− A1

A

)
(κA1 − κA)− η1 A1 N1

(
A1

A
− 1− ln

A1

A

)
− η1 A1 N1

(
Aτ1 Nτ1

A1 N
− 1− ln

Aτ1 Nτ1

A1 N

)
+

eb2τ2 Θ2

σ2

(
e−b2τ2 σ2η2Θ1

e−b1τ1 σ1η1Θ2
− 1

)
C +

eb1τ1 κη3

σ1η1

(
η1

κ
N1 −

η1Θ3

κσ3η3

)
V − eb2τ2 Θ4

σ2σ4(1− ρ1)
W − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z

=− κ(A− A1)
2

A
− η1 A1 N1

(
A1

A
− 1− ln

A1

A

)
− η1 A1 N1

(
Aτ1 Nτ1

A1 N
− 1− ln

Aτ1 Nτ1

A1 N

)
+

eb2τ2 Θ2

σ2

(
RC

RN
− 1
)

C +
eb1τ1 κη3

σ1η1

(
RN −RNV

)
V − eb2τ2 Θ4

σ2σ4(1− ρ1)
W − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z

=− κ(A− A1)
2

A
− η1 A1 N1

[
G
(

A1

A

)
+ G

(
Aτ1 Nτ1

A1 N

)]
+

eb2τ2 Θ2

σ2

(
RC

RN
− 1
)

C +
eb1τ1 κη3

σ1η1

(
RN −RNV

)
V

− eb2τ2 Θ4

σ2σ4(1− ρ1)
W − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z.

Thus,
dP1

dt
≤ 0 if RC ≤ RN and RN ≤ RNV . In addition,

dP1

dt
= 0 when A = A1,

N = N1 and C = V = W = Z = 0. Let Γ′1 be the largest invariant subset of Γ1 ={
(A, N, C, V, W, Z) | dP1

dt
= 0

}
. It follows that Γ′1 = {E1}. In accordance with LaSalle’s

invariance principle [42], the steady state E1 is GAS ifRN > 1 andRC ≤ RN ≤ RNV .

Theorem 5. Suppose thatRC > 1 andRN ≤ RC ≤ RCW . Then, the cancer-cell steady state E2
is GAS.

Proof. See Appendix A.

Theorem 6. Assume thatRNV < RN ≤ RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
andRC ≤ RNV . Then,

the infection steady state E3 is GAS.

Proof. See Appendix B.

Theorem 7. Suppose thatRN ≤ RCW < RC. Then, the cancer-CTL steady state E4 is GAS.

Proof. See Appendix C.

Theorem 8. Assume that RC > RN and RCW < RN ≤ RCW +
η1Θ3

κσ3η3
. Then, the virus-free

steady state E5 is GAS.

Proof. See Appendix D.

Theorem 9. Assume that 1 <
RN
RC
≤ R̃ andRNV < RC ≤ RNV +

η2Θ4

κσ4η4(1− ρ1)
. Then, the

immune-free steady state E6 is GAS.

Proof. See Appendix E.

Theorem 10. Suppose thatRN > R̃ andRN > RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
. Then, the cancer-

free steady state E7 is GAS if R̃ ≤ RN
RC

.

Proof. See Appendix F.
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Theorem 11. Suppose thatRN > RCW +
η1Θ3

κσ3η3
andRC > RNV +

η2Θ4

κσ4η4(1− ρ1)
. Then, the

antibody-free steady state E8 is GAS if RN ≤ RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

Proof. See Appendix G.

Theorem 12. Assume that R̃ >
RN
RC

,RN > R̃+
η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)

and RN > RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

Then, the coexistence steady state E9 is GAS.

Proof. See Appendix H.

5. Numerical Simulations

In this section, we present some numerical simulations to visualize the theoreti-
cal results obtained in Theorems 1–12. We use the MATLAB solver dde23 to solve
system (1). We show the effect of time delays and lymphopenia on the dynamics of
model (1). To achieve this goal, we choose the initial conditions as follows:{

A(ξ) = 0.5, N(ξ) = 0.1, C(ξ) = 0.05,

V(ξ) = 0.02, W(ξ) = 0.004, Z(ξ) = 0.002, ξ ∈ [−τ, 0],

where τ = max{τ1, τ2}. According to the results of Theorems 3–12, the stability of steady
states is guaranteed for any other choice of initial conditions. We vary the values of η1, η2,
η4, η5, κ1, κ2, κ3, κ4, and κ5 while fixing the values of all other parameters. The values of
the fixed parameters are given in Table 1. As a result, we obtain ten cases corresponding to
the global stability of the ten steady states as follows:

1. We take η1 = 0.03, η2 = 0.03, η4 = 0.03, η5 = 0.3, κ1 = 0.1, κ2 = 0.08, κ3 = 0.5,
κ4 = 0.9, and κ5 = 0.07. The corresponding threshold parameters areRN = 0.181 < 1
and RC = 0.2172 < 1. In this case, the steady state E0 = (1, 0, 0, 0, 0, 0) is GAS
(Figure 1a). This result comes in full agreement with the result of Theorem 3. The
populations of healthy cells, cancer cells, SARS-CoV-2 particles, CTLs, and antibodies
tend to zero at this point. Hence, there will be no competition between healthy and
cancer cells, and its effect cannot be measured here.

2. We consider η1 = 0.1, η2 = 0.03, η4 = 0.03, η5 = 0.3, κ1 = 0.02, κ2 = 0.08, κ3 = 0.5,
κ4 = 0.9, and κ5 = 0.07. These selected values give RN = 1.8097 > 1 and RC =
0.2172 < RN < RNV = 20.697. In agreement with Theorem 4, the steady state
E1 = (0.5526, 0.1619, 0, 0, 0, 0) is GAS (Figure 1b). In this case, the cancer cells and
SARS-CoV-2 particles are eliminated from the body. This situation would be reached
with effective treatments that can target both cancer cells and virus particles. Finding
effective ways to target cancer and COVID-19 is still under investigation [12].

3. We choose η1 = 0.03, η2 = 0.1, η4 = 0.03, η5 = 0.3, κ1 = 0.1, κ2 = 0.01, κ3 = 0.5,
κ4 = 0.9, and κ5 = 0.07. This choice of parameters gives RC = 2.4129 > 1 and
RN = 0.181 < RC < RCW = 1.534 × 103. Accordingly, the steady state E2 =
(0.4144, 0, 0.2826, 0, 0, 0) is GAS as exhibited in Figure 1c and assisted by Theorem 5.
Here, the concentration of healthy epithelial cells tends to zero. This situation might
be reached after a strong competition with cancer cells. Thus, there are no healthy
cells exposed to SARS-CoV-2 infection.
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4. We select η1 = 0.3, η2 = 0.03, η4 = 0.03, η5 = 0.3, κ1 = 0.02, κ2 = 0.08, κ3 = 0.01,
κ4 = 0.9, and κ5 = 0.07. This set of parameters givesRNV = 4.4091 < RN = 5.429 <

RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
= 95.3466 andRC = 0.2172 < RNV . This implies that the

steady state E3 = (0.2268, 0.2273, 0, 0.0168, 0, 0) is GAS, which agrees with Theorem 6
(Figure 1d). At this point, the cancer cell population becomes extinct, while the
concentration of epithelial cells reduces due to SARS-CoV-2 infection with no active
immune response. The extinction of cancer cells in SARS-CoV-2/cancer patient is not
likely to occur, however. It is more likely that the condition of a cancer patient will
worsen after contracting the infection [2].

5. We take η1 = 0.03, η2 = 0.1, η4 = 0.9, η5 = 0.3, κ1 = 0.1, κ2 = 0.0005, κ3 = 0.5,
κ4 = 0.0005, and κ5 = 0.07. Then, we obtain RN = 0.181 < RCW = 2.1389 < RC =
3.5311. In this situation, the steady state E4 = (0.4675, 0, 0.2278, 0, 0.0148, 0) is GAS as
shown in Figure 2a. This result is in harmony with the result of Theorem 7. With the
extinction of healthy epithelial cells, cancer cells are eliminated by CTLs.

6. We take η1 = 0.1, η2 = 0.1, η4 = 0.9, η5 = 0.3, κ1 = 0.01, κ2 = 0.0005, κ3 = 0.5,
κ4 = 0.0005, and κ5 = 0.07. This gives RC = 3.5311 > RN = 2.4129 and RCW =

2.1389 < RN < RCW +
η1Θ3

κσ3η3
= 21.8359. These conditions ensure the global stability

of the steady state E5 = (0.4144, 0.0548, 0.2278, 0, 0.0106, 0) as shown in Figure 2b
and supported by Theorem 8. This represents an ideal situation where the virus is
completely eliminated from the body of the cancer patient. Thus, the parameters used
to reach this situation can be of special benefit.

7. We take η1 = 0.3, η2 = 0.2, η4 = 0.03, η5 = 0.3, κ1 = 0.02, κ2 = 0.02, κ3 = 0.0005,

κ4 = 0.9, and κ5 = 0.07. These selected values give 1 <
RN
RC

= 1.5 < R̃ = 21.625

andRNV = 3.3295 < RC = 3.6193 < RNV +
η2Θ4

κσ4η4(1− ρ1)
= 3.07× 103. This corre-

sponds to the global stability of the steady state E6 = (0.2763, 0.1553, 0.029, 0.0364, 0, 0)
as shown in Figure 2c, which supports the result obtained in Theorem 9. Here, the
SARS-CoV-2/cancer patient is expected to suffer from severe infection as the immune
responses are not activated at this point.

8. We have η1 = 0.9, η2 = 0.03, η4 = 0.03, η5 = 1.7, κ1 = 0.001, κ2 = 0.08, κ3 = 0.01,
κ4 = 0.9, and κ5 = 0.0001. This gives RN = 31.023 > R̃ = 2.5483, RN > RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
= 28.6107, and R̃ <

RN
RC

= 142.8571. In this situation, the steady

state E7 = (0.0822, 0.2483, 0, 0.0591, 0, 0.0016) is GAS as exhibited in Figure 2d and
assisted by Theorem 10. The concentration of cancer cells tends to zero and the patient
suffers from only SARS-CoV-2 infection. In addition, the antibody immune response
is activated to attack the virus particles.

9. We take η1 = 0.2, η2 = 0.3, η4 = 1.5, η5 = 0.3, κ1 = 0.01, κ2 = 0.008, κ3 =
0.0005, κ4 = 0.0001, and κ5 = 0.07. These values give RN = 4.8258 > RCW +
η1Θ3

κσ3η3
= 4.563, RC = 7.7557 > RNV +

η2Θ4

κσ4η4(1− ρ1)
= 4.563, and RN < RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
= 28.5. In agree-

ment with the result of Theorem 11, the steady state E8 = (0.2191, 0.1556, 0.1339, 0.0031,
0.013, 0) is GAS (Figure 3a). Hence, the antibody immune response is not active,
which may allow SARS-CoV-2 particles to replicate without control in SARS-CoV-2/
cancer patients.
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10. We choose η1 = 0.9, η2 = 0.5, η4 = 1.7, η5 = 1.7, κ1 = 0.0001, κ2 = 0.0003,
κ3 = 0.0003, κ4 = 0.0001, and κ5 = 0.0001. For this combination of parameters,

we obtain R̃ = 2.6171 >
RN
RC

= 1.8179, RN = 32.4121 > R̃ +
η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
= 10.3551 and RN > RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
= 28.4704. This implies that the steady

state E9 = (0.0809, 0.1873, 0.118, 0.0592, 0.0053, 0.0026) is GAS (Figure 3b), which sup-
ports the result of Theorem 12. The CTL immune response and antibody immune
response are activated to target cancer cells and SARS-CoV-2 particles, respectively.
However, the removal of cancer cells or virus particles depends on the effectiveness
of these immune responses.

Table 1. The parameter values of model (1).

Parameter Description Value Reference

ϑ Recruitment rate of nutrients 0.02 [23]
η1 Consumption rate constant of nutrients by healthy epithelial cells Varied –
η2 Consumption rate constant of nutrients by cancer cells Varied –
η3 Infection rate constant of epithelial cells by virus 0.55 [38]
η4 Killing rate constant of cancer cells by CTLs Varied –
η5 Neutralization rate constant of viruses by antibodies Varied –
σ1 Growth rate constant of epithelial cells 0.8 [23]
σ2 Growth rate constant of cancer cells 0.8 [23]
σ3 Production rate constant of virus 0.24 [38]
σ4 Stimulation rate constant of CTLs 0.1 [43]
σ5 Stimulation rate constant of antibodies 0.2 [43]
κ Decay rate constant of nutrients 0.02 [23]
κ1 Death rate constant of epithelial cells Varied –
κ2 Death rate constant of cancer cells Varied –
κ3 Death rate constant of SASR-CoV-2 Varied –
κ4 Decay rate constant of CTLs Varied –
κ5 Decay rate constant of antibodies Varied –
b1 Death rate constant of healthy cells during the delay period 1 [40]
b2 Death rate constant of cancer cells during the delay period 1 [40]
τ1 Delay in the benefit from nutrients by healthy cells Varied –
τ2 Delay in the benefit from nutrients by cancer cells Varied –
ρ1 Impact of lymphopenia on CTL immunity 0 ≤ ρ1 < 1 –
ρ2 Impact of lymphopenia on antibody immunity 0 ≤ ρ2 < 1 –

5.1. The Impact of Time Delays on Healthy and Cancer Cells

Increasing or decreasing time delays can have a strong impact on the concentrations
of healthy and cancer cells and on the dynamics of model (1). For example, if we take
the same values of the parameters considered in case (6) and increase only the value of
τ1 from 0.1 to 0.3, we find that E4 = (0.4675, 0, 0.2278, 0, 0.0148, 0) is GAS. This means
that increasing τ1 causes a bifurcation in the system, where E5 loses its stability and E4
becomes stable. Figure 4a shows how increasing τ1 causes a reduction in the concentration
of healthy epithelial cells.

Alternatively, if we consider the same parameter values considered in case (7) and take
τ2 = 0.3 instead of τ2 = 0.1, we find that the steady state E3 = (0.3003, 0.1553, 0, 0.0459, 0, 0)
is GAS. Hence, increasing τ2 changes the stability of the steady states E6 and E3. Figure 4b
shows the impact of increasing the value of τ2 on decreasing the concentration of cancer cells.
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Similarly, decreasing the values of τ1 and τ2 will increase the concentrations of healthy
cells and cancer cells, respectively. Increasing or decreasing the concentrations of these
cells could be related to the severity of SARS-CoV-2 infection.

5.2. The Impact of Lymphopenia on Cancer Cells and SARS-CoV-2 Particles

To see the impact of dysfunction in the CTL immune response during SARS-CoV-2
infection, we take the same values of parameters considered in case (10) and increase only
the value of ρ1. The result is shown in Figure 5a. We see that increasing the value of ρ1
causes a rise in the concentration of cancer cells. Similarly, decreasing the functionality of
the antibody immune response (by increasing the value of ρ2) causes an increase in the
concentration of SARS-CoV-2 particles (Figure 5b). Therefore, lymphopenia can worsen
the state of cancer and allow the virus to replicate faster.
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(c) Case 3
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(d) Case 4

Figure 1. The numerical simulations of system (1) for cases 1–4. The figures show the global stability of (a) the trivial steady
state E0: η1 = 0.03, η2 = 0.03, η4 = 0.03, η5 = 0.3, κ1 = 0.1, κ2 = 0.08, κ3 = 0.5, κ4 = 0.9, κ5 = 0.07, (b) the healthy-cell
steady state E1: η1 = 0.1, η2 = 0.03, η4 = 0.03, η5 = 0.3, κ1 = 0.02, κ2 = 0.08, κ3 = 0.5, κ4 = 0.9, κ5 = 0.07, (c) the cancer-cell
steady state E2: η1 = 0.03, η2 = 0.1, η4 = 0.03, η5 = 0.3, κ1 = 0.1, κ2 = 0.01, κ3 = 0.5, κ4 = 0.9, κ5 = 0.07, and (d) the
infection steady state E3: η1 = 0.3, η2 = 0.03, η4 = 0.03, η5 = 0.3, κ1 = 0.02, κ2 = 0.08, κ3 = 0.01, κ4 = 0.9, κ5 = 0.07.
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(c) Case 7
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(d) Case 8

Figure 2. The numerical simulations of system (1) for cases 5–8. The figures exhibit the stability of (a) the cancer-CTL steady
state E4: η1 = 0.03, η2 = 0.1, η4 = 0.9, η5 = 0.3, κ1 = 0.1, κ2 = 0.0005, κ3 = 0.5, κ4 = 0.0005, κ5 = 0.07, (b) the virus-free
steady state E5: η1 = 0.1, η2 = 0.1, η4 = 0.9, η5 = 0.3, κ1 = 0.01, κ2 = 0.0005, κ3 = 0.5, κ4 = 0.0005, κ5 = 0.07, (c) the
immune-free steady state E6: η1 = 0.3, η2 = 0.2, η4 = 0.03, η5 = 0.3, κ1 = 0.02, κ2 = 0.02, κ3 = 0.0005, κ4 = 0.9, κ5 = 0.07,
and (d) the cancer-free steady state E7: η1 = 0.9, η2 = 0.03, η4 = 0.03, η5 = 1.7, κ1 = 0.001, κ2 = 0.08, κ3 = 0.01, κ4 = 0.9,
κ5 = 0.0001.
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(a) Case 9
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(b) Case 10

Figure 3. The numerical simulations of system (1) for cases 9 and 10. The figures exhibit the stability of (a) the antibody-free
steady state E8: η1 = 0.2, η2 = 0.3, η4 = 1.5, η5 = 0.3, κ1 = 0.01, κ2 = 0.008, κ3 = 0.0005, κ4 = 0.0001, κ5 = 0.07, and (b)
the coexistence steady state E9: η1 = 0.9, η2 = 0.5, η4 = 1.7, η5 = 1.7, κ1 = 0.0001, κ2 = 0.0003, κ3 = 0.0003, κ4 = 0.0001,
κ5 = 0.0001.
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Figure 4. The effect of increasing time delays τ1 and τ2 on the concentration of (a) healthy epithelial cells N(t) and (b)
cancer cells C(t). The parameters are taken as (a) η1 = 0.1, η2 = 0.1, η4 = 0.9, η5 = 0.3, κ1 = 0.01, κ2 = 0.0005, κ3 = 0.5,
κ4 = 0.0005, κ5 = 0.07, and (b) η1 = 0.3, η2 = 0.2, η4 = 0.03, η5 = 0.3, κ1 = 0.02, κ2 = 0.02, κ3 = 0.0005, κ4 = 0.9, κ5 = 0.07.
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Figure 5. The effect of increasing ρ1 and ρ2 on the concentration of (a) cancer cells C(t) and (b) SARS-CoV-2 particles V(t).
The parameters are taken as η1 = 0.9, η2 = 0.5, η4 = 1.7, η5 = 1.7, κ1 = 0.0001, κ2 = 0.0003, κ3 = 0.0003, κ4 = 0.0001, and
κ5 = 0.0001.

6. Discussion

Although many vaccines have been authorized or are under development [4], COVID-
19 is still spreading and causing daily deaths. Mathematical modelling is an efficient tool
that can contribute to both understanding the disease and finding better ways to defeat
it [27]. Cancer patients are at greater risk for hospitalization and death due to SARS-CoV-2
infection compared to other patients who do not have cancer [2].

In this paper, we developed a within-host SARS-CoV-2 cancer model. This model
consists of a system of delay differential equations and depicts the interactions between
nutrients, healthy epithelial cells, cancer cells, SARS-CoV-2 virus particles, cancer-specific
CTLs, and virus-specific antibodies. The model has ten steady states that have only positive
components and are stable under the following conditions:

1. The trivial steady state E0 is GAS ifRN ≤ 1 andRC ≤ 1.
2. The healthy-cell steady state E1 is defined and GAS ifRN > 1 andRC ≤ RN ≤ RNV .

This point represents the case when both cancer cells and viral particles are eliminated
from the body.

3. The cancer-cell steady state E2 is GAS if RC > 1 and RN ≤ RC ≤ RCW . Here, all
compartments tend to zero except for cancer cells and nutrients.

4. The infection cancer-immune-free steady state E3 is GAS if RNV < RN ≤ RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
andRC ≤ RNV . SARS-CoV-2 infection is established while cancer

cells and immune responses are not present.
5. The cancer-CTL steady state E4 is GAS ifRN ≤ RCW < RC. Here, the CTL immune

response is activated to kill cancer cells in the absence of healthy cells.

6. The virus-free steady state E5 is GAS ifRC > RN andRCW < RN ≤ RCW +
η1Θ3

κσ3η3
.

This point corresponds to the case when SARS-CoV-2 is eliminated from SARS-CoV-
2/cancer patient.

7. The immune-free steady state E6 is GAS if 1 <
RN
RC

≤ R̃ and RNV < RC ≤

RNV +
η2Θ4

κσ4η4(1− ρ1)
. The cancer patient here fights SARS-CoV-2 infection with

inactive immune responses.
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8. The cancer-free steady state E7 is GAS ifRN > R̃,RN > RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
,

and R̃ ≤ RN
RC

. At this point, antibody immunity is activated to eliminate the virus,

while cancer cells are removed.
9. The antibody-free steady state E8 is GAS if RN > RCW +

η1Θ3

κσ3η3
, RC > RNV +

η2Θ4

κσ4η4(1− ρ1)
, and RN ≤ RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
. Here, the concentration of antibodies tends to zero,

while all other compartments have positive values.

10. The coexistence steady state E9 is GAS if R̃ >
RN
RC

, RN > R̃ +
η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
, andRN > RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)

+
η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

We found that the time delays affected the growth rates of healthy epithelial cells
and cancer cells and could cause a bifurcation in the system. Increasing the time delay
τ2, which represents the delay in the utilization of nutrients by cancer cells, decreases the
concentration of cancer cells. This can have a positive effect by preventing the situation of
SARS-CoV-2 cancer patient from getting worse.

We observed that lymphopenia, which affects the functionality of immune responses,
increased the concentrations of both cancer cells and SARS-CoV-2 particles. This leads to the
presence of high viral loads and the progression of cancer. As a result, the condition of SARS-
CoV-2/cancer patient will worsen and may lead to death. This result agrees with many
studies that correlated lymphopenia with severe infection in cancer patients [2,13,20,44].

The model studied in this paper can be used (i) to estimate the parameters needed
to clear the virus from the body of cancer patient (see case (6) in Section 5); (ii) to test
the effect of time delays on the concentrations of healthy cells and cancer cells during
SARS-CoV-2 infection; (iii) to observe the effect of lymphopenia on the activation rates of
immune responses; accordingly, on the severity of SARS-CoV-2 infection in cancer patients;
and (iv) to check the possibility of eliminating cancer cells and virus particles at the same
time (see case (2) in Section 5)).

The main limitation of this work is that we did not use real data to estimate the values
of the parameters in model (1). We assumed that SARS-CoV-2 does not infect cancer cells.
This is because the data on SARS-CoV-2 infection in cancer patients are very limited, and it
is not yet clear whether and how SARS-CoV-2 affects cancer cells at the cellular level [10].
The model and the theoretical results of this paper can be tested and developed depending
on the availability of real data.

We believe that this work can help to provide a better understanding of SARS-CoV-2
infection in one of the groups that is the most vulnerable to severe infection and death.
A better understanding will facilitate finding more effective ways to treat SARS-CoV-
2/cancer patients. Model (1) can be developed by (i) fitting the model with real data,
(ii) performing a detailed bifurcation analysis, and (iii) applying a multiscale approach
where the within-host dynamics are connected with the between-hosts dynamics.
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Appendix A. Proof of Theorem 5

Proof. Choose a Lyapunov function

P2(A, N, C, V, W, Z) =A2

(
A
A2
− 1− ln

A
A2

)
+

eb1τ1

σ1
N +

eb2τ2

σ2
C2

(
C
C2
− 1− ln

C
C2

)
+

eb1τ1

σ1σ3
V

+
eb2τ2

σ2σ4(1− ρ1)
W +

eb1τ1

σ1σ3σ5(1− ρ2)
Z + η1

∫ t

t−τ1

A(s)N(s)ds

+ η2 A2C2

∫ t

t−τ2

(
A(s)C(s)

A2C2
− 1− ln

A(s)C(s)
A2C2

)
ds.

By using the steady state conditions at E2
ϑ = κA2 + η2 A2C2,

η2 A2C2 =
eb2τ2 Θ2

σ2
C2,

we obtain

dP2

dt
=

(
1− A2

A

)
(κA2 − κA)− η2 A2C2

(
A2

A
− 1− ln

A2

A

)
+

eb1τ1 Θ1

σ1

(
e−b1τ1 σ1η1Θ2

e−b2τ2 σ2η2Θ1
− 1

)
N

+
eb2τ2 κη4

σ2η2

(
η2C2

κ
− Θ4η2

κσ4η4(1− ρ1)

)
W − eb1τ1 Θ3

σ1σ3
V

− eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z− η2 A2C2

(
Aτ2 Cτ2

A2C
− 1− ln

Aτ2 Cτ2

A2C

)
=− κ(A− A2)

2

A
− η2 A2C2

(
A2

A
− 1− ln

A2

A

)
+

eb1τ1 Θ1

σ1

(
RN
RC
− 1
)

N +
eb2τ2 κη4

σ2η2

(
RC −RCW

)
W

− eb1τ1 Θ3

σ1σ3
V − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z− η2 A2C2

(
Aτ2 Cτ2

A2C
− 1− ln

Aτ2 Cτ2

A2C

)
=− κ(A− A2)

2

A
− η2 A2C2

[
G
(

A2

A

)
+ G

(
Aτ2 Cτ2

A2C

)]
+

eb1τ1 Θ1

σ1

(
RN
RC
− 1
)

N

+
eb2τ2 κη4

σ2η2

(
RC −RCW

)
W − eb1τ1 Θ3

σ1σ3
V − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z.

It is clear that
dP2

dt
≤ 0 if RN ≤ RC and RC ≤ RCW . One can show that

dP2

dt
= 0

if A = A2, C = C2, and N = W = V = Z = 0. Thus, the singleton {E2} is the

largest invariant subset of
{
(A, N, C, V, W, Z) | dP2

dt
= 0

}
. Consequently, the global

stability of E2 is confirmed by LaSalle’s invariance principle [42] when RC > 1 and
RN ≤ RC ≤ RCW .
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Appendix B. Proof of Theorem 6

Proof. Select a Lyapunov function P3 as

P3 =A3

(
A
A3
− 1− ln

A
A3

)
+

eb1τ1

σ1
N3

(
N
N3
− 1− ln

N
N3

)
+

eb2τ2

σ2
C +

eb1τ1

σ1σ3
V3

(
V
V3
− 1− ln

V
V3

)
+

eb2τ2

σ2σ4(1− ρ1)
W +

eb1τ1

σ1σ3σ5(1− ρ2)
Z + η2

∫ t

t−τ2

A(s)C(s)ds

+ η1 A3N3

∫ t

t−τ1

(
A(s)N(s)

A3N3
− 1− ln

A(s)N(s)
A3N3

)
ds.

From Equation (3), E3 at the equilibrium state fulfills the conditions

ϑ = κA3 + η1 A3N3,

η1 A3N3 =
eb1τ1 η3

σ1
N3V3 +

eb1τ1 Θ1

σ1
N3,

eb1τ1 η3

σ1
N3V3 =

eb1τ1 Θ3

σ1σ3
V3.

By utilizing the above conditions, the time derivative of P3 can be provided as:

dP3

dt
=
−κ(A− A3)

2

A
+ η2(A3 − A6)C−

eb2τ2 Θ4

σ2σ4(1− ρ1)
W +

eb1τ1 η5

σ1σ3
(V3 −V7)Z

− η1 A3N3

(
A3

A
− 1− ln

A3

A

)
− η1 A3N3

(
Aτ1 Nτ1

A3N
− 1− ln

Aτ1 Nτ1

A3N

)
.

(A1)

By using the value of A3 and A6 computed in the proof of Theorem 2, we obtain

A3 − A6 =
eb2τ2 κΘ2σ3η3

ψ1σ2η2

(
e−b2τ2 ϑσ2η2

κΘ2
− 1− η1Θ3

κσ3η3

)

=
eb2τ2 κΘ2σ3η3

ψ1σ2η2

(
RC −RNV

)
.

Additionally, from the steady states E3 and E7 computed in the proof of Theorem 2,
we obtain

V3 −V7 =
κΘ1σ3

ψ1

(
RN −RNV

)
− Θ5

σ5η5(1− ρ2)

=
κΘ1σ3

ψ1

[
RN −RNV −

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)

]
.

Hence, Equation (A1) can be rewritten as:

dP3
dt

=
−κ(A− A3)

2

A
+

eb2τ2 κΘ2σ3η3
ψ1σ2

(
RC −RNV

)
C− eb2τ2 Θ4

σ2σ4(1− ρ1)
W

+
eb1τ1 κΘ1η5

ψ1σ1

[
RN −RNV −

ψ1Θ5
κΘ1σ3σ5η5(1− ρ2)

]
Z− η1 A3N3

[
G
(

A3
A

)
+ G

(
Aτ1 Nτ1

A3N

)]
.

We see that
dP3

dt
≤ 0 if RC ≤ RNV and RN ≤ RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
. One can

show that
dP3

dt
= 0 if A = A3, N = N3, V = V3, and C = W = Z = 0. Thus, the singleton

{E3} is the largest invariant subset of
{
(A, N, C, V, W, Z) | dP3

dt
= 0

}
. Consequently,

LaSalle’s invariance principle assures the global stability of E3 when RNV < RN ≤
RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
andRC ≤ RNV .
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Appendix C. Proof of Theorem 7

Proof. Take the Lyapunov function

P4(A, N, C, V, W, Z) =A4

(
A
A4
− 1− ln

A
A4

)
+

eb1τ1

σ1
N +

eb2τ2

σ2
C4

(
C
C4
− 1− ln

C
C4

)
+

eb1τ1

σ1σ3
V

+
eb2τ2

σ2σ4(1− ρ1)
W4

(
W
W4
− 1− ln

W
W4

)
+

eb1τ1

σ1σ3σ5(1− ρ2)
Z + η1

∫ t

t−τ1

A(s)N(s)ds

+ η2 A4C4

∫ t

t−τ2

(
A(s)C(s)

A4C4
− 1− ln

A(s)C(s)
A4C4

)
ds.

By using the steady state conditions at E4

ϑ = κA4 + η2 A4C4,

η2 A4C4 =
eb2τ2 η4

σ2
C4W4 +

eb2τ2 Θ2

σ2
C4,

eb2τ2 η4

σ2
C4W4 =

eb2τ2 Θ4

σ2σ4(1− ρ1)
W4,

we find

dP4
dt

=

(
1− A4

A

)
(κA4 − κA) + η1(A4 − A1)N − eb1τ1 Θ3

σ1σ3
V − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z

− η2 A4C4

(
A4
A
− 1− ln

A4
A

)
− η2 A4C4

(
Aτ2 Cτ2

A4C
− 1− ln

Aτ2 Cτ2

A4C

)
=− κ(A− A4)

2

A
+

eb1τ1 κΘ1σ4η4(1− ρ1)

σ1ψ2

(
RN −RCW

)
N − eb1τ1 Θ3

σ1σ3
V − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z

− η2 A4C4

[
G
(

A4
A

)
+ G

(
Aτ2 Cτ2

A4C

)]
.

By following the same reasoning given in Theorems 3–6, we find that E4 is GAS if
RN ≤ RCW < RC.

Appendix D. Proof of Theorem 8

Proof. Choose a Lyapunov function

P5(A, N, C, V, W, Z) =A5

(
A
A5
− 1− ln

A
A5

)
+

eb1τ1

σ1
N5

(
N
N5
− 1− ln

N
N5

)
+

eb2τ2

σ2
C5

(
C
C5
− 1− ln

C
C5

)
+

eb1τ1

σ1σ3
V +

eb2τ2

σ2σ4(1− ρ1)
W5

(
W
W5
− 1− ln

W
W5

)
+

eb1τ1

σ1σ3σ5(1− ρ2)
Z

+ η1 A5 N5

∫ t

t−τ1

(
A(s)N(s)

A5 N5
− 1− ln

A(s)N(s)
A5 N5

)
ds

+ η2 A5C5

∫ t

t−τ2

(
A(s)C(s)

A5C5
− 1− ln

A(s)C(s)
A5C5

)
ds.

At the equilibrium state, E5 fulfils the following system of equations

ϑ = κA5 + η1 A5N5 + η2 A5C5,

η1 A5N5 =
eb1τ1 Θ1

σ1
N5,

η2 A5C5 =
eb2τ2 η4

σ2
C5W5 +

eb2τ2 Θ2

σ2
C5,

eb2τ2 η4

σ2
C5W5 =

eb2τ2 Θ4

σ2σ4(1− ρ1)
W5.
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By utilizing the above conditions, we find

dP5

dt
=
−κ(A− A5)

2

A
+

eb1τ1 κη3

σ1η1

(
RN −RCW −

η1Θ3

κσ3η3

)
V − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z

− η1 A5N5

(
A5

A
− ln

A5

A
+

Aτ1 Nτ1

A5N
− ln

Aτ1 Nτ1

A5N
− 2
)

− η2 A5C5

(
A5

A
− ln

A5

A
+

Aτ2 Cτ2

A5C
− ln

Aτ2 Cτ2

A5C
− 2
)

=
−κ(A− A5)

2

A
+

eb1τ1 κη3

σ1η1

(
RN −RCW −

η1Θ3

κσ3η3

)
V − eb1τ1 Θ5

σ1σ3σ5(1− ρ2)
Z

− η1 A5N5

[
G
(

A5

A

)
+ G

(
Aτ1 Nτ1

A5N

)]
− η2 A5C5

[
G
(

A5

A

)
+ G

(
Aτ2 Cτ2

A5C

)]
.

Thus,
dP5

dt
≤ 0 ifRN ≤ RCW +

η1Θ3

κσ3η3
.

dP5

dt
= 0 when A = A5, N = N5, C = C5, and

V = Z = 0. Let Γ′5 be the largest invariant subset of Γ5 =

{
(A, N, C, V, W, Z) | dP5

dt
= 0

}
.

Therefore, the solutions of system (1) converge to Γ′5, which comprises elements with
A = A5, N = N5, C = C5, and V = Z = 0. From the third equation of system (1), we
conclude that W = W5. It follows that Γ′5 = {E5}. Depending on LaSalle’s invariance

principle [42], the steady state E5 is GAS ifRC > RN andRCW < RN ≤ RCW +
η1Θ3

κσ3η3
.

Appendix E. Proof of Theorem 9

Proof. Take a Lyapunov function

P6(A, N, C, V, W, Z) =A6

(
A
A6
− 1− ln

A
A6

)
+

eb1τ1

σ1
N6

(
N
N6
− 1− ln

N
N6

)
+

eb2τ2

σ2
C6

(
C
C6
− 1− ln

C
C6

)
+

eb1τ1

σ1σ3
V6

(
V
V6
− 1− ln

V
V6

)
+

eb2τ2

σ2σ4(1− ρ1)
W +

eb1τ1

σ1σ3σ5(1− ρ2)
Z

+ η1 A6N6

∫ t

t−τ1

(
A(s)N(s)

A6N6
− 1− ln

A(s)N(s)
A6N6

)
ds

+ η2 A6C6

∫ t

t−τ2

(
A(s)C(s)

A6C6
− 1− ln

A(s)C(s)
A6C6

)
ds.

The steady state conditions at E6 are given by

ϑ = κA6 + η1 A6N6 + η2 A6C6,

η1 A6N6 =
eb1τ1 η3

σ1
N6V6 +

eb1τ1 Θ1

σ1
N6,

η2 A6C6 =
eb2τ2 Θ2

σ2
C6,

eb1τ1 η3

σ1
N6V6 =

eb1τ1 Θ3

σ1σ3
V6.
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After using the steady state conditions, we obtain

dP6
dt

=

(
1− A6

A

)
(κA6 − κA) +

eb2τ2 η4
σ2

(C6 − C4)W +
eb1τ1 η5

σ1σ3
(V6 −V7)Z

− η1 A6N6

(
A6
A
− ln

A6
A

+
Aτ1 Nτ1

A6N
− ln

Aτ1 Nτ1

A6N
− 2
)

− η2 A6C6

(
A6
A
− ln

A6
A

+
Aτ2 Cτ2

A6C
− ln

Aτ2 Cτ2

A6C
− 2
)

=− κ(A− A6)
2

A
+

eb2τ2 κη4
σ2η2

[
RC −RNV −

η2Θ4
κσ4η4(1− ρ1)

]
W +

eb1τ1 Θ1η5
σ1σ3η3

(
RN
RC
− R̃

)
Z

− η1 A6N6

[
G
(

A6
A

)
+ G

(
Aτ1 Nτ1

A6N

)]
− η2 A6C6

[
G
(

A6
A

)
+ G

(
Aτ2 Cτ2

A6C

)]
.

Thus,
dP6

dt
≤ 0 ifRC ≤ RNV +

η2Θ4

κσ4η4(1− ρ1)
and
RN
RC
≤ R̃.

dP6

dt
= 0 when A = A6,

N = N6, C = C6, and W = Z = 0. From the second equation of model (1), we find that

V = V6. Let Γ′6 be the largest invariant subset of Γ6 =

{
(A, N, C, V, W, Z) | dP6

dt
= 0

}
.

This implies that Γ′6 = {E6}. In accordance with LaSalle’s invariance principle [42], the

steady state E6 is GAS if 1 <
RN
RC
≤ R̃ andRNV < RC ≤ RNV +

η2Θ4

κσ4η4(1− ρ1)
.

Appendix F. Proof of Theorem 10

Proof. Consider a Lyapunov function

P7(A, N, C, V, W, Z) =A7

(
A
A7
− 1− ln

A
A7

)
+

eb1τ1

σ1
N7

(
N
N7
− 1− ln

N
N7

)
+

eb2τ2

σ2
C +

eb1τ1

σ1σ3
V7

(
V
V7
− 1− ln

V
V7

)
+

eb2τ2

σ2σ4(1− ρ1)
W

+
eb1τ1

σ1σ3σ5(1− ρ2)
Z7

(
Z
Z7
− 1− ln

Z
Z7

)
+ η2

∫ t

t−τ2

A(s)C(s)ds

+ η1 A7N7

∫ t

t−τ1

(
A(s)N(s)

A7N7
− 1− ln

A(s)N(s)
A7N7

)
ds.

By using the following steady state conditions at E7

ϑ = κA7 + η1 A7N7,

η1 A7N7 =
eb1τ1 η3

σ1
N7V7 +

eb1τ1 Θ1

σ1
N7,

η3

σ1
N7V7 =

η5

σ1σ3
V7Z7 +

Θ3

σ1σ3
V7,

η5

σ1σ3
V7Z7 =

Θ5

σ1σ3σ5(1− ρ2)
Z7.
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We obtain

dP7

dt
=

(
1− A7

A

)
(κA7 − κA) + η2

(
A7 −

eb2τ2 Θ2

σ2η2

)
C− eb2τ2 Θ4

σ2σ4(1− ρ1)
W

− η1 A7N7

(
A7

A
− ln

A7

A
+

Aτ1 Nτ1

A7N
− ln

Aτ1 Nτ1

A7N
− 2
)

=− κ(A− A7)
2

A
+

eb1τ1 Θ1η2

σ1η1

(
R̃ − RN

RC

)
C− eb2τ2 Θ4

σ2σ4(1− ρ1)
W

− η1 A7N7

[
G
(

A7

A

)
+ G

(
Aτ1 Nτ1

A7N

)]
.

Thus,
dP7

dt
≤ 0 if R̃ ≤ RN

RC
.

dP7

dt
= 0 when A = A7, N = N7, and C = W = 0.

Then, from system (1) we find that V = V7 and Z = Z7. Assume that Γ′7 is the largest

invariant subset of Γ7 =

{
(A, N, C, V, W, Z) | dP7

dt
= 0

}
. As a consequence, we obtain

Γ′7 = {E7}. Based on LaSalle’s invariance principle [42], the steady state E7 is GAS if

RN > R̃,RN > RNV +
ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
, and R̃ ≤ RN

RC
.

Appendix G. Proof of Theorem 11

Proof. Choose a Lyapunov function P8 as follows

P8(A, N, C, V, W, Z) =A8

(
A
A8
− 1− ln

A
A8

)
+

eb1τ1

σ1
N8

(
N
N8
− 1− ln

N
N8

)
+

eb2τ2

σ2
C8

(
C
C8
− 1− ln

C
C8

)
+

eb1τ1

σ1σ3
V8

(
V
V8
− 1− ln

V
V8

)
+

eb2τ2

σ2σ4(1− ρ1)
W8

(
W
W8
− 1− ln

W
W8

)
+

eb1τ1

σ1σ3σ5(1− ρ2)
Z

+ η1 A8N8

∫ t

t−τ1

(
A(s)N(s)

A8N8
− 1− ln

A(s)N(s)
A8N8

)
ds

+ η2 A8C8

∫ t

t−τ2

(
A(s)C(s)

A8C8
− 1− ln

A(s)C(s)
A8C8

)
ds.

The steady state conditions at E8 are given by the following equations

ϑ = κA8 + η1 A8N8 + η2 A8C8,

η1 A8N8 =
eb1τ1 η3

σ1
N8V8 +

eb1τ1 Θ1

σ1
N8,

η2 A8C8 =
eb2τ2 η4

σ2
C8W8 +

eb2τ2 Θ2

σ2
C8,

η3

σ1
N8V8 =

Θ3

σ1σ3
V8,

η4

σ2
C8W8 =

Θ4

σ2σ4(1− ρ1)
W8.
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After rearranging and using the above conditions, we obtain

dP8

dt
=

(
1− A8

A

)
(κA8 − κA) +

eb1τ1 η5

σ1σ3
(V8 −V7)Z− η1 A8 N8

(
A8

A
− ln

A8

A
+

Aτ1 Nτ1

A8 N
− ln

Aτ1 Nτ1

A8 N
− 2
)

− η2 A8C8

(
A8

A
− ln

A8

A
+

Aτ2 Cτ2

A8C
− ln

Aτ2 Cτ2

A8C
− 2
)

=− κ(A− A8)
2

A
+

eb1τ1 κΘ1σ4η4η5(1− ρ1)

σ1η2σ3η3Θ4 + σ1ψ1σ4η4(1− ρ1)

[
RN −RNV −

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)

− η2Θ4

κσ4η4(1− ρ1)
− η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)

]
Z− η1 A8 N8

[
G
(

A8

A

)
+ G

(
Aτ1 Nτ1

A8 N

)]
− η2 A8C8

[
G
(

A8

A

)
+ G

(
Aτ2 Cτ2

A8C

)]
.

Thus,
dP8

dt
≤ 0 if RN ≤ RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
. It is easy to show that

dP8

dt
= 0 when A = A8, N =

N8, C = C8, V = V8, W = W8, and Z = 0. Let Γ′8 be the largest invariant sub-

set of Γ8 =

{
(A, N, C, V, W, Z) | dP8

dt
= 0

}
. It follows that Γ′8 = {E8}. Based on

LaSalle’s invariance principle [42], the steady state E8 is GAS if RN > RCW +
η1Θ3

κσ3η3
,

RC > RNV +
η2Θ4

κσ4η4(1− ρ1)
, and RN ≤ RNV +

ψ1Θ5

κΘ1σ3σ5η5(1− ρ2)
+

η2Θ4

κσ4η4(1− ρ1)
+

η2η3Θ4Θ5

κΘ1σ4η4σ5η5(1− ρ1)(1− ρ2)
.

Appendix H. Proof of Theorem 12

Proof. Choose a Lyapunov function P9 as follows

P9(A, N, C, V, W, Z) =A9

(
A
A9
− 1− ln

A
A9

)
+

eb1τ1

σ1
N9

(
N
N9
− 1− ln

N
N9

)
+

eb2τ2

σ2
C9

(
C
C9
− 1− ln

C
C9

)
+

eb1τ1

σ1σ3
V9

(
V
V9
− 1− ln

V
V9

)
+

eb2τ2

σ2σ4(1− ρ1)
W9

(
W
W9
− 1− ln

W
W9

)
+

eb1τ1

σ1σ3σ5(1− ρ2)
Z9

(
Z
Z9
− 1− ln

Z
Z9

)
+ η1 A9N9

∫ t

t−τ1

(
A(s)N(s)

A9N9
− 1− ln

A(s)N(s)
A9N9

)
ds

+ η2 A9C9

∫ t

t−τ2

(
A(s)C(s)

A9C9
− 1− ln

A(s)C(s)
A9C9

)
ds.

After rearranging and utilizing the steady state conditions, the time derivative of P9
is given by

dP9

dt
=− κ(A− A9)

2

A
− η1 A9N9

(
A9

A
− ln

A9

A
+

Aτ1 Nτ1

A9N
− ln

Aτ1 Nτ1

A9N
− 2
)

− η2 A9C9

(
A9

A
− ln

A9

A
+

Aτ2 Cτ2

A9C
− ln

Aτ2 Cτ2

A9C
− 2
)

=− κ(A− A9)
2

A
− η1 A9N9

[
G
(

A9

A

)
+ G

(
Aτ1 Nτ1

A9N

)]
− η2 A9C9

[
G
(

A9

A

)
+ G

(
Aτ2 Cτ2

A9C

)]
.

We see that
dP9

dt
≤ 0. It is easy to show that

dP9

dt
= 0 at E9. Let Γ′9 be the largest

invariant subset of Γ9 =

{
(A, N, C, V, W, Z) | dP9

dt
= 0

}
. It follows that Γ′9 = {E9}.

Depending on LaSalle’s invariance principle [42], the steady state E9 is GAS.
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