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Abstract: In this paper, we provide a geometric construction of a symmetric 2n-interval minimally
supported frequency (MSF) d-dilation wavelet set with d ∈ (1, ∞) and characterize all symmetric
d-dilation wavelet sets. We also provide two special kinds of symmetric d-dilation wavelet sets, one
of which has 4m-intervals whereas the other has (4m + 2)-intervals, for m ∈ N. In addition, we
construct a family of d-dilation wavelet sets that has an infinite number of components.
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1. Introduction

Wavelets are functions that are used to produce bases or frames by the dilates and
translates of single function. Orthonormal wavelets and frames are widely used in ap-
plications such as signal and image processing, and sampling theory. A function ψ in
L2(R), whose successive dilates by d > 1 and their integral translates form an orthonormal
basis for L2(R), is called an orthonormal d-dilation wavelet for L2(R). A 2-dilation wavelet
is simply called a wavelet. Chui and Shi [1] characterized the orthonormal wavelets and
tight frames for dilation d ∈ (1, ∞). An orthonormal d-dilation wavelet whose Fourier
transform has the support to be of the smallest possible measure is called a minimally
supported frequency (MSF) d-dilation wavelet. By an MSF wavelet, we mean a minimally
supported frequency (MSF) 2-dilation wavelet. It is known that |supp ψ̂|, the Lebesgue
measure of the Fourier transform of an orthonormal d-dilation wavelet ψ, is at least 1.
In fact, for an MSF d-dilation wavelet ψ, there is a measurable set K of measure 1 such
that ψ̂ = χK. Set K is called a d-dilation wavelet set. By a wavelet set, we mean a 2-dilation
wavelet set [2,3]. Wavelet sets were first introduced by Dai and Larson [4]. Wavelet sets
having certain number of components were studied by many researchers in [2,3,5–12].
Characterizations of two-, three-, and four-interval wavelet sets were obtained by Ha et al.
for dilation 2 in [2]. A d-dilation wavelet set was characterized by Bownik et al. [7] as
a measurable set of R that partitions R to be its integral translation and by its d-dilates.
Further, Singh et al. [13] characterized a joint (d,−d)-dilation wavelet set and multiwavelet
set in terms of wavelet-induced isomorphisms, where |d| > 1.

Wavelets and wavelet sets were extensively studied, considering various aspects such
as the multiresolution analysis and the path connectivity of wavelets, by several researchers
in the field of wavelets [10–12,14,15]. From a result by Chui and Shi [1], according to which
for a dilation d such that dj /∈ Q for all j ∈ N, the only wavelets that exist are MSF
wavelets, the question of the existence or otherwise of a non-MSF wavelet for dilation other
than the one considered by them arose. Bownik and Speegle [16] showed the existence
of non-MSF wavelets for dilation d > 1, for which there exists a p ∈ Z\{0} such that
dpZ ∩ Z 6= {0}. Therefore, constructing non-MSF wavelets became a matter of interest.
Following a procedure originated from the work of Bownik and Speegle [16], we construct
non-MSF wavelets for L2(R) [10,15,17] and H2(R) [17] for dilation 2, and their association
with multiresolution analysis was considered. The path connectivity of certain subsets of
the set of wavelets was also discussed [15].
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Wavelets generated through wavelet sets are very important, as they are extensively
used to produce examples in wavelet theory. Our main goal is to study the theory of MSF
d-dilation wavelets and provide a geometric construction of MSF d-dilation wavelets for
L2(R), where d > 1, and characterize all symmetric d-dilation wavelet sets. Further, we
provide finite and infinite families of d-dilation wavelets in L2(R).

Let L1(R) be the collection of all Lebesgue integrable functions on R, and L2(R) be
that of all Lebesgue square integrable functions on R. Functions that are equal almost
everywhere are identified. With the usual addition and scalar multiplication of functions
together with inner product 〈 f , g〉 of f , g ∈ L2(R) defined by

〈 f , g〉 =
∫
R

f (x)g(x)dx, (1)

L2(R) becomes a Hilbert space. The Fourier transform is defined by

f̂ (ξ) =
∫
R

f (x)e−2πiξxdx, (2)

where f ∈ L1(R) ∩ L2(R). This uniquely extends to an operator on L2(R).
An orthonormal d-dilation wavelet is a function ψ ∈ L2(R) such that {ψj,k : j, k ∈ Z} is

an orthonaormal basis for L2(R), where

ψj,k(x) = dj/2ψ(djx− k). (3)

The d-dilation wavelet ψ is called MSF d-dilation wavelet if there exists a set K in R,
such that

ψ̂ = χK. (4)

Set K is called a d-dilation wavelet set, whose characterization is given by the following
theorem:

Theorem 1. Let K be a set in R. K is a d-dilation wavelet set iff the followings are satisfied:

(i) än∈Z(K + n) = R a.e.
(ii) än∈Z dnK = R a.e.

Equivalently, K is a d-dilation wavelet set if and only if K is both translation-congruent
to [0, 1] or

[
− 1

2 , 1
2

]
and d-dilation-congruent to [−db,−b] ∪ [b, db] for b > 0.

As a consequence of Theorem 1, we have the following:

Corollary 1. Let K and W be subsets of R, and K be both translation- and d-dilation-equivalent to
W. Then, K is a d-dilation wavelet set if and only if W is a d-dilation wavelet set.

The rest of the article is organized into two sections. Section 2 begins with a geometric
construction of symmetric 2n-interval d-dilation wavelet set by following the technique
provided by Arcozzi et al. [5] to obtain 2n-interval symmetric wavelet sets for dyadic
dilation. The characterization of all symmetric d-dilation wavelet sets is also provided
in Section 2. In addition, we provide a family of six-interval d-dilation wavelet sets and
two special kinds of symmetric d-dilation wavelet sets, one of which has 4m intervals,
whereas the other has (4m + 2) intervals, where m ∈ N. In Section 3, we construct a family
of d-dilation wavelet set that has an infinite number of components. The d-dilation wavelet
set constructed in this section is bounded symmetric d-dilation wavelet sets having infinite
number of components, and the accumulation point of these wavelet sets is their origin.
MSF d-dilation wavelets arising from these d-dilation wavelet sets are also band-limited,
and their Fourier transform is even and does not vanish in any neighborhood of origin, i.e.,
it was discontinuous at the origin.



Mathematics 2021, 9, 1284 3 of 9

2. Construction of Symmetric d-Dilation Wavelet Sets and d-dilation Wavelets

In this section, we construct symmetric 2n-interval d-dilation wavelet sets with d > 1
by following the method described in [5] to construct symmetric wavelet sets for dilation
d = 2 on the basis of the MSF polygonal. In addition, we provide a characterization of all
symmetric d-dilation wavelet sets.

For mj ∈ N0 = N
⋃{0} and λj ∈ Z, consider set D of all points Pj = P[λj, mj] =

(d−λj , d−λj mj), j = 1, 2, ..., n in the first quadrant of the Euclidean plane. For a finite set
P = {P1, P2, ..., Pn} in D, the negative of the slope of the line joining Pj and Pj+1 is

−
mjd

−λj −mj+1d−λj+1

d−λj − d−λj+1
. (5)

denoted by aj, where j = 1, 2, ..., n − 1. Finite set P = {P1, P2, ..., Pn} is called d-MSF
polygonal if

λ1 = 0, 0 = a0 < a1 < a2 < ... < an =
1
2

, (6)

and
d−λn(2mn + 1) = 2dm1. (7)

Clearly, for d = 2, the d-MSF polygonal is called the MSF polygonal.

Theorem 2. For a d-MSF polygonal P as defined above, let

Ij = [aj−1, aj] + mj, j = 1, 2, ..., n.

Then, K is a symmetric d-dilation wavelet set where K = K−
⋃

K+, with K+ =
⋃n

j=1 Ij and
K− = −K+.

Proof. Since set K is symmetric, for showing that K is a d-dilation wavelet set, we only
have to show that Conditions (i) and (ii) of Theorem 1 are satisfied by K+ for R+ or [0, ∞). It
is obvious that än∈Z(K+ + n) coincides a.e. with the set of real numbers that are congruent
to a number in [0, 1/2], modulo Z, if (6) holds. Next, let Hj = d−λj Ij, j = 1, 2, ..., n. Using (5)
and (7) we can show that än∈Z dnK+ = [0, ∞) a.e.. Hence, K is a d-dilation wavelet set.

Remark 1. K(P) is called d-dilation wavelet set associated to P . If P1 and P2 are different
polygonals i.e., P1 6= P2 , then K(P1) 6= K(P2).

The following example provides a family of six-interval symmetric d-dilation wavelet set for
L2(R) with d > 1.

Example 1. For n = 3, let

P1 = P(0,
ds

2
(2t + 1)) = (1,

ds

2
(2t + 1)), P2 = P(−v, 0) = (dv, 0)

and
P3 = P(−s− 1, t) = (ds+1, tds+1),

where s, t and v are non-negative integers such that s ≥ 1, t ≥ 1 and v > s + 1. From these,
we obtain

a1 =
ds(2t + 1)
2(dv − 1)

, a2 =
ds+1t

(dv − ds+1)
.

Clearly, a1 > 0. a1 < a2 and a2 < a3 are satisfied if 1 < 2t(d− 1) and ds+1(2t + 1) < dv.
Then P = {P1, P2, P3} is a d-MSF polygonal for d > 1. We have

I1 =

[
ds(2t + 1)

2
,

ds+v(2t + 1)
2(dv − 1)

]
, I2 =

[
ds(2t + 1)
2(dv − 1)

,
ds+1t

(dv − ds+1)

]
,
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and

I3 =

[
dvt

(dv − ds+1)
,
(2t + 1)

2

]
.

Therefore, K = K− ∪ K+ with K− = −K+ is a six-interval d-dilation wavelet set where

K+ =

[
ds(2t + 1)

2
,

ds+v(2t + 1)
2(dv − 1)

]
∪
[

ds(2t + 1)
2(dv − 1)

,
ds+1t

(dv − ds+1)

]
∪
[

dvt
(dv − ds+1)

,
(2t + 1)

2

]
.

In this example, if we take t = 1, s = 1, v = 3 and d = 4, then we obtain a 4-dilation wavelet
set K = K− ∪ K+, where K+ =

[
6, 384

63

]
∪
[

2
21 , 1

3

]
∪
[

4
3 , 3

2

]
and K− = −K+.

Example 2. For n = 2 and d = 2, let P1 = P(0, 2r−1) = (1, 2r−1), r ∈ N. Using (5), we can
find P2 = P(−r− 1, 0) = (2r+1, 0). Then P = {P1, P2} is an MSF polygonal with a1 = 2r−1

2r+1−1 .
Hence

I1 =

[
2r−1,

22r

2r+1 − 1

]
, I2 =

[
2r−1

2r+1 − 1
,

1
2

]
.

Therefore, K = K− ∪ K+ is a four-interval wavelet set where K+ =
[
2r−1, 22r

2r+1−1

]
∪[

2r−1

2r+1−1 , 1
2

]
and K− = −K+. This family is the characterization of the four-interval wavelet set

provided by Ha et al. in [2].
In the following theorem, we characterize all symmetric d-dilation wavelet sets with d > 1,

which are a finite union of intervals.

Theorem 3. Let n ∈ N and let K ⊂ R be a measurable set. K is a symmetric d-dilation wavelet set
with d > 1 if and only if K = K− ∪ K+ with K+ = ∪α∈A Iα, A ⊆ {1, 2, ..., n} and K− = −K+,
where

(a) Ij = (εj[aj−1, aj] +mj), for j = 1, 2, ..., n, with εj ∈ {−1, 1}, mj ∈ N0 and aj’s satisfying
(6), and,

(b) ∪α∈AHα has the form [b, db] for some b > 0 where Hα = d−λτ(α) Iτ(α), α ∈ A, λj ∈ Z, τ
is a permutation on A.

Proof. We only need to show that K is translation-congruent to a subset of [0, 1] or
[
− 1

2 , 1
2

]
and d-dilation-congruent to [−db,−b] ∪ [b, db] for b > 0. Clearly, the definition of I′j s is

equivalent to the condition that K is translation-congruent to a subset of [0, 1] or
[
− 1

2 , 1
2

]
,

and the definition and conditions on Hα are equivalent to the condition for K to be d-
dilation-congruent to [−db,−b] ∪ [b, db] for b > 0.

Now, we provide two special kinds of symmetric d-dilation wavelet sets with d > 1,
one of which has 4m-intervals, whereas the other has (4m + 2)-intervals, where m ∈ N.
The first is obtained by choosing an even positive integer, and the second by choosing an
odd positive integer.

Example 3. Let n ∈ 2N and d ∈ (1, ∞). Define λj’s and mj’s, where j = 1, 2, ..., n, as follows:

λ1 = 0, λ2i = −(n− (i− 2)), for i = 1, 2, ...,
n
2

,

λ2i+1 = −i, for i = 1, 2, ...,
n
2
− 1,

and
m1 = dn/2, m2i = 0, for i = 1, 2, ...,

n
2

,

m2i+1 = d
n
2−i, for i = 1, 2, ...,

n
2
− 1.
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With the help of these mj’s and λj’s, we obtain Pj, where j = 1, 2, ..., n, as follows:

P1 ≡ P
[
0, d

n
2

]
=
(

1, d
n
2

)
,

P2i ≡ P[−(n− (i− 2)), 0] =
(

d(n−(i−2)), 0
)

for i = 1, 2, ...,
n
2

,

and
P2i+1 ≡ P

[
−i, d

n
2−i
]
=
(

di, d
n
2

)
for i = 1, 2, ...,

n
2
− 1.

Thus, aj, for j = 1, 2, ..., n− 1, comes out to be

a2i−1 =
d

n
2

dn−i+2 − di−1 for i = 1, 2, ...,
n
2

,

and

a2i =
d

n
2

dn−i+2 − di for i = 1, 2, ...,
n
2
− 1.

Therefore, positive side K+ of the d-dilation wavelet set K arises in the form of

K+ =

[
dn/2, dn/2 +

dn/2

dn+1 − 1

]
∪
[

dn/2

dn+1 − 1
,

dn/2

dn+1 − 2

]
∪ · · · ∪

[
d

d3 − 1
,

1
2

]
.

Hence, K = K+ ∪ K− where K− = −K+ consists 4m intervals, m ∈ N.

Example 4. Let n ∈ 2N+ 1 and d ∈ (1, ∞). Define λj’s and mj’s, where j = 1, 2, ..., n, as follows:

λ1 = 0, λ2i = −4−
(

n− 2i + 1
2

)
for i = 1, 2, ...,

n− 1
2

,

λ2i+1 =
n− 2i− 7

2
for i = 1, 2, ...,

n− 1
2

,

and
m1 = 6, m2i = 0 for i = 1, 2, ...,

n− 1
2

,

m2i+1 = d
n−2i−1

2 for i = 1, 2, ...,
n− 1

2
.

With the help of these mj’s and λj’s, we obtain Pj, where j = 1, 2, ..., n, as follows:

P1 ≡ P[0, 6] = (1, 6),

P2i ≡ P
[
−4−

(
n− 2i + 1

2

)
, 0
]
=
(

d4+( n−2i+1
2 ), 0

)
for i = 1, 2, ...,

n− 1
2

,

and

P2i+1 ≡ P
[

n− 2i− 7
2

, d
n−2i−1

2

]
=
(

d−
n−2i−7

2 , d3
)

for i = 1, 2, ...,
n− 1

2
.

Thus aj, for j = 1, 2, ..., n− 1, comes out to be

a1 =
6

d
n+7

2 − 1
, a2i =

d
n−1

2 −i

dn−2i+1 − 1
for i = 1, 2, ...,

n− 1
2

,

and

a2i+1 =
d

n−1
2 −i

dn−2i − 1
for i = 1, 2, ...,

n− 3
2

.
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Therefore, positive side K+ of the d-dilation wavelet set K, arises in the form of

K+ =

[
6, 6 +

6

d
n+7

2 − 1

]
∪
[

6

d
n+7

2 − 1
,

d
n−3

2

dn−1 − 1

]
∪ · · · ∪

[
d2

d2 − 1
,

3
2

]
.

Hence, K = K+ ∪ K− where K− = −K+ consists (4m + 2) intervals, m ∈ N.

The symmetric d-dilation wavelet sets constructed in this section have a finite number
of components. By employing the method of Brandolini et al. [18], we construct two
families of d-dilation wavelet sets by using Examples 3 and 4 in the following section,
which has an infinite number of components. MSF d-dilation wavelets arising from these
d-dilation wavelet sets are also band-limited, of which the Fourier transforms are even and
does not vanish in any neighborhood of the origin.

3. Symmetric d-Dilation Wavelet Sets Having Infinite Number of Components

With the help of the d-dilation wavelet sets obtained Examples 3 and 4, we provide
families of bounded symmetric d-dilation wavelet sets having infinite number of compo-
nents and the origin as their accumulation point.

Consider d-dilation wavelet set K = K− ∪ K+ with K− = −K+, constructed in
Example 3 and K+ = I+1 ∪ I+2 ∪ · · · ∪ I+n where

I+1 =

[
dn/2, dn/2 +

dn/2

dn+1 − 1

]
I+2 =

[
dn/2

dn+1 − 1
,

dn/2

dn+1 − 2

]

and

I+n =

[
d

d3 − 1
,

1
2

]
.

Selecting bn = dn/2

dn+1−1 , we consider the following intervals:

S1 =

[
bn

d
+

ε

dn+1 ,
bn

d
+ ε

]
, S2 =

[
bn + dε,

dn/2

dn+1 − 2

]
,

and
S3 =

[
dn+1bn, dn+1bn + dε

]
.

Since ε ∈ (0, δn), S2 is a nonempty set. Setting E0 = S1 + dn/2, F0 = 1
dn+2 E0, and for

r ≥ 1, Er = Fr−1 + dn/2, Fr =
1

dr+n+2 Er, we denote(
I+1 −

⋃∞
r=0 Er

)
∪ (
⋃∞

r=0 Fr) ∪ (S1 ∪ S2 ∪ S3) ∪ I+3 ∪ I+4 ∪ · · · ∪ I+n

by K+
ε , and define

Kε = K−ε ∪ K+
ε , where K−ε = −K+

ε .

To prove that Kε is a d-dilation wavelet set, we make use of Corollary 1, according
to which Kε is to be shown to be translation- and d-dilation-equivalent to a d-dilation
wavelet set, in general, and hence to the d-dilation wavelet set K constructed in Example 3,
in particular. On account of the symmetry of d-dilation wavelet sets, it suffices to show that
K+

ε is both translation- and d-dilation-equivalent to K+.
First, by induction, we obtain that Er ⊂ I+1 , for all r ≥ 0. Observing that

bn + dn/2 = dn+1bn,

we have
[0, bn] + dn/2 =

[
dn/2, dn+1bn

]
= I+1 ,
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and hence
E0 = S1 + dn/2 ⊂ [0, bn] + dn/2 = I+1 .

Now, assume that Em ⊂ I+1 . Then,

Fm = d−(m+n+2)Em ⊂ d−(m+1)[0, bn] ⊂ [0, bn],

and hence
Em+1 = Fm + dn/2 ⊂ [0, bn] + dn/2 = I+1 .

As intervals Er, r ≥ 0 lie inside the interval I+1 , and Er+1 lies to the left of Er, for all
r ≥ 0, Fr+1 lies to the left of Fr, for all r ≥ 0.

Because sets I+3 , I+4 , ..., I+n appear in both the partitions of K+
ε and of K+, that K+

ε is
d-dilation- and translation-equivalent to K+ follows from (A) and (B), respectively.

(A) (i) 1
dn+1 S3 ∪ dS1 ∪ S2

=
[
bn, bn +

dε
dn+1

]
∪
[
bn +

dε
dn+1 , bn + dε

]
∪
[
bn + dε, dn/2

dn+1−2

]
=
[
bn, dn/2

dn+1−2

]
= I+2 ,

(ii)
(

I+1 −
⋃∞

r=0 Er
)
∪
(⋃∞

r=0 dr+n+2Fr
)

=
(

I+1 −
⋃∞

r=0 Er
)
∪ (

⋃∞
r=0 Er) = I+1 .

(B) (i) (S3 − dn/2) ∪ S2

= [bn, bn + dε] ∪
[
bn + dε, dn/2

dn+1−2

]
=
[
bn, dn/2

dn+1−2

]
= I+2 ,

(ii)
(

I+1 −
⋃∞

r=0 Er
)
∪
(⋃∞

r=0

(
Fr + dn/2

))
∪
(

S1 + dn/2
)
= I+1 .

Further, since a neighborhood of the origin intersects ∪∞
r=0Fr, the origin is an accumu-

lation point of the d-dilation wavelet set Kε. Now, we have the following result:

Theorem 4. For n ∈ 2N, d ∈ (1, ∞) and ε ∈ (0, δn), where δn = dn/2

d(dn+1−2)(dn+1−1) , there exists
a bounded symmetric d-dilation wavelet set Kε having infinite number of components and the origin
as an accumulation point.

Again, consider the d-dilation wavelet set K = K− ∪ K+ with K− = −K+ constructed
in Example 4 and K+ = I+1 ∪ I+2 ∪ · · · ∪ I+n where

I+1 =

[
6, 6 +

6

d
n+7

2 − 1

]
I+2 =

[
6

d
n+7

2 − 1
,

d
n−3

2

dn−1 − 1

]
and I+n =

[
d2

d2 − 1
,

3
2

]
.

With bn = 6

d
n+7

2 −1
, we consider the following intervals:

S1 =

[
bn

d
+

ε

d
n+7

2
,

bn

d
+ ε

]
, S2 =

[
bn + dε,

d
n−3

2

dn−1 − 1

]
,

and
S3 =

[
d

n+7
2 bn, d

n+7
2 bn + dε

]
,

where S2 is a nonempty set that follows on account of the choice of ε. Setting E0 =
S1 + 6, F0 = 1

d
n+9

2
E0, and for r ≥ 1, Er = Fr−1 + 6, Fr =

1

dr+ n+9
2

Er, we denote(
I+1 −

⋃∞
r=0 Er

)
∪ (
⋃∞

r=0 Fr) ∪ (S1 ∪ S2 ∪ S3) ∪ I+3 ∪ I+4 ∪ · · · ∪ I+n ,

by K+
ε . Then

Kε = K−ε ∪ K+
ε , where K−ε = −K+

ε ,
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is the required d-dilation wavelet set. To obtain that Kε is a d-dilation wavelet set, we show
that K+

ε is both translation- and d-dilation-equivalent to K+ constructed in Example 4.
Using induction, we obtain Er ⊂ I+1 , for all r ≥ 0. In fact, from

bn + 6 = d
n+7

2 bn,

it follows that
[0, bn] + 6 =

[
6, d

n+7
2 bn

]
= I+1 ,

and hence
E0 = S1 + 6 ⊂ [0, bn] + 6 = I+1 .

Next, assuming that Em ⊂ I+1 , we have

Fm = d−(m+ n+9
2 )Em ⊂ d−(m+1)[0, bn] ⊂ [0, bn],

and hence
Em+1 = Fm + 6 ⊂ [0, bn] + 6 = I+1 .

As intervals Er, r ≥ 0 lie inside the interval I+1 , and Er+1 lies to the left of Er, for all
r ≥ 0, Fr+1 lies to the left of Fr, for all r ≥ 0.

Because sets I+3 , I+4 , ..., I+n appear in both partitions of K+
ε and K+, that K+

ε is d-dilation-
and translation-equivalent to K+ follows from (A) and (B), respectively.

(A) (i) 1

d
n+7

2
S3 ∪ dS1 ∪ S2

=

[
bn, bn +

dε

d
n+7

2

]
∪
[

bn +
dε

d
n+7

2
, bn + dε

]
∪
[

bn + dε, d
n−3

2

2n−1−1

]
=

[
bn, d

n−3
2

dn−1−1

]
= I+2 ,

(ii)
(

I+1 −
⋃∞

r=0 Er
)
∪
(⋃∞

r=0 dr+ n+9
2 Fr

)
=
(

I+1 −
⋃∞

r=0 Er
)
∪ (

⋃∞
r=0 Er) = I+1 .

(B) (i) (S3 − 6) ∪ S2 = [bn, bn + dε] ∪
[

bn + dε, d
n−3

2

dn−1−1

]
=

[
bn, d

n−3
2

dn−1−1

]
= I+2 ,

(ii)
(

I+1 −
⋃∞

r=0 Er
)
∪ (

⋃∞
r=0(Fr + 6)) ∪ (S1 + 6) = I+1 .

Therefore, Kε is a d-dilation wavelet set. Further, since a neighborhood of the origin
intersects ∪∞

r=0Fr, the origin is an accumulation point of the d-dilation wavelet set Wε. Now,
we have the following result:

Theorem 5. For n ∈ 2N+ 1, d ∈ (1, ∞) and ε ∈ (0, δn), there exists a bounded symmetric
d-dilation wavelet set Kε having infinite number of components and the origin as an accumulation

point, where δn = d
n−5

2 (d
n+1

2 (d3−6)−1)+6

(dn−1−1)(d
n+7

2 −1)
.

Remark 2. Let ψ̂ε be the characteristic function on set Kε, constructed in Theorems 4 and 5,
respectively. Then, ψε is a band-limited d-dilation wavelet such that ψ̂ε is even and does not vanish
in any neighborhood of the origin. In particular, it is discontinuous at the origin.

Remark 3. Employing Examples 2–4, we can construct non-MSF d-dilation wavelets with d > 1
for L2(R). The technique of constructing such wavelets is similar to the one utilized in [10,15,17].
Most of the constructed non-MSF d-dilation wavelets were non-MRA.
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4. Summary

In this paper, we studied the theory of MSF d-dilation wavelets and provided a geo-
metric construction of MSF d-dilation wavelet set with characterization of all symmetric
d-dilation (d ∈ (1, ∞)) wavelet sets. For the geometric construction of wavelet sets, we
exploited Arcozzi’s technique [5] to obtain 2n-interval symmetric wavelet sets for dyadic
dilation. We also provided a family of six-interval d-dilation wavelet sets and two spe-
cial kinds of symmetric d-dilation wavelet set. The two symmetric d-dilation wavelets
had 4m-intervals and (4m + 2)-intervals (m ∈ N), respectively. Further, we constructed
infinite families of d-dilation wavelets that were bounded symmetric d-dilation wavelet
sets. The MSF d-dilation wavelets on these wavelet sets were band-limited, and their
characteristic function was even and discontinuous at the origin.
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